P2Y2 Nucleotide Receptor Prompts Human Cardiac Progenitor Cell Activation by Modulating Hippo Signaling

Farid G. Khalafulla1, Steven Greene1, Hashim Khan1, Kelli Ilves1, Megan Monsanto1, Roberto Alvarez Jr.1, Monica Chavarria1, Jonathan Nguyen1, Benjamin Norman1, Walter P. Dembitsky2, Mark A. Sussman1

1 San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, US, and; 2 Sharp Memorial Hospital, San Diego, California 92123, USA.

Running title: P2Y2R Prompts Cardiac Progenitor Cell Activation

Subject Terms:
Basic Science Research
Cell Signaling/Signal Transduction
Mechanisms
Myocardial Regeneration
Stem Cells

Address correspondence to:
Dr. Mark Sussman
SDSU Heart Institute and Department of Biology
San Diego State University
5500 Campanile Drive, San Diego, CA 92182
Tel: (619) 594-2983 (voice)
Fax: (619) 594-2610 (fax)
heartman4ever@icloud.com

In August 2017, the average time from submission to first decision for all original research papers submitted to Circulation Research was 12.65 days.

This manuscript was sent to Roger Hajjar, Consulting Editor, for review by expert referees, editorial decision, and final disposition.
ABSTRACT

Rationale: Autologous stem cell therapy using human c-Kit+ cardiac progenitor cells (hCPCs) is a promising therapeutic approach for treatment of heart failure (HF). However, hCPCs derived from aged HF patients with genetic predispositions and/or comorbidities of chronic diseases exhibit poor proliferative and migratory capabilities, which impairs overall reparative potential for injured myocardium. Therefore, empowering functionally compromised hCPCs with pro-regenerative molecules \textit{ex vivo} is crucial for improving the therapeutic outcome in HF patients.

Objective: To improve hCPC proliferation and migration responses that are critical for regeneration by targeting pro-regenerative P2Y$_2$ nucleotide receptor (P2Y$_2$R) activated by extracellular ATP and UTP molecules released following injury/stress.

Methods and Results: c-Kit$^+$ hCPCs were isolated from cardiac tissue of HF patients undergoing left ventricular assist device (LVAD) implantation surgery. Correlations between P2 nucleotide receptor expression and hCPC growth kinetics revealed downregulation of select P2 receptors, including P2Y$_2$R, in slow-growing hCPCs compared to fast-growers. hCPC proliferation and migration significantly improved by overexpressing or stimulating P2Y$_2$R. Mechanistically, P2Y$_2$R-induced proliferation and migration were dependent upon activation of yes-associated protein (YAP), the downstream effector of Hippo signaling pathway.

Conclusions: Proliferation and migration of functionally impaired hCPCs are enhanced by P2Y$_2$-mediated YAP activation, revealing a novel link between extracellular nucleotides released during injury/stress and Hippo signaling, a central regulator of cardiac regeneration. Functional correlations exist between hCPC phenotypic properties and P2 purinergic receptor expression. Lack of P2Y$_2$R and other crucial purinergic stress detectors could compromise hCPC responsiveness to presence of extracellular stress signals. These findings set the stage for subsequent studies to assess purinergic signaling modulation as a potential strategy to improve therapeutic outcome for use of hCPCs in HF patients.

