Skip to main content
  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • Editorial Manifesto
    • Impact Factor
    • Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Circulation Research Profiles
    • Trainees & Young Investigators
    • Research Around the World
    • News & Views
    • The NHLBI Page
    • Viewpoints
    • Compendia
    • Reviews
    • Recent Review Series
    • Profiles in Cardiovascular Science
    • Leaders in Cardiovascular Science
    • Commentaries on Cutting Edge Science
    • AHA/BCVS Scientific Statements
    • Abstract Supplements
    • Circulation Research Classics
    • In This Issue Archive
    • Anthology of Images
  • Resources
    • Online Submission/Peer Review
    • Why Submit to Circulation Research
    • Instructions for Authors
    • → Article Types
    • → Manuscript Preparation
    • → Submission Tips
    • → Journal Policies
    • Circulation Research Awards
    • Image Gallery
    • Council on Basic Cardiovascular Sciences
    • Customer Service & Ordering Info
    • International Users
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
  • Impact Factor 13.965
  • Facebook
  • Twitter

  • My alerts
  • Sign In
  • Join

  • Advanced search

Header Publisher Menu

  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

Circulation Research

  • My alerts
  • Sign In
  • Join

  • Impact Factor 13.965
  • Facebook
  • Twitter
  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • Editorial Manifesto
    • Impact Factor
    • Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Circulation Research Profiles
    • Trainees & Young Investigators
    • Research Around the World
    • News & Views
    • The NHLBI Page
    • Viewpoints
    • Compendia
    • Reviews
    • Recent Review Series
    • Profiles in Cardiovascular Science
    • Leaders in Cardiovascular Science
    • Commentaries on Cutting Edge Science
    • AHA/BCVS Scientific Statements
    • Abstract Supplements
    • Circulation Research Classics
    • In This Issue Archive
    • Anthology of Images
  • Resources
    • Online Submission/Peer Review
    • Why Submit to Circulation Research
    • Instructions for Authors
    • → Article Types
    • → Manuscript Preparation
    • → Submission Tips
    • → Journal Policies
    • Circulation Research Awards
    • Image Gallery
    • Council on Basic Cardiovascular Sciences
    • Customer Service & Ordering Info
    • International Users
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
Original Research

Hyperamylinemia Contributes to Cardiac Dysfunction in Obesity and Diabetes

A Study in Humans and Rats

Sanda Despa, Kenneth B. Margulies, Le Chen, Anne A. Knowlton, Peter J. Havel, Heinrich Taegtmeyer, Donald M. Bers, Florin Despa
Download PDF
https://doi.org/10.1161/CIRCRESAHA.111.258285
Circulation Research. 2012;CIRCRESAHA.111.258285
Originally published January 24, 2012
Sanda Despa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth B. Margulies
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Le Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne A. Knowlton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter J. Havel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Heinrich Taegtmeyer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald M. Bers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Florin Despa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Supplemental Materials
  • Info & Metrics

Jump to

  • Article
  • Supplemental Materials
  • Info & Metrics
  • eLetters
Loading

Abstract

Rationale: Hyperamylinemia is common in patients with obesity and insulin resistance, coincides with hyperinsulinemia, and results in amyloid deposition. Amylin amyloids are generally considered a pancreatic disorder in type 2 diabetes. However, elevated circulating levels of amylin may also lead to amylin accumulation and proteotoxicity in peripheral organs, including the heart.

Objective: To test whether amylin accumulates in the heart of obese and type 2 diabetic patients and to uncover the effects of amylin accumulation on cardiac morphology and function.

Methods and Results: We compared amylin deposition in failing and nonfailing hearts from lean, obese, and type 2 diabetic humans using immunohistochemistry and Western blots. We found significant accumulation of large amylin oligomers, fibrils, and plaques in failing hearts from obese and diabetic patients but not in normal hearts and failing hearts from lean, nondiabetic humans. Small amylin oligomers were even elevated in nonfailing hearts from overweight/obese patients, suggesting an early state of accumulation. Using a rat model of hyperamylinemia transgenic for human amylin, we observed that amylin oligomers attach to the sarcolemma, leading to myocyte Ca2+ dysregulation, pathological myocyte remodeling, and diastolic dysfunction, starting from prediabetes. In contrast, prediabetic rats expressing the same level of wild-type rat amylin, a nonamyloidogenic isoform, exhibited normal heart structure and function.

Conclusions: Hyperamylinemia promotes amylin deposition in the heart, causing alterations of cardiac myocyte structure and function. We propose that detection and disruption of cardiac amylin buildup may be both a predictor of heart dysfunction and a novel therapeutic strategy in diabetic cardiomyopathy.

