Short Leukocyte Telomere Length Precedes Clinical Expression of Atherosclerosis: Blood-and-Muscle Model

1INSERM UMRS 1116, Université de Lorraine, Nancy, France; 2Department of Geriatric Medicine, CHRU de Nancy, Université de Lorraine, Nancy, France; 3Center of Human Development and Aging, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA; 4Department of Internal Medicine, North hospital, APHM, and UMR-S1076, Aix-Marseille University, France; 5Department of Vascular Surgery, CHRU de Nancy, Université de Lorraine, Nancy, France; 6Department of Urology, CHRU de Nancy, Université de Lorraine, Nancy, France; 7Department of Nephrology, CHRU de Nancy, Université de Lorraine, Nancy, France; 8Department of Plastic Surgery, Conception Hospital, APHM and UMR-S1076, Aix-Marseille University, France; 9Department of Vascular Surgery, North hospital, APHM, Marseille, France; 10Department of Orthopedic Surgery, North hospital, APHM, Marseille, France; 11Department of Cardiology, CHRU de Nancy, Université de Lorraine, Nancy, France; 12Laboratory for Experimental Surgery and Surgical Research "NS Christeas", National and Kapodistrian University of Athens, Greece; 13European University of Cyprus, School of Sciences; 141st Department of Adult Cardiac Surgery, Onassis Cardiac Surgery Center, Athens, Greece; 15Department of Surgery, Hippokration Hospital and Medical School of Athens, National and Kapodistrian University of Athens, Greece; 16Department of Surgery, Iaso General Hospital, Athens, Greece; 17Hebrew University-Hadassah School of Public Health and Community Medicine, Jerusalem 29107, Israel, and; 18Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.

S.V. and A.A. contributed equally to this study.

Subject Terms: Aging, Atherosclerosis, Cardiovascular Disease, Epidemiology, Genetics

Address correspondence to:
Dr. Athanase Benetos
Head of Department of Geriatrics
University Hospital of Nancy
54511 Vandoeuvre les Nancy
France
Tel: +33 383 15 33 22
Fax: +33 383 15 76 68
a.benetos@chru-nancy.fr

In November 2017, the average time from submission to first decision for all original research papers submitted to Circulation Research was 11.99 days.

DOI: 10.1161/CIRCRESAHA.117.311751
ABSTRACT

Rationale: Short telomere length (TL) in leukocytes is associated with atherosclerotic cardiovascular disease (ASCVD). It is unknown whether this relationship stems from having inherently short leukocyte TL (LTL) at birth and/or a faster LTL attrition thereafter. LTL represents TL in the highly proliferative hematopoietic system, while TL in skeletal muscle (M) represents a minimally replicative tissue.

Objective: We measured LTL and MTL in the same individuals with a view to obtain comparative metrics for lifelong LTL attrition and learn about the temporal association of LTL with ASCVD.

Methods and Results: Our Discovery Cohort comprised 259 individuals aged 63±14 years (mean±SD), undergoing surgery with (n=131) or without (n=128) clinical manifestation of ASCVD. In all subjects, MTLA (MTL adjusted for muscle biopsy site) was longer than LTL and the LTL-MTLA gap similarly widened with age in ASCVD patients and controls. Age- and sex-adjusted LTL (p=0.005), but not MTLA (p=0.90), was shorter in patients with ASCVD than controls. The TL gap between leukocytes and muscle (LTL-MTLA) was wider (p=0.0003) and the TL ratio between leukocytes and muscle (LTL/MTLA) was smaller (p=0.0001) in ASCVD than in controls. Findings were replicated in a cohort comprising 143 individuals.

Conclusions: This first study to apply the ‘blood-and-muscle’ TL model shows more pronounced LTL attrition in ASCVD patients than controls. The difference in LTL attrition was not associated with age during adulthood suggesting that increased attrition in early life is more likely to be a major explanation of the shorter LTL in ASCVD patients.

Clinical Trial Registration: NCT02176941.

Keywords: Telomere, atherosclerosis, aging.

Nonstandard Abbreviations and Acronyms:

- ASCVD: atherosclerotic cardiovascular disease
- CA: coronary arteries
- CCA: carotid and cerebral arteries
- ICC: intraclass correlation coefficient
- IFPA: iliac, femoral and popliteal arteries
- LTL: leukocyte telomere length
- MTL: skeletal muscle telomere length
- MTLA: adjusted MTL for muscle site
- TELARTA: Telomere in Arterial Aging
- TL: telomere length
INTRODUCTION

While early studies focusing on the relation between telomere length (TL) and atherosclerotic cardiovascular disease (ASCVD) have yielded mixed findings, more recent research, summarized in two meta-analyses, has confirmed that short TL, as expressed in leukocyte TL (LTL), is associated with ASCVD and its risks. However, the biological meaning of this association remains elusive. The prevailing explanation is that indolent inflammation and oxidative stress are the twin culprits, increasing the pace of atherosclerosis in tandem with age-dependent LTL shortening in adults. Alternatively, short LTL may precede the development of ASCVD and perhaps be a determinant in the development of the disease later in life, i.e., TL plays a role in causal pathways rather than being solely a risk marker. Mendelian randomization of LTL genetic risk scores supports this supposition.

The question then is whether the association between a shorter LTL and ASCVD in adults reflects one or more of the following scenarios: a) adults with ASCVD have inherently short LTL, established at birth; b) individuals who go on to develop ASCVD later in life have a higher rate of LTL shortening prior to adulthood; c) LTL attrition is faster in adults with ASCVD.

A longitudinal study of LTL dynamics (LTL at birth and its age-dependent attrition thereafter) in which individuals are followed throughout their life course from birth onward could help resolve the uncertainty regarding the timing in the development of the LTL gap between subjects who go on to develop ASCVD vs. those who do not. However, unless biobanked samples collected over the life course are available, outcomes of a new undertaking to resolve the timing of this LTL gap would not be known for many decades and the cost would be formidable.

We have proposed, instead, a ‘blood-and-muscle’ model of TL dynamics to assess the potential role of inherently short TL vs. a faster age-dependent LTL attrition in the development of ASCVD in adults. The model is based on the following considerations: an individual is born with similar TLs in different tissues and cells, whereas a wide variation in TL is observed across individuals from birth onward. During extra-uterine life, age-dependent TL shortening within the individual varies in proportion to the replicative activities of somatic tissues, such that TL in skeletal muscle, a minimally-replicating somatic tissue, is longer than TL in leukocytes, which represent the highly proliferative hematopoietic system. Thus, a faster attrition of LTL than muscle TL (MTL) during the first two decades of life is the main contributor to the LTL-MTL gap. During adulthood, this gap may further expand. Still, if MTL serves as a proxy of LTL early in life, the gap between LTL and MTL would yield an estimate of LTL attrition up to the sampling age. We applied this blood-and-muscle model to gain further insight into the relation between TL and ASCVD.
METHODS

The data of this study can be available from the corresponding author upon request from a third party. This clinical study has been registered in ClinicalTrials.gov Identifier: NCT02176941.