Keywords: Cellular stress, extracellular nucleotides, P2Y$_2$R, Hippo signaling, cardiac progenitor cells.
Nonstandard Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMOTL2</td>
<td>angiomotin like 2</td>
</tr>
<tr>
<td>ANKRD1</td>
<td>ankyrin repeat domain 1</td>
</tr>
<tr>
<td>CTGF</td>
<td>connective tissue growth factor</td>
</tr>
<tr>
<td>CYR61</td>
<td>cysteine rich angiogenic inducer 61</td>
</tr>
<tr>
<td>ES FBS</td>
<td>embryonic stem cell screened fetal bovine serum</td>
</tr>
<tr>
<td>F-hCPCs</td>
<td>fast-growing human cardiac progenitor cells</td>
</tr>
<tr>
<td>GFR Matrigel</td>
<td>growth factor reduced Matrigel</td>
</tr>
<tr>
<td>hCPCs</td>
<td>human cardiac progenitor cells</td>
</tr>
<tr>
<td>hCPC-mGFP</td>
<td>human cardiac progenitor cells expressing monomeric green fluorescent protein</td>
</tr>
<tr>
<td>hCPC-Y2</td>
<td>human cardiac progenitor cells overexpressing P2Y2 receptor and mGFP</td>
</tr>
<tr>
<td>hHSCs</td>
<td>human hematopoietic stem cells</td>
</tr>
<tr>
<td>INHBA</td>
<td>inhibin beta a subunit</td>
</tr>
<tr>
<td>LATS1</td>
<td>large tumor suppressor kinase 1</td>
</tr>
<tr>
<td>LVAD</td>
<td>left ventricular assist device</td>
</tr>
<tr>
<td>mHSCs</td>
<td>mouse hematopoietic stem cells</td>
</tr>
<tr>
<td>NEXN</td>
<td>nexilin F-actin binding protein</td>
</tr>
<tr>
<td>NPPB</td>
<td>natriuretic peptide B</td>
</tr>
<tr>
<td>P2Y1R</td>
<td>P2Y1 nucleotide receptor</td>
</tr>
<tr>
<td>P2Y2R</td>
<td>P2Y2 nucleotide receptor</td>
</tr>
<tr>
<td>P2Y14R</td>
<td>P2Y14 nucleotide receptor</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PFA</td>
<td>paraformaldehyde</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>quantitative reverse-transcriptase polymerase chain reaction</td>
</tr>
<tr>
<td>RGD</td>
<td>Arg-Gly-Asp</td>
</tr>
<tr>
<td>S-hCPCs</td>
<td>slow-growing human cardiac progenitor cells</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>TBST</td>
<td>Tris-buffered saline Tween-20 solution</td>
</tr>
<tr>
<td>YAP</td>
<td>yes-associated protein</td>
</tr>
</tbody>
</table>
INTRODUCTION

Heart Failure (HF) secondary to cardiomyopathy is a leading cause of death in the US and worldwide, necessitating developing alternative therapeutic strategies to tackle the progression of HF and alleviate its symptoms. Autologous stem cell therapy has been implemented as a promising therapeutic approach for HF for over a decade. c-Kit+ cardiac-derived progenitor cells (CPCs) improve cardiac function following myocardial infarction (MI) in animal models. In comparison, adoptive transfer of autologous c-Kit+ CPCs into patients with pathologically injured myocardium yields modest and more variable outcomes in clinical trials. Inconsistent findings in the clinical setting are likely due, at least in part, to severely compromised regenerative potential of stem cells isolated from HF patients with genetic predispositions, comorbidities of chronic diseases such as hypertension and diabetes, and/or daily life stressors such as smoking and alcoholism. Therefore, enhancing regenerative capacity of stem cells ex vivo prior to transplantation is an interventional strategy to improve outcome of stem cell therapy as exemplified by empowering stem cells from diverse origins with pro-survival and anti-apoptotic genes. Regenerative capacity of stem cells also depends upon their ability to communicate with and adapt to the extracellular environment. To date, molecular mechanisms by which stem cells detect stress signals to initiate regenerative responses are poorly understood.

Extracellular nucleotides represent a major class of stress signals that accumulate in the extracellular milieu in response to injury/stress. Extracellular nucleotides bind to and activate transmembrane purinergic receptors that are categorized into P1 receptors (activated by adenosine) and P2 receptors (activated by ATP, ADP, UTP, UDP and UDP-sugars). P2 receptors comprise seven P2X ligand-gated ion channels (P2X1-7) and eight P2Y G protein-coupled receptors (P2Y1,2,4,6,11,12,13,14). While some P2 receptors initiate early inflammatory responses, others mediate later regenerative responses required for the healing process.

P2Y2 receptor (P2Y2R) is a pro-regenerative Gαq protein-coupled receptor activated by ATP and UTP, which are released during cardiac ischemia. P2Y2R plays a central role in intracellular signaling by enabling extracellular ATP and UTP to promote regenerative responses in a variety of tissues. P2Y2R regulates corneal epithelia wound healing and salivary gland reconstitution by inducing cell migration, liver regeneration by promoting hepatocyte proliferation, and reepithelialization following experimental colitis and inflammatory bowel disease. On the stem cell level, UTP is a potent stimulant of human hematopoietic stem cell (hHSC) migration. Herein, we hypothesize that P2Y2R induces proliferative and migratory responses in functionally compromised human CPCs (hCPCs) derived from HF patients.

