SUPPLEMENTAL DATA FIGURES

SUPPLEMENTAL DATA FIGURE 1

Figure 1 shows the time course for the effect of PGI₂ analogues (carbaprostacyclin and iloprost), PGE₂ and forskolin on cyclic AMP production from human PASMC. Confluent cells were growth arrested in serum free medium for 24 hours, then washed with PBS and further incubated in fresh medium with 10μmol/L of carbaprostacyclin, iloprost, PGE₂ and forskolin plus 1mmol/L IBMX for the indicated times. Each bar is the mean of 8 determinations from 3 independent experiments.

SUPPLEMENTAL DATA FIGURE 2

Figure 2 shows the effect of IL-1β, BK and TGF-β₁ on cyclic AMP production in response to iloprost. After pre-incubation without and with IL-1β (10 ng/mL/24h) (S2A), BK (10 μmol/L/24h) (S2B), or TGF-β₁ (1ng/mL/36h) (S2C), cells were washed with PBS and further incubated in fresh with increasing concentrations of iloprost plus 1mmol/L IBMX for 20 min. Each bar is the mean of 8 determinations from 3 independent experiments where * P<0.05, ** P<0.01, *** P<0.001 compared with cells without IL-1β, BK and TGF-β₁ pre-treatment.

SUPPLEMENTAL DATA FIGURE 3

Figure 3 shows the effect of exogenous PGE₂ on cyclic AMP generation in response to carbaprostacyclin (S3A), iloprost (S3B), PGE₂ (S3C) or FSK (S3D). After pre-incubation without or with 1 μmol/L PGE₂ for 24 h, cells were washed with PBS and further incubated in fresh medium with increasing concentrations of carbaprostacyclin, iloprost, PGE₂ or FSK plus 1mmol/L IBMX for 20 min. Each bar
is the mean of 8 determinations from 3 independent experiments where * $P<0.05$, ** $P<0.01$, *** $P<0.001$ compared with cells without PGE$_2$ pre-treatment.

SUPPLEMENTAL DATA TABLE 1

Table 1 show the upstream and down stream (sense and anti sense) primers of the adenylyl cyclase isoforms.
(ST1)

AC1 5’ 5’-CATGACCTGCGAGGACGAT-3’
AC1 3’ 5’-ACAGGAGACTGCGAATCTGAA-3’

AC2 5’ 5’-GGGGCTGCTTCTCTCT-3’
AC2 3’ 5’-CAGGAACACGGAAACAGGATA-3’

AC3 5’ 5’-CACCGGACCAGCAAT-3’
AC3 3’ 5’-GCTCTAAGGCCACCATAGGTA-3’

AC4 5’ 5’-TGAACCATGGACCCGTAG-3’
AC4 3’ 5’-GCAGTGAATCTCAGC

AC5 5’ 5’-ACCAAGGCTACACTCAACTAC-3’
AC5 3’ 5’-GTTTCATCTTGGCGATCA-3’

AC6 5’ 5’-GCGATTGTAGATCCAGCAAAGAC-3’
AC6 3’ 5’-TGCAAGGGCCTTTAGGGAACAGA-3’

AC7 5’ 5’-TTAGCAGATGAAAACAGACTT-3’
AC7 3’ 5’-CAGTGGAGGGAAGAGATTTATG-3’

AC8 5’ 5’-GGAAATTGGAACGCTCCTTA-3’
AC8 3’ 5’-CCGGTCTGACAGTAACTGATAA-3’

AC9 5’ 5’-CACCGGAAAATACTTAGATGACG-3’
AC9 3’ 5’-CCTTCTCCTGCAAGATCTACAC-3’

GAPDH 5’-CCACCCATGGCAAAATTCATGGCA-3’
 5’-TCTAGACGGGAGGTCAAGTCCACC-3’