Discovery cohort.
The overall goal of the Telomere in Arterial Aging (TELARTA) study is to examine the role of telomere dynamics in arterial aging and the development of atherosclerosis. This arm of our study has focused on measuring TL in skeletal muscle and leukocytes of patients with ASCVD and controls. To this end, we enrolled men and women (older than 20 years), who were admitted for various surgical procedures and for pacemaker/defibrillator implantation to university hospitals in Nancy (n = 215) and Marseille (n = 44), France (details of the enrolled subjects are given in Online Figure I). Muscle biopsies were obtained from six different sites in different patients (Online Table I). All participants provided written informed consent approved by the Ethics Committee (Comité de Protection des Personnes) of Nancy, France.

Patients with ASCVD included individuals with a history of three types of clinically evident atherosclerosis in a) the coronary arteries (CA; n = 62), b) carotid and cerebral arteries (CCA; n = 43), and c) iliac, femoral and popliteal arteries (IFPA; n = 74). Among the 131 ASCVD patients, 84 patients had clinical ASCVD in one of these three sites, 46 patients in two sites and 1 patient in all three sites. The control group comprised 128 participants with no clinical manifestations of ASCVD. We also matched 79 pairs by age (± 2 years) and sex, such that one member of the pair displayed ASCVD and the other did not.

We excluded subjects with a BMI > 40 kg/m², a glomerular filtration rate under 30 ml/min/1.73m² [16], active malignancy or history of chemotherapy/radiotherapy for cancer. We excluded 11 subjects with aortic aneurism because the atherosclerotic nature of this arterial disease is debatable.

Replication cohort.
This cohort was enrolled in three sites: the university hospitals of Nancy and Marseille (original sites of the TELARTA study); these sites enrolled 91 individuals. In addition, 52 individuals were enrolled at three Athens hospitals (Onassis Cardiac Surgery Center, Surgeon KP; Iaso General Hospital Surgeon MVG; Hippokration Hospital, Surgeon EM). The samples collected from these hospital have been collected at the Laboratory for Experimental Surgery and Surgical Research "N S Christeas" of the University of Athens). We relaxed the inclusion criteria for the replication cohort, including individuals that were excluded from the TELARTA, i.e., BMI > 40 kg/m², glomerular filtration rate under 30 ml/min/1.73m², malignancy or history of chemotherapy/radiotherapy. Details of the enrolled subjects in the replication cohort are given in supplemental Online Figure II. Participants enrolled in France provided written informed consent approved by the Ethics Committee (Comité de Protection des Personnes) of Nancy, France. Those enrolled in Athens provided written informed consent approved by the Ethics Committee of the University of Athens and Ethics Committee of each one of the 3 participating hospitals.

Telomere length measurements.
TL was measured in DNA extracted by the phenol/chloroform method from peripheral blood leukocytes and skeletal muscle (~ 50 mg) in the surgical field. Measurements were performed in duplicate by Southern blots of the terminal restriction fragments, as previously described[17]. The measurement repeatability, as determined by the intraclass correlation coefficient (ICC), was 0.99 (95% CI: 0.817, 1.0) and 0.98 (95% CI: 0.81, 1.0) for LTL and MTL, respectively. The repeatability of the means of two duplicates (used in the analysis), known as the extrapolated repeatability, was 0.995 and 0.991 for LTL and MTL respectively (equation 37 in ref 18).
Statistical analysis.
Continuous variables are presented as means ± SD or mean ± SE, and discrete variables as frequencies or percentages. Pairwise comparisons were carried out using the Mann-Whitney and \(\chi^2 \) tests, as appropriate. Telomere values are presented and compared with or without adjustment to age and sex. Statistical analyses were carried out using the NCSS 9 statistical software package (NCSS, Kaysville, UT) and JMP (v.9) software (Cary, North Carolina, USA). A paired T test was used for the intra-pair comparison of matched subjects by age (± 2 years) and sex. Bivariate relationships between continuous variables were determined using Pearson’s correlation coefficients. More complex analyses were carried out using general linear models, assuming a normal error distribution for the analyses of variation in LTL and MTL and the derived telomere estimates below). Visual inspection of Q-Q plots of the residuals for LTL, MTL and the derived telomere estimates supported the normality assumption. For the comparison of age effects between LTL and MTL we used a general linear mixed model with donor identity introduced as a random effect to account for the statistical non-independence of LTL and MTL within donors. ASCVD prevalence was analyzed using logistic regression (i.e., accommodating the binomial error distributions). A \(p \) value < 0.05 was considered significant.

In analyses with MTL as the dependent variable, we included the biopsy site as a factor and when calculating TL odd ratios, we adjusted MTL for muscle site (i.e., MTL\(_A\)). The adjustment consisted of the addition of the site specific difference between the weighted mean MTL (8.54 kb) and the site-specific least square mean MTL, estimated from a model that also included age and sex (Online Table II). Muscle site adjustment was made only for the discovery cohort. There was no effect of muscle site on MTL in the Replication Cohort.

Given that both TL measurements (LTL and MTL) may relate to ASCVD in differing ways, the following possibilities were tested: (i) only LTL is associated with ASCVD; (ii) only MTL\(_A\) is associated with ASCVD; (iii) the absolute gap between LTL and MTL\(_A\) (LTL-MTL\(_A\)) is associated with ASCVD; and (iv) the ratio between LTL and MTL\(_A\) (LTL/MTL\(_A\)) is associated with ASCVD. Models that included age and sex were fitted separately for each of these variables. Model selection was based on the AICc.\(^{19}\) Values of \(p < 0.05 \) and \(\Delta \text{AICc} > 2 \) were considered as statistically significant.
RESULTS

Discovery cohort.

Characteristics of the cohort are summarized in Table 1. Participants with ASCVD were older, more likely to be males and showed a higher prevalence of cardiovascular risk factors. LTL and MTLA were strongly correlated (slope ± SE; 0.896 ± 0.052, p < 0.0001), but MTLA was longer (mean ± SD; 8.54 ± 0.72 kb) than LTL (6.66 ± 0.88 kb) in all individuals (n = 259) regardless of biopsy site (Figure 1). The mean difference LTL-MTLA was -1.88 ± 0.61 kb and the mean ratio LTL/MTLA was 77.9 ± 7.0%.