  • hyperinsulinemia
  • hyperamylinemia
  • diabetic cardiomyopathy
  • calcium
  • HIP rat
  • UCD-T2DM rat
  • Received October 6, 2011.
  • Revision received January 11, 2012.
  • Accepted January 13, 2012.
  • © 2012 American Heart Association, Inc.
Back to top
Previous ArticleNext Article

Current Issue

Circulation Research
April 13, 2018, Volume 122, Issue 8
  • Table of Contents
Previous ArticleNext Article

Jump to

  • Article
  • Supplemental Materials
  • Info & Metrics

Article Tools

  • Print
  • Citation Tools
    Hyperamylinemia Contributes to Cardiac Dysfunction in Obesity and Diabetes
    Sanda Despa, Kenneth B. Margulies, Le Chen, Anne A. Knowlton, Peter J. Havel, Heinrich Taegtmeyer, Donald M. Bers and Florin Despa
    Circulation Research. 2012;CIRCRESAHA.111.258285, originally published January 24, 2012
    https://doi.org/10.1161/CIRCRESAHA.111.258285

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
  • Article Alerts
    Log in to Email Alerts with your email address.
  • Save to my folders

Share this Article

  • Email

    Thank you for your interest in spreading the word on Circulation Research.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Hyperamylinemia Contributes to Cardiac Dysfunction in Obesity and Diabetes
    (Your Name) has sent you a message from Circulation Research
    (Your Name) thought you would like to see the Circulation Research web site.
  • Share on Social Media
    Hyperamylinemia Contributes to Cardiac Dysfunction in Obesity and Diabetes
    Sanda Despa, Kenneth B. Margulies, Le Chen, Anne A. Knowlton, Peter J. Havel, Heinrich Taegtmeyer, Donald M. Bers and Florin Despa
    Circulation Research. 2012;CIRCRESAHA.111.258285, originally published January 24, 2012
    https://doi.org/10.1161/CIRCRESAHA.111.258285
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo

Related Articles

Cited By...

Subjects

  • Epidemiology, Lifestyle, and Prevention
    • Diabetes, Type 2
  • Heart Failure and Cardiac Disease
    • Heart Failure
    • Cardiomyopathy
  • Basic, Translational, and Clinical Research
    • Contractile Function
    • Calcium Cycling/Excitation-Contraction Coupling
    • Animal Models of Human Disease

Circulation Research

  • About Circulation Research
  • Editorial Board
  • Instructions for Authors
  • Abstract Supplements
  • AHA Statements and Guidelines
  • Permissions
  • Reprints
  • Email Alerts
  • Open Access Information
  • AHA Journals RSS
  • AHA Newsroom

Editorial Office Address:
3355 Keswick Rd
Main Bldg 103
Baltimore, MD 21211
CircRes@circresearch.org

Information for:
  • Advertisers
  • Subscribers
  • Subscriber Help
  • Institutions / Librarians
  • Institutional Subscriptions FAQ
  • International Users
American Heart Association Learn and Live
National Center
7272 Greenville Ave.
Dallas, TX 75231

Customer Service

  • 1-800-AHA-USA-1
  • 1-800-242-8721
  • Local Info
  • Contact Us

About Us

Our mission is to build healthier lives, free of cardiovascular diseases and stroke. That single purpose drives all we do. The need for our work is beyond question. Find Out More about the American Heart Association

  • Careers
  • SHOP
  • Latest Heart and Stroke News
  • AHA/ASA Media Newsroom

Our Sites

  • American Heart Association
  • American Stroke Association
  • For Professionals
  • More Sites

Take Action

  • Advocate
  • Donate
  • Planned Giving
  • Volunteer

Online Communities

  • AFib Support
  • Garden Community
  • Patient Support Network
  • Professional Online Network

Follow Us:

  • Follow Circulation on Twitter
  • Visit Circulation on Facebook
  • Follow Circulation on Google Plus
  • Follow Circulation on Instagram
  • Follow Circulation on Pinterest
  • Follow Circulation on YouTube
  • Rss Feeds
  • Privacy Policy
  • Copyright
  • Ethics Policy
  • Conflict of Interest Policy
  • Linking Policy
  • Diversity
  • Careers

©2018 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited. The American Heart Association is a qualified 501(c)(3) tax-exempt organization.
*Red Dress™ DHHS, Go Red™ AHA; National Wear Red Day ® is a registered trademark.

  • PUTTING PATIENTS FIRST National Health Council Standards of Excellence Certification Program
  • BBB Accredited Charity
  • Comodo Secured