Gαq protein-coupled signaling regulates cell proliferation and migration through activation of yes-associated protein (YAP), the downstream effector of Hippo signaling. However, it is not known whether Gαq protein-coupled P2Y2R-induced proliferative and migratory responses are dependent upon YAP activation (Figure 1). YAP activity is tightly regulated by multiple upstream kinases including mammalian MST1 (Hippo homolog) and large tumor suppressor kinase 1 (LATS1). MST1 activates LATS1, which in turn phosphorylates and represses YAP activity by promoting cytoplasmic retention. Conversely, LATS1 inhibition leads to YAP dephosphorylation (activation) and shuttling into the nucleus where it acts as a transcriptional co-activator to induce expression of genes that promote cell proliferation, migration and survival.

Given the importance of purinergic signaling in stress responses and sensing environmental damage, phenotypic associations should be present between growth potential of hCPCs derived from HF patients and P2 purinergic receptor expression. Indeed, expression of select P2 receptors, including the pro-regenerative P2Y2R, directly correlated with hCPC growth kinetics. Proliferation and migration of functionally compromised hCPCs were improved by P2Y2R activation or overexpression and impaired by P2Y2R knockdown. P2Y2R-induced proliferation and migration were mediated by YAP activation.
introducing a novel downstream component in the P2Y2R intracellular signaling cascade. These findings are discussed in the context of manipulating hCPCs to enhance their phenotypic properties.

METHODS

Human cardiac progenitor cell isolation.

Human CPCs were isolated from cardiac tissue specimens derived from patients undergoing LVAD implantation surgeries as previously described 21. Briefly, tissue was minced, digested in collagenase (150 U mg/mL) (Worthington Bio Corp) for 2 hours at 37°C, then incubated with c-Kit-labeled beads (Miltenyi Biotec) and sorted according to the manufacturer’s protocol. Pelleted cells were cultured in hCPC growth media: Hams F12 (Fisher Scientific), 10% embryonic stem cell screened fetal bovine serum (ES FBS), 1% penicillin/streptomycin/glutamine (PSG), 5 mU/mL human erythropoietin (Sigma Aldrich), 10 ng/mL basic FGF (Peprotech), and incubated at 37°C in a humidified atmosphere of 5% CO2 and 95% air. hCPCs with doubling time ≤ 24 hours were considered as fast-growers (F-hCPCs) while hCPCs with doubling time > 24 hours were considered as slow-growers (S-hCPCs).

Real-time reverse transcriptase-polymerase chain reaction.

Total RNA was isolated from hCPCs using Quick-RNA MiniPrep (Zymo Research) and cDNA was synthesized using iScript cDNA Synthesis Kit (Bio Rad) according to manufacturers’ protocols. Samples were prepared for quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) using iTaq SYBER Green (Bio Rad). Primer sequences are listed in Online Table I.

Calcium imaging.

Cultured cells on glass-bottom plates grown to 60-70% confluency were loaded for 1 hour with the calcium-dependent ratiometric fluorescent dye Fura-2AM (4µM) in Krebs-Ringer solution (KRH) (125mM NaCl, 5mM KCl, 1.2mM MgSO4, 2mM CaCl2, 10mM glucose, 25mM HEPES and pH was adjusted to 7.4 with NaOH). Afterwards, cells were washed in KRH for 30 minutes to allow for de-esterification of Fura-2AM dye. Ca2+ imaging data were collected using an inverted fluorescent microscope (Leica) where the excitation wavelength was altered between 340 and 387nm (F340 and F387) and emission was detected at 510nm. Data is represented as the ratio of fluorescence intensities at 340nm excitation (F340) [Ca2+-bound Fura-2] and 387nm (F387) excitation [Ca2+-free Fura-2]. In inhibitor studies, cells were pretreated with P2Y2R selective antagonist (AR-C 118925XX; 0.1, 1 and 10µM) (Tocris Bioscience) for the indicated times prior to UTP treatment.

Cell proliferation assay.

hCPCs were cultured in serum-starved medium (Hams F12 media supplemented with 2.5% ES FBS) in a 96-well plate (500 cells/well) then treated with CyQuant fluorescent nucleic-acid based dye (Life Technologies) that labels live cells where the fluorescence intensity directly correlates with cell number. After 1 hour, fluorescence intensity was measured using a plate reader and considered as baseline (day 0) reading. Then cells were treated with or without UTP (100µM) and 24 hours later CyQuant reagent was added and day 1 reading was recorded. Population doubling times were calculated based on readings from CyQuant assay using a population doubling time online calculator (http://www.doubling-time.com/). In inhibitor studies, cells were pretreated with YAP selective inhibitor (verteporfin; 100nM) (Tocris Bioscience) for the indicated times prior to UTP treatment.