Table 1. Characteristics of the participants of the Discovery Cohort

<table>
<thead>
<tr>
<th>Parameter</th>
<th>All participants</th>
<th>Control</th>
<th>ASCVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (W/M)</td>
<td>259 (82/177)</td>
<td>128(60/68)</td>
<td>131 (22/109)</td>
</tr>
<tr>
<td>Women (%)</td>
<td>32</td>
<td>47</td>
<td>17 ***</td>
</tr>
<tr>
<td>Age (years)</td>
<td>63 ± 14</td>
<td>58 ± 16</td>
<td>67 ± 10 ***</td>
</tr>
<tr>
<td>Hypertension (%) I</td>
<td>46</td>
<td>30</td>
<td>61 ***</td>
</tr>
<tr>
<td>Diabetes (%) I</td>
<td>19</td>
<td>13</td>
<td>26 **</td>
</tr>
<tr>
<td>Dyslipidemia I</td>
<td>23</td>
<td>8</td>
<td>38 ***</td>
</tr>
<tr>
<td>Smoking (%) §</td>
<td>52</td>
<td>30</td>
<td>74 ***</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.4 ± 4.7</td>
<td>26.9 ± 4.6</td>
<td>25.9 ± 4.7</td>
</tr>
</tbody>
</table>

ASCVD = atherosclerotic cardiovascular disease; BMI = body mass index.
Data are expressed as mean ± SD or %. P values were determined with Student's t-test for continuous variables or chi-square test for discrete variables, *p < 0.05, ***p < 0.001 for ASCVD vs. No ASCVD.
I History of, or specific treatment, for this risk factor
§ Current and ex-smokers
Effect of age on TL.

Both LTL and MTL shortened with age (Online Figure III). The rate of TL shortening was independent of sex in both tissues (age * sex interaction, p > 0.49, Online Table II) and muscle biopsy site (age * muscle type, p > 0.55). Adding age squared to the model did not significantly increase the explained variance in LTL, indicating that LTL attrition with age was approximately linear within the age range of this study. That said, there was a tendency for a slower MTL shortening with age (age squared effect, p = 0.1). The slope of the effect of age was considerably steeper for LTL than MTL (Online Table II; LTL = -30 bp/year, MTL = -12 bp/year; p < 0.0001 for comparison of slopes).

Sex, smoking and BMI associations with LTL and MTL.

Both age-adjusted LTL and MTL were shorter in men than in women (least square means and SE from models in Online Table III: LTL, women = 6.87 ± 0.08 kb, men = 6.56 ± 0.06 kb, p = 0.002; MTL, women = 8.72 ± 0.08 kb, men = 8.41 ± 0.06 kb, p = 0.0008). No difference was observed in age- and sex-adjusted LTL and MTL between never smokers vs. smokers (LTL, never smokers = 6.73 ± 0.07 kb and smokers = 6.70 ± 0.07 kb, p = 0.70; MTL, never smokers = 8.53 ± 0.07 kb and smokers = 8.61 ± 0.08 kb, p = 0.30). No significant association was observed between age- and sex-adjusted BMI and LTL or MTL (BMI, kg/m², regression slope coefficient -0.0121 ± 0.010 kb, p = 0.22, for LTL, and -0.01 ± 0.010 kb, p = 0.17 for MTL).

ASCVD and TL dynamics.

Individuals with ASCVD had 282 ± 100 bp shorter age- and sex-adjusted LTL than those without ASCVD (t = 2.83, df = 267, p = 0.005); this difference was independent of age and sex (interactions with ASCVD when added to the model, p > 0.2). MTL_A was not different in patients with vs. those without ASCVD. As shown in Figure 2, the gap between LTL and MTL_A widened with age at a similar rate in patients with ASCVD and controls (LTL-MTL_A: slope ± SE; -14.9 ± 0.5 vs. -14.6 ± 0.3 bp/year, respectively; ASCVD*age interaction: p > 0.9). Similarly, the LTL/MTL_A ratio diminished at the same rate in patients with ASCVD and controls (slope % ± SE; -0.19 ± 0.05 vs. -0.20 ± 0.03 %/year, respectively; ASCVD*age interaction: p > 0.8). The LTL difference between individuals with and without ASCVD was significantly greater than that observed for MTL_A (t = 4.69, p < 0.0001). Both LTL-MTL_A and LTL/MTL_A were significantly different in individuals with ASCVD compared to the controls (both t > 3.7, p < 0.001, controlling for age and sex; Figure 3).

The best fitting blood-and-muscle model.

Having examined the age- and sex-adjusted LTL-MTL_A and LTL/MTL_A models in individuals with and without ASCVD, we next compared the ability of the four TL models (LTL, MTL_A, LTL-MTL_A, and LTL/MTL_A) to capture the association of TL with ASCVD (Table 2). In addition to age and sex, age squared was also included in the models, since preliminary analysis revealed that the association between age and ASCVD prevalence in our sample plateaued after 60 years.

When TL was added to this model (Table 2; Z-transformed for comparability), the odds ratio (OR) was lower, i.e. stronger, for LTL compared to MTL_A (0.63 vs.1.00) and the AICc was significantly lower (ΔAICc = -7.25). LTL-MTL_A and LTL/MTL_A yielded ORs of 0.57 and 0.54, respectively, and substantially better fitting models (Table 2). Moreover, the LTL/MTL_A model yielded a slightly better fitting model than LTL-MTL_A model (ΔAICc = 1.55; Table 2).
Table 2. Odds ratios (OR) for atherosclerotic cardiovascular disease, age and sex in the four telomere length models in the Discovery Cohort.
The same models stratified by sex are reported in Online Table VII.

<table>
<thead>
<tr>
<th>Variable</th>
<th>LTL OR 95% CI</th>
<th>MTL\textsubscript{A} OR 95% CI</th>
<th>LTL-MTL\textsubscript{A} OR 95% CI</th>
<th>LTL/MTL\textsubscript{A} OR 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>P</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>TL (Z-scores)</td>
<td>0.63, 0.88</td>
<td>1.004</td>
<td>0.57</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>0.0071</td>
<td>0.98</td>
<td>0.0003</td>
<td>0.0001</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.31, 1.66</td>
<td>1.11, 1.70</td>
<td>1.09, 1.66</td>
<td>1.09, 1.65</td>
</tr>
<tr>
<td></td>
<td>0.0035</td>
<td>0.001</td>
<td>0.002</td>
<td>0.0027</td>
</tr>
<tr>
<td>Age squared (years2/100)</td>
<td>0.69, 0.96</td>
<td>0.69, 0.95</td>
<td>0.69, 0.95</td>
<td>0.69, 0.95</td>
</tr>
<tr>
<td></td>
<td>0.0112</td>
<td>0.007</td>
<td>0.0071</td>
<td>0.0079</td>
</tr>
<tr>
<td>Sex</td>
<td>1.67, 5.82</td>
<td>1.87, 6.53</td>
<td>2.03, 7.28</td>
<td>1.91, 6.79</td>
</tr>
<tr>
<td></td>
<td>0.0003</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>AICc</td>
<td>306.98</td>
<td>314.23</td>
<td>301.40</td>
<td>299.85</td>
</tr>
<tr>
<td>ΔAICc</td>
<td>7.13</td>
<td>14.38</td>
<td>1.55</td>
<td>0</td>
</tr>
</tbody>
</table>

TL = telomere length; LTL = leukocyte telomere length; MTL\textsubscript{A} = muscle telomere length adjusted for muscle biopsy site; ASCVD = atherosclerotic cardiovascular disease; CI = confidence interval.
TLs were transformed to Z-scores. Age squared was divided by 100 to yield more informative estimates. Coding of sex: women = 0, men = 1.
The best fitting model is indicated in bold. p-values based on likelihood-ratio tests. AICc represents Akaike’s Information Criterion with a correction for finite sample sizes, while ΔAICc is relative to the best model (in bold).
Additional adjustment of LTL/MTL_A, the best fitting model, for diabetes status, ever smoking, dyslipidemia, BMI and hypertension had little effect on the association (OR: 0.55, compared with OR = 0.54 without these covariates in the model; see Online Table III for details).

The association of ASCVD sites with telomere length parameters.

Table 3 shows the age- and sex- adjusted LTL, MTL_A, LTL-MTL_A and LTL/MTL_A in participants with atherosclerosis in each of the 3 ASCVD sites (CA, CCA, and IFPC) compared with the 128 controls. In all ASCVD groups, LTL was shorter, LTL-MTL_A wider and LTL/MTL_A smaller in ASCVD patients than in controls. MTL_A did not differ between ASCVD patients and controls. We also examined the TL models according to the number of ASCVD sites. This analysis showed that a higher number of ASCVD sites was associated with a shorter LTL (p < 0.003), a wider LTL-MTL_A and a smaller LTL/MTL_A (both p < 0.001; Figure 4).

Table 3: The four telomere length models in the Discovery Cohort according to the presence or not of clinical manifestations of atherosclerosis in different arteries.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>LTL (kb)</th>
<th>MTL_A (kb)</th>
<th>LTL-MTL_A (kb)</th>
<th>LTL/MTL_A (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>128</td>
<td>6.85 ± 0.07</td>
<td>8.59 ± 0.06</td>
<td>-1.73 ± 0.04</td>
<td>79.7 ± 0.5</td>
</tr>
<tr>
<td>CA</td>
<td>62</td>
<td>6.52 ± 0.09**</td>
<td>8.45 ± 0.08</td>
<td>-1.93 ± 0.06*</td>
<td>76.9 ± 0.7**</td>
</tr>
<tr>
<td>Control</td>
<td>128</td>
<td>6.85 ± 0.06</td>
<td>8.58 ± 0.06</td>
<td>-1.73 ± 0.05</td>
<td>79.8 ± 0.5</td>
</tr>
<tr>
<td>CCA</td>
<td>43</td>
<td>6.57 ± 0.10*</td>
<td>8.62 ± 0.10</td>
<td>-2.05 ± 0.08**</td>
<td>76.2 ± 0.9**</td>
</tr>
<tr>
<td>Control</td>
<td>128</td>
<td>6.88 ± 0.06</td>
<td>8.59 ± 0.06</td>
<td>-1.72 ± 0.05</td>
<td>79.9 ± 0.5</td>
</tr>
<tr>
<td>IFPA</td>
<td>74</td>
<td>6.53 ± 0.08**</td>
<td>8.62 ± 0.08</td>
<td>-2.08 ± 0.06***</td>
<td>75.8 ± 0.7***</td>
</tr>
</tbody>
</table>

LTL = leukocyte telomere length; MTL_A = muscle telomere length adjusted for muscle biopsy site; CA = coronary artery; CCA = carotid and cerebral arteries; IFPA = iliac, femoral or popliteal arteries.

*p < 0.05; **p < 0.01; ***p < 0.005; ****p < 0.001

Estimates for controls differ slightly between comparisons due to the slight variation in correction factors when including different ASCVD groups.

Results for matched pairs.

Since participants with ASCVD were older, more likely to be males we also analyzed data for matched pairs. Online Table IV shows the results of the t-paired analyses for the 79 age- and sex- matched pairs. Individuals with ASCVD had shorter LTL (p = 0.023), wider LTL-MTL_A (p = 0.022) and lower LTL/MTL_A (p = 0.0097). MTL was not different in the 2 groups (p=0.59). Additional analyses separately in men and women of the Discovery Cohort showed similar impact of ASCVD in both sexes (Online Table V and Online Figures IV and V).

Replication cohort.

Characteristics of participants are shown in the supplementary data (Online Table VI). LTL and MTL were strongly correlated (slope ± SE; 0.76 ± 0.07, p < 0.0001), but MTL was longer (mean ± SD; 8.62 ± 0.69 kb) than LTL (6.80 ± 0.75 kb) in all individuals (p < 0.0001), as evidenced in the Discovery Cohort. The mean difference LTL-MTL was -1.81 ± 0.57 kb and the ratio LTL/MTL was 79.0 ± 6.5%.

DOI: 10.1161/CIRCRESAHA.117.311751
Effect of age on TL.

Both LTL and MTL shortened with age. The rate of decline was independent of sex in both tissues (age * sex interaction, p > 0.6). Adding age squared to the model did not significantly increase the explained variance in LTL or MTL (both p > 0.19). The slope of the effect of age was considerably steeper for LTL than MTL (slope ± S.E.: LTL = -29.3 ± 3.0 bp/year, p<0.0001; MTL = -15.0 ± 3.3 bp/year, p<0.0001; interaction tissue type * age: p<0.0001).

ASCVD and TL dynamics.

In the Replication Cohort, the difference in the TL dynamics between ASCVD and controls were closely comparable to those observed in the Discovery Cohort. Individuals with ASCVD had 189.3 ± 113.3 bp shorter age- and sex-adjusted LTL than those without ASCVD (t = 1.67, df = 139, p < 0.1; and this effect was independent of population: interaction ASCVD *country of recruitment: p > 0.9). MTL did not differ significantly between subjects with vs. without ASCVD (p = 0.9). Both LTL-MTL and LTL/MTL were significantly different in individuals with ASCVD vs. controls (both t > 2.0, p < 0.05, controlling for age and sex). (Online Figure VI, corresponding to Figure 3 for the Discovery Cohort). The gap between LTL and MTL widened with age at a similar rate in patients with ASCVD and controls (LTL-MTL: slope ± SE: -19.4 ± 6.0 vs. -9.4 ± 3.3 bp/year, respectively; ASCVD*age interaction: p = 0.18). Similarly, the LTL/MTL ratio diminished at a similar rate in patients with ASCVD and controls (slope % ± SE; -0.26 ± 0.06 vs. -0.14 ± 0.03 %/year, respectively; ASCVD*age interaction: p = 0.1).