Cell migration assay.

hCPC single-cell suspensions were seeded in serum-free Hams F12 media in a 96-well plate coated with growth factor reduced (GFR) Matrigel (BD Biosciences) (1600 cells/well) and incubated at 37°C in a humidified atmosphere of 5% CO2 and 95% air for 2 hours. Then the cell culture plate was mounted on a
DMI6000 live cell imaging microscope (Leica) equipped with a digital camera, an automatic shutter, a motorized x-y stage and an OKO stage top incubator (37°C, 5% CO₂ and 95% air). A field of cells was located within each well with a 5X objective and marked for monitoring over the duration of the experiment. The exposure time was kept constant for all positions and all time points. Bright field images of cells were obtained every 30 minutes for 6 hours. Cell migration was assessed by measuring distance travelled from origin using Leica LAX software. Cell velocity was calculated by dividing distance travelled from origin over time. In inhibitor studies, cells were pretreated with YAP selective inhibitor (verteporfin; 100nM) (Tocris Bioscience) for the indicated times prior to UTP treatment.

Protein isolation, SDS-PAGE and immunoblot analysis.
hCPCs were seeded in a 6-well plate (30,000 cells/well). Next day, cells were treated with or without UTP (100µM) in serum-starved medium for the indicated times. Samples were collected in 50 µL of sample buffer, sonicated and boiled. Protein lysates were run on 4-12% NuPage Novex Bis Tris gel (Invitrogen), transferred on to a polyvinylidene fluoride (PVDF) membrane, blocked in 5% skim milk in Tris-buffered saline Tween-20 (TBST) solution for 1 hour at room temperature, then incubated with primary antibodies overnight at 4°C. Membranes were incubated with secondary antibodies (1:1000-1:5000) for 1 hour at room temperature after several washes with TBST. Fluorescence signal was detected using Typhoon or LI-COR fluorescent scanners and quantitated using ImageJ software (Amersham Biosciences). Antibodies used are listed in Online Table II.

Nuclear/cytoplasmic fractionation.
hCPCs were cultured in 100mm dishes (180,000 cells/well). The following day, cells were treated with or without UTP (100µM) in serum-starved medium for the indicated times. Preparation of separate nuclear and cytoplasmic lysates was performed using Paris Kit (Thermo Fisher Scientific) according to manufacturer’s instructions. Briefly, adherent hCPCs were detached by trypsinizing for 3-5 minutes then trypsin was inactivated with hCPC growth medium. Cells were pelleted, culture medium was aspirated, cell pellet was gently resuspended in 100µL ice-cold cell fractionation buffer and incubated on ice for 5-10 minutes. Samples were then centrifuged for 5 minutes at 4°C and 500 x g. The supernatant (cytoplasmic fraction) was carefully transferred to a new tube. The pellet (nuclear fraction) was washed once with ice-cold cell fractionation buffer and centrifuged for 5 minutes at 4°C and 500 x g. Fractionation buffer was aspirated. Sample buffer was added to nuclear pellet as well as cytoplasmic fraction and samples were analyzed using SDS-PAGE followed by immunoblotting as described above. Antibodies used are listed in Online Table II.

Immunocytochemistry.
hCPCs were cultured in 2-well chamber slides (15,000 cell/well). Next day, cells were treated with or without UTP (100µM) in serum-starved medium for the indicated times. Cells were fixed with 4% paraformaldehyde (PFA) for 10 minutes, washed twice (5 minutes each) with 1X phosphate-buffered saline (PBS), permeabilized with 1% Triton-X-100 for 10 minutes, washed twice (5 minutes each) with 1X PBS then blocked with 10% horse serum for 45 min at 37°C. Then cells were treated with primary antibody in blocking solution (1:100) overnight at 4°C. The following day, cells were washed twice (5 minutes each) with 1X PBS then treated with secondary antibody in blocking solution (1:200) (Invitrogen) for 1 hour at 37°C. Cells were then washed once (5 minutes) with 1X PBS, treated with the nuclear stain DAPI in 1X PBS (1:10,000) (Sigma-Aldrich) for 1 minute. Finally cells were rinsed in 1X PBS and mounted using VectaShield. Images were acquired in z-stacks using SP8 confocal microscope (Leica) and quantitation of nuclear signal intensity was performed on maximum projection of stacked images and normalized to nuclear area. Antibodies used are listed in Online Table II.