When TL (Z-transformed for comparability) was added to a model with age, age squared and sex (Online Table VII, corresponding to Table 2 for the Discovery Cohort), the odds ratio (OR) was lower, i.e. stronger, for LTL compared to MTL (0.58 vs.1.03) and the AICc was significantly lower (ΔAICc = -5.64). LTL-MTL and LTL/MTL yielded ORs of 0.60 and 0.56, respectively, and better fitting models (Online Table VII). Moreover, the LTL/MTLA model yielded a slightly better fitting model than LTL-MTLA model (ΔAICc = 1.35; Online Table VII). Adjusting all these analyses for the presence of cancer, morbid obesity and severe renal failure did not affect these associations.

DISCUSSION

The central findings of this study are: Patients with ASCVD display a shorter LTL, a wider gap between LTL and MTLA and a smaller ratio of LTL/MTLA than controls. These differences between patients with ASCVD and controls were consistent across the age range of the studied population (Figure 2). Moreover, the severity of ASCVD, as defined by the number of sites with atherosclerotic plaques, scaled with these three TL models (Figure 4), lending further confidence in the validity of the findings. MTL (adjusted for muscle site for the Discovery Cohort) was not significantly different between patients with ASCVD and controls, suggesting that LTL attrition is the main explanation for the shorter LTL in patients with ASCVD.

The LTL-MTL gap in the participants (mean age 63 years for the Discovery Cohort) in this study was 1.87 kb. In our previous study, comprising younger adults (mean age 44 years), the LTL-MTLA gap was 1.55 kb⁸. Moreover, the rate of LTL attrition in the present study was found to be faster compared to MTL, in contrast with our previous findings in a younger cohort⁸. This is attributed to the older age of the Discovery Cohort, a finding supported by a longitudinal study²⁰. Although LTL attrition across the cohort was best described by a linear function, analysis of TL attrition in individuals < 60 years in the Discovery Cohort, mean age 45 years, without ASCVD showed similar slopes for LTL/age (-30.53±8.42bp/year) and MTL/age –(27.01±7.34 bp/year), both being close to findings in the previous study⁸ (not shown).
In a recent study, examining the blood-and-muscle model in fetuses and children, we generated data showing that TL is largely determined very early in life and that at least 1 kb of the LTL-MTLA gap is established prior to adulthood.21 As the pace of widening the LTL-MTLA gap in the present study is similar in participants with ASCVD vs. controls, we infer that the wider LTL-MTLA gap and smaller LTL/MTLA in ASCVD patients than controls were principally established prior to adulthood.

Further support for this inference comes from the following findings: First, in a nine-year longitudinal study we observed the same rate of LTL attrition in individuals with carotid atherosclerosis and controls.22 Second, given that LTL is highly heritable and LTL attrition is also heritable to some extent,23,24 long or short LTL might be largely inherent. Third, genetic analyses, including Mendelian randomization show that single nucleotide polymorphisms (SNPs) associated with LTL are also associated with ASCVD.5–7 Some of these SNPs are in loci that harbor telomere maintenance genes, e.g., TERC, TERT, CTC1 and OBFC1.5–7 Such findings largely exclude reverse causality, i.e. ASCVD causing TL shortening. Together, these findings suggest that the wider LTL-MTL gap in ASCVD patients than controls is probably due to higher early life LTL attrition in these subjects, which could be influenced by both genetic and environmental factors.

We acknowledge several limitations of the study. First, the sample size is modest, although this drawback was offset in part by the high reproducibility of the Southern blot measurements of TL. Moreover, we replicated the findings in another cohort. Second, our cohort comprised participants who underwent various surgical procedures for a host of conditions, rather than individuals who were subjected to elective muscle biopsies. Thus, although statistically adjusted for the different sources of muscle biopsies, residual confounding cannot be excluded. In addition, while the muscle site influenced TL in the Discovery Cohort, it had no apparent effect in the Replication Cohort. Third, subjects with ASCVD were older and comprised more males than controls, although age and sex were adjusted in the statistical analyses. Moreover, paired comparisons of subjects with ASCVD with age- and sex- matched controls confirmed the findings. Lastly, several control subjects had cardiovascular risk factors and might have subclinical ASCVD, which would tend to underestimate the association.

This is the first study applying the blood-and-muscle TL model in the context of ASCVD. Our findings suggest that a higher attrition rate in early life might be a major explanation of the shorter LTL in ASCVD patients than controls. Thus, while age (aging) is the principle determinant of ASCVD risk, LTL may modify this risk and the timing of developing the clinical manifestations of ASCVD (Figure 5). Our findings underscore the importance of understanding TL dynamics prior to the clinical manifestations of ASCVD. Such life-course information is crucial for gaining a better understanding of the role of telomeres in human health. We have relied on skeletal muscle as a reference for deriving such information. Whether other minimally dividing tissues, e.g. subcutaneous fat,8 may serve this purpose is unknown at present. Finally, it is yet to be determined whether the blood-and-muscle TL model might reveal insight into the role of telomere biology in other human diseases and in ethnic groups other than individuals of European ancestry.
ACKNOWLEDGMENTS
We thank Cecile Lakomy for their technical assistance. We also thank Prof Nikolaos Katsilambros for his valuable advices and help.

SOURCES OF FUNDING
This study has been supported by the French National Research Agency (ANR), Translationnelle: N°ID RCB: 2014-A00298-39: 2014-2017 and the Investments for the Future program under grant agreement No ANR-15-RHU-0004. AA research is supported by NIH grants R01HD071180, R01HL116446, R01HL13840. This clinical study has been registered in ClinicalTrials.gov Identifier: NCT02176941.

DISCLOSURES
None.

REFERENCES

FIGURE LEGENDS

Figure 1: Leukocyte telomere length versus telomere length in the Discovery Cohort. Dotted line = line of identity. LTL = leukocyte telomere length; MTL = muscle telomere length; MTL_A = site-adjusted muscle telomere length.

Figure 2: Telomere length models versus age in the Discovery Cohort. Difference between leukocyte telomere length and site-adjusted muscle telomere length (left panel); ratio of leukocyte telomere length and site-adjusted muscle telomere length (right panel). ASCVD = atherosclerotic cardiovascular disease; LTL = leukocyte telomere length; MTL_A = site-adjusted muscle telomere length.

Figure 3: The four telomere length models in subjects of the Discovery Cohort. LTL = leukocyte telomere length; MTL_A = site-adjusted muscle telomere length; ASCVD = atherosclerotic cardiovascular disease. Values are adjusted for age and sex.

Figures 4: The four telomere length models versus the number of atherosclerotic sites in the Discovery Cohort. 0 = Control; 1, one site; ≥2, two or more sites. Values are adjusted for age and sex.

Figure 5: Atherosclerotic cardiovascular disease prevalence in the sample as a function of telomere length and sex for ages 50 and 80 years. Lines were computed for LTL and LTL / MTL_A using the coefficients in Table 2. Lines drawn over 95% TL range in the data for the two sexes. Note that ages 50 (dashed lines) and 80 (solid lines) were chosen for illustration purpose only; age was entered as continuous variable in the analyses. LTL = leukocyte telomere length; MTL_A = site-adjusted muscle telomere length; ASCVD = atherosclerotic cardiovascular disease.
NOVELTY AND SIGNIFICANCE

What Is Known?

- Telomere length is largely determined at birth and undergoes age-dependent shortening, which is inversely related to the replicative history of somatic tissues.

- Telomere length is highly variable across individuals, but similar within somatic tissues of the individual, such that a person with relatively short or long telomeres in one somatic tissue displays short or long telomeres in other somatic tissues.

- Telomere length, as expressed in leukocyte telomere length, is shorter in individuals with atherosclerotic cardiovascular disease, but it is uncertain whether this phenomenon relates to leukocyte telomere length dynamics (leukocyte telomere length and its age-dependent rate of shortening) prior to adulthood or thereafter.

What New Information Does This Article Contribute?

- This work uses telomere length in skeletal muscle, a ‘minimally’ proliferative somatic tissue, as reference of early-life telomere length in leukocytes, which reflect the highly proliferative hematopoietic system.

- The blood (leukocyte)-muscle telomere model suggests that the comparatively short leukocyte telomere length in individuals with atherosclerotic cardiovascular disease is largely determined prior to the clinical manifestations of the disease and very likely prior to adulthood.

A body of work, principally based on cross-sectional studies, indicates that leukocyte telomere length is shorter in individuals with atherosclerotic cardiovascular disease than in their peers. The mechanistic underpinning of this finding are not fully understood. To gain insight, we need to answer a core question: Does short leukocyte telomere length in individuals with atherosclerosis reflect leukocyte telomere length dynamics when the clinical manifestations of atherosclerosis unfold, or does it reflect factors in the individual’s earlier life? The findings of the present study, using a blood-muscle model of telomere length dynamics, support the tenet that a comparatively short leukocyte telomere length exist prior to the clinical manifestations of atherosclerosis, reflecting mainly higher leukocyte telomere attrition rates during the first years of life. Focusing on mechanisms that define leukocyte telomere length dynamics in the first two decades of life and learning how short telomeres might compromise repair capacity of the arterial wall are essential for understanding the role of telomere biology in the pathogenesis of atherosclerosis.
FIGURE 1

$y = 0.90x - 0.99$

$r^2 = 0.53; p<0.0001$
\[y = -0.015x - 0.84 \quad r^2 = 0.18; \ p < 0.0001 \]

\[y = -0.015x - 1.07 \quad r^2 = 0.07; \ p = 0.003 \]

\[y = -0.20x + 92.05 \quad r^2 = 0.26; \ p < 0.0001 \]

\[y = -0.19x + 88.13 \quad r^2 = 0.09; \ p = 0.0007 \]
Short Leukocyte Telomere Length Precedes Clinical Expression of Atherosclerosis: Blood-and-Muscle Model

Circ Res. published online December 14, 2017;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571
Online Figure I: Flow chart of the participants in the TELARTA project (Discovery Cohort).

TELARTA population
N=390

MTL and/or LTL not measured
N=27

- Degraded DNA n=25
- Insufficient DNA amount n=2

Participants with measurements of both MTL and LTL
N=363

Not included in this analysis
N=104

- Cancer history n=40
- Renal failure n=43
- Severe obesity n=5
- Aortic aneurism n=11
- Unclear diagnosis n=5

Included in the Discovery Cohort
N=259
Online Figure II: Flow chart of the participants of the Replication Cohort.

- TELARTA population not included in Discovery Cohort
 - N=104
- TELARTA population not included in replication
 - N=13
 - Aortic aneurism
 - n=11
 - Unclear diagnosis
 - n=2
- GREEK population
 - N=52
- Included in the replication
 - N=143
Online Figure III: Leukocyte telomere length and site-adjusted muscle telomere length versus age in the Discovery Cohort.

LTL= leukocyte telomere length; MTL_A= site-adjusted muscle telomere length adjusted for biopsy site.

\[y = -0.032x + 8.668 \]
\[r^2 = 0.27; p<0.0001 \]

\[y = -0.015x + 9.450 \]
\[r^2 = 0.08; p<0.0001 \]
Online Figure IV: The four telomere length models in men and women of the Discovery Cohort.
LTL = leukocyte telomere length; MTL$_A$ = site-adjusted muscle telomere length; ASCVD = atherosclerotic cardiovascular disease. Values are adjusted for age. Mean ± SEM.
Online Figure V: The four telomere length models versus the number of atherosclerotic sites in the men and women of the Discovery Cohort.

0 = Control; 1, one site; ≥ 2, two or more sites. Values are adjusted for age. Mean ± SEM.
Online Figure VI: The four telomere length models in the subjects of the Replication Cohort with and without atherosclerotic cardiovascular disease (ASCVD).

LTL = leukocyte telomere length; MTL = muscle telomere length; ACVD = atherosclerotic cardiovascular disease. Age and sex adjusted values. Mean ± SEM.
Online Table I. Muscle telomere length (kb) in different biopsy sites in the Discovery Cohort.

<table>
<thead>
<tr>
<th>Muscle tissue source</th>
<th>N</th>
<th>Least square mean</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head & neck</td>
<td>35</td>
<td>8.412</td>
<td>0.117</td>
</tr>
<tr>
<td>Legs distal</td>
<td>11</td>
<td>8.244</td>
<td>0.206</td>
</tr>
<tr>
<td>Legs proximal</td>
<td>76</td>
<td>8.414</td>
<td>0.078</td>
</tr>
<tr>
<td>Abdominal and back</td>
<td>67</td>
<td>8.551</td>
<td>0.084</td>
</tr>
<tr>
<td>Pelvic cavity</td>
<td>20</td>
<td>8.574</td>
<td>0.152</td>
</tr>
<tr>
<td>Thorax</td>
<td>50</td>
<td>8.849</td>
<td>0.096</td>
</tr>
</tbody>
</table>

Least square mean estimates are from model with age, sex and biopsy site. Weighted mean muscle telomere length was 8.50 kb. Muscle telomere length varied significantly between tissues (**Online Table IIb**).
Online Table II. Age and sex effects on leukocyte telomere length (A) and muscle telomere length (B), and comparisons of TL attrition rates between leukocyte telomere length and muscle telomere length in a mixed model (C) in the Discovery Cohort.

A. LTL

| Estimate | SE | F | df | p (>|t|) |
|----------|-----|------|-----|---------|
| Intercept | 8.746 | 0.208 | | |
| Age (y) | -0.030 | 0.0033 | 82.7 | 1,256 | <0.0001 |
| Sex | -0.312 | 0.101 | 9.59 | 1,256 | 0.0022 |

B. MTL

| Estimate | SE | F | df | p (>|t|) |
|----------|-----|------|-----|---------|
| Intercept | 9.49 | 0.203 | | |
| Age (y) | -0.0124 | 0.0031 | 15.53 | 1,251 | <0.0001 |
| Sex | -0.317 | 0.0935 | 11.48 | 5,251 | 0.0008 |
| Biopsy site | 3.32 | | 5,251 | 0.0063 |

C*. TL

| Estimate | SE | F | df | p (>|t|) |
|----------|-----|------|-----|---------|
| Intercept | 8.746 | 0.202 | | |
| Age (y) | -0.030 | 0.0032 | 88.31 | 1,337.1 | <0.0001 |
| Sex | -0.312 | 0.090 | 11.92 | 1,256 | 0.0006 |
| Tissue | 0.794 | 0.153 | 26.90 | 1,257 | <0.0001 |
| Tissue x Age | 0.0174 | 0.0024 | 52.93 | 1,257 | <0.0001 |

LTL: $r^2 = 0.299$. MTL: $r^2 = 0.177$.

C: Comparison of shortening rate between LTL and MTL using a mixed model with ‘individual’ as random effect. Coding of sex: women = 0, men = 1. Coding of tissue type: leukocytes = 0, muscle = 1.

LTL = leukocyte telomere length; MTL = muscle telomere length; df = degrees of freedom; SE = standard error; N = 271 individuals.

*Instead of defining tissue as a binary variable (leukocytes/muscle), the model can be extended by defining tissue as a factor with seven levels (six muscle types plus leukocytes). However, this model fitted markedly less well (current model: AIC=984; extended model: AIC=1046).
Online Table III. Odds ratios for atherosclerotic cardiovascular disease as the best model in Table 2 adjusted for potentially confounding variables (italics) in the Discovery Cohort.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odd's ratio</th>
<th>95% confidence interval</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lower limit</td>
<td>upper limit</td>
<td></td>
</tr>
<tr>
<td>TL (Z-score)</td>
<td>0.571</td>
<td>0.383 - 0.833</td>
<td>0.0035</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.212</td>
<td>0.969 - 1.606</td>
<td>0.0988</td>
</tr>
<tr>
<td>Age squared</td>
<td>0.999</td>
<td>0.998 - 1.000</td>
<td>0.1588</td>
</tr>
<tr>
<td>Sex</td>
<td>2.834</td>
<td>1.359 - 6.067</td>
<td>0.0053</td>
</tr>
<tr>
<td>Ever smoking</td>
<td>5.148</td>
<td>2.608 - 10.544</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2.587</td>
<td>1.269 - 5.384</td>
<td>0.0088</td>
</tr>
<tr>
<td>Diabetes</td>
<td>2.418</td>
<td>0.916 - 6.678</td>
<td>0.0749</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>3.101</td>
<td>1.283 - 7.987</td>
<td>0.0115</td>
</tr>
<tr>
<td>BMI</td>
<td>0.868</td>
<td>0.794 - 0.944</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

TL (LTL/MTL\textsubscript{A}) was transformed to Z-scores. Coding of sex: women = 0, men = 1.

P-values based on likelihood-ratio tests.

LTL = leukocyte telomere length; MTL\textsubscript{A} = muscle telomere length adjusted for muscle biopsy site; BMI = body mass index.
Online Table IV: The four telomere length models in age- and sex- matched pairs (N=79) with and without atherosclerotic cardiovascular disease (in the Discovery Cohort).

<table>
<thead>
<tr>
<th></th>
<th>Age (years)</th>
<th>LTL (kb)</th>
<th>MTL<sub>A</sub> (kb)</th>
<th>LTL-MTL<sub>A</sub> (kb)</th>
<th>LTL/MTL<sub>A</sub> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>64.5 ± 10.2</td>
<td>6.69 ± 0.68</td>
<td>8.48 ± 0.62</td>
<td>-1.79 ± 0.51</td>
<td>78.9 ± 5.8</td>
</tr>
<tr>
<td>ASCVD</td>
<td>64.6 ± 10.1</td>
<td>6.42 ± 0.84</td>
<td>8.42 ± 0.75</td>
<td>-2.00 ± 0.67</td>
<td>76.3 ± 7.4</td>
</tr>
<tr>
<td>ASCVD-Controls*</td>
<td>0.10 ± 0.73</td>
<td>-0.28 ± 1.06</td>
<td>-0.06 ± 1.03</td>
<td>-0.21 ± 0.81</td>
<td>-2.7 ± 9.0</td>
</tr>
<tr>
<td>Paired t-test</td>
<td>p = 0.21</td>
<td>p = 0.023</td>
<td>p = 0.59</td>
<td>p = 0.022</td>
<td>p = 0.0097</td>
</tr>
</tbody>
</table>

LTL = leukocyte telomere length; MTL_A = muscle telomere length adjusted for muscle biopsy site; ASCVD = atherosclerotic cardiovascular disease.

*Mean of intra-pair differences
Online Table V: Odds ratios for men (A) and women (B) for atherosclerotic cardiovascular disease, age in the four telomere length models in the Discovery Cohort.

A. Men in Discovery Cohort (n=177).

<table>
<thead>
<tr>
<th>Variable</th>
<th>LTL</th>
<th>MTL-A</th>
<th>LTL-MTL-A</th>
<th>LTL/MTL-A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>OR</td>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>95% CI</td>
<td>95% CI</td>
<td>95% CI</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>TL (Z-scores)</td>
<td>0.60</td>
<td>0.83</td>
<td>0.76</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>0.40, 0.88</td>
<td>0.58, 1.16</td>
<td>0.53, 1.08</td>
<td>0.47, 0.97</td>
</tr>
<tr>
<td></td>
<td>0.0091</td>
<td>0.27</td>
<td>0.1332</td>
<td>0.0338</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.32</td>
<td>1.34</td>
<td>1.19</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>1.05, 1.75</td>
<td>1.07, 1.78</td>
<td>0.98, 1.51</td>
<td>1.05, 1.72</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0086</td>
<td>0.0116</td>
<td>0.0141</td>
</tr>
<tr>
<td>Age squared (years2/100)</td>
<td>0.83</td>
<td>0.82</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>0.66, 0.99</td>
<td>0.66, 0.98</td>
<td>0.67, 0.99</td>
<td>0.68, 0.99</td>
</tr>
<tr>
<td></td>
<td>0.034</td>
<td>0.0276</td>
<td>0.0325</td>
<td>0.0338</td>
</tr>
<tr>
<td>AICc</td>
<td>221.59</td>
<td>227.19</td>
<td>226.14</td>
<td>223.89</td>
</tr>
<tr>
<td>ΔAICc</td>
<td>0</td>
<td>5.60</td>
<td>4.55</td>
<td>2.30</td>
</tr>
</tbody>
</table>

TL = telomere length; LTL = leukocyte telomere length; MTL-A = muscle telomere length adjusted for muscle biopsy site; ASCVD = atherosclerotic cardiovascular disease; OR = odds ratio; CI = confidence interval.

TLs were transformed to Z-scores. Age squared was divided by 100 to yield more informative estimates.

The best fitting model is indicated in bold. p-values based on likelihood-ratio tests. AICc represents Akaike's Information Criterion with a correction for finite sample sizes,19 while ΔAICc is relative to the best model (in bold).
B. Women in Discovery Cohort (n=83).

<table>
<thead>
<tr>
<th>Variable</th>
<th>LTL OR 95% CI</th>
<th>MTL_A OR 95% CI</th>
<th>LTL-MTL_A OR 95% CI</th>
<th>LTL/MTL_A OR 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL (Z-scores)</td>
<td>0.75, 0.36</td>
<td>1.74, 0.98</td>
<td>0.42, 0.20</td>
<td>0.39, 0.18</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.33, 0.96</td>
<td>1.50, 1.04</td>
<td>1.39, 0.99</td>
<td>1.35, 0.98</td>
</tr>
<tr>
<td>Age squared</td>
<td>0.82, 0.58</td>
<td>0.76, 0.51</td>
<td>0.78, 0.54</td>
<td>0.80, 0.98</td>
</tr>
<tr>
<td>AICc</td>
<td>93.90, 91.06</td>
<td>87.06, 87.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔAICc</td>
<td>6.84, 4.00</td>
<td>0.00, 0.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TL = telomere length; LTL = leukocyte telomere length; MTL_A = muscle telomere length adjusted for muscle biopsy site; ASCVD = atherosclerotic cardiovascular disease; OR = odds ratio; CI = confidence interval.

TLs were transformed to Z-scores. Age squared was divided by 100 to yield more informative estimates.

The best fitting model is indicated in bold. p-values based on likelihood-ratio tests. AICc represents Akaike's Information Criterion with a correction for finite sample sizes, while ΔAICc is relative to the best model (in bold).
Online Table VI: Main characteristics of the Replication Cohort

<table>
<thead>
<tr>
<th>Parameter</th>
<th>All</th>
<th>Control</th>
<th>ASCVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (W/M)</td>
<td>143 (46/97)</td>
<td>80 (37/43)</td>
<td>63 (9/54)</td>
</tr>
<tr>
<td>Women (%)</td>
<td>32</td>
<td>46</td>
<td>14***</td>
</tr>
<tr>
<td>French/Greek (number)</td>
<td>91/52</td>
<td>50/30</td>
<td>41/22</td>
</tr>
<tr>
<td>Age (years)</td>
<td>56 ± 17</td>
<td>50 ± 17</td>
<td>65 ± 11***</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>49</td>
<td>41</td>
<td>59*</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>24</td>
<td>12</td>
<td>38***</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>24</td>
<td>16</td>
<td>33*</td>
</tr>
<tr>
<td>Smoking (%)</td>
<td>49</td>
<td>39</td>
<td>60*</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>30.8 ± 10.1</td>
<td>32.2 ± 11.4</td>
<td>29.1 ± 7.9</td>
</tr>
<tr>
<td>Severe Obesity (%)</td>
<td>20</td>
<td>30</td>
<td>8**</td>
</tr>
<tr>
<td>Renal failure (%)</td>
<td>31</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>Cancer (%)</td>
<td>28</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>

ASCVD: atherosclerotic cardiovascular disease; BMI: body mass index.
Data are expressed as mean ± SD; % or number.
*p < 0.05; ** p < 0.01; *** p < 0.001 for ASCVD vs. No ASCVD.
Ɨ history of or specific treatment for this risk factor; § current and ex-smokers.
Severe Obesity: BMI > 40 kg/m²; Renal failure: glomerular filtration < 30 ml/min/1.73m²;
Cancer: active malignancy or history of chemotherapy/radiotherapy for cancer.
Online Table VII: Odds ratios for atherosclerotic cardiovascular disease, age and sex in the four telomere length models in the Replication Cohort.

<table>
<thead>
<tr>
<th>Variable</th>
<th>LTL</th>
<th>MTL</th>
<th>LTL-MTL</th>
<th>LTL/MTL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>OR</td>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>95% CI</td>
<td>95% CI</td>
<td>95% CI</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>TL (Z-scores)</td>
<td>0.58</td>
<td>1.03</td>
<td>0.60</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>0.36, 0.91</td>
<td>0.72, 1.47</td>
<td>0.40, 0.88</td>
<td>0.36, 0.84</td>
</tr>
<tr>
<td></td>
<td>0.0172</td>
<td>0.88</td>
<td>0.0088</td>
<td>0.0042</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.21</td>
<td>1.19</td>
<td>1.19</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>1.01, 1.39</td>
<td>0.99, 1.50</td>
<td>0.98, 1.51</td>
<td>0.98, 1.51</td>
</tr>
<tr>
<td></td>
<td>0.057</td>
<td>0.067</td>
<td>0.081</td>
<td>0.077</td>
</tr>
<tr>
<td>Age squared (years²/100)</td>
<td>0.88</td>
<td>0.90</td>
<td>0.90</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>0.72, 1.04</td>
<td>0.75, 1.07</td>
<td>0.74, 1.06</td>
<td>0.73, 1.06</td>
</tr>
<tr>
<td></td>
<td>0.146</td>
<td>0.24</td>
<td>0.22</td>
<td>0.19</td>
</tr>
<tr>
<td>Sex</td>
<td>2.69</td>
<td>2.63</td>
<td>3.20</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>1.16, 6.70</td>
<td>1.14, 6.51</td>
<td>1.34, 8.23</td>
<td>1.32, 8.02</td>
</tr>
<tr>
<td></td>
<td>0.021</td>
<td>0.023</td>
<td>0.0081</td>
<td>0.0088</td>
</tr>
<tr>
<td>AICc</td>
<td>204.44</td>
<td>210.09</td>
<td>203.24</td>
<td>201.90</td>
</tr>
<tr>
<td>ΔAICc</td>
<td>2.55</td>
<td>8.19</td>
<td>1.35</td>
<td>0</td>
</tr>
</tbody>
</table>

TL = telomere length; LTL = leukocyte telomere length; MTL = muscle telomere length; OR = odds ratio; CI = confidence interval.

TLs were transformed to Z-scores. Age squared was divided by 100 to yield more informative estimates. Coding of sex: women = 0, men = 1.

The best fitting model is indicated in bold. p-values based on likelihood-ratio tests. AICc represents Akaike's Information Criterion with a correction for finite sample sizes, while ΔAICc is relative to the best model (in bold).