Lentiviral-mediated transduction of human cardiac progenitor cells.
hCPCs were cultured in a 6-well plate (30,000 cells/well). The following day, hCPCs were transduced with lentivirus (0.2 MOI) encoding either monomeric green fluorescent protein (hCPC-mGFP) or P2Y2R fused...
to mGFP (hCPC-Y2) (lentiviral plasmids were purchased from Origene; SKU: RC223931L2). To
knockdown P2Y2-R, hCPCs were transduced with lentiviral particles encoding P2Y2-R shRNA and mGFP
(20 MOI) (lentiviral plasmid was purchased from Origene; SKU: TL302717; Gene ID: 5029) or scrambled
shRNA and enhanced GFP (eGFP) (2 MOI) as a control 22.

Statistical analysis.
Quantitative results are presented as the means ± SE of data from at least three experiments. Two-tailed
Student’s t test or ANOVA followed by Dunnett’s or Bonferroni post hoc test was performed, as indicated,
where P < 0.05 represents a significant difference. Statistical analysis was performed using GraphPad prism
version 5.0 (GraphPad Software).

RESULTS

Differential P2 receptor subset expression in fast- and slow-growing CPCs.

hCPCs derived from multiple heart failure patients exhibit variation in growth rate previously
characterized as fast-growing (F-hCPC) or slow-growing (S-hCPC) 21. F-hCPCs are characterized by a
spindly morphology and lower levels of senescence markers, while S-hCPCs exhibit a flat morphology
associated with higher levels of senescence markers 21. P2 receptor mRNA expression levels were assessed
by qRT-PCR-based analysis in representative fast- and slow-growing hCPC lines. Receptor mRNA
expression was present for P2X4, P2X5, P2X6, P2Y1, P2Y2, P2Y4, P2Y11 and P2Y14 in all hCPC lines
examined. However, several P2 receptors were differentially expressed between fast- and slow-growing
lines: P2Y1, P2Y2, and P2Y14 were significantly downregulated in S-hCPCs compared to F-hCPCs
(0.031±0.015 fold change, P=0.012; 0.22±0.046 fold change, P=0.0112; and 0.058±0.014 fold change,
P=0.0014, respectively) (Figure 2). P2Y2-R was particularly intriguing based upon prior reports of
involvement in regeneration using various experimental models 13-15, 23, 24 and in stem cells from diverse
origins 18, 25. Higher P2Y2-R mRNA expression levels corresponded with faster hCPC growth rates indicated
by shorter doubling times (R=0.7101, P=0.0369) (Online Figure IA). P2Y2-R was also downregulated at the
protein level in S-hCPCs compared to F-hCPCs (0.56±0.047 fold change, P=0.0026).

Improving CPC proliferation and migration by P2Y2-R overexpression.

hCPC proliferation and migration potential was improved by increasing P2Y2-R levels. hCPCs were
infected with lentiviral particles encoding P2Y2-R fused to mGFP (hCPC-Y2) or mGFP alone (hCPC-
mGFP) as a control. Transduction efficiency was assessed by flow cytometric analysis for percentage of
GFP+ cells (56% for hCPC-mGFP and 50.1% for hCPC-Y2) (Online Figure IIA), with confirmation of
overexpression by qRT-PCR showing increased mRNA levels of P2Y2-R in hCPC-Y2 (3.52±0.95 fold
change) (Online Figure IIB) as well as by immunoblotting showing expression of P2Y2-R-mGFP fused
construct (Online Figure IIC). Expression of GFP alone did not alter hCPC proliferation (Online Figure
IID). P2Y2-R overexpression improved basal hCPC proliferation (1.47±0.1 fold change, P=0.0031) (Figure
3A and Online Figure IIIA) and migration indicated by increased distance travelled from origin (1.37±0.14
fold change, P=0.047) (Figure 3B, Online Figures IIB and III). P2Y2-R overexpression studies were
performed in 3 representative lines with varying doubling times (H10-001: 24 hours, H13-073: 31 hours
and H13-064: 41 hours).

P2Y2-R overexpression enhances YAP activation.

Yes-associated protein (YAP), the downstream effector of Hippo signaling pathway, is a critical
regulator of proliferation and migratory responses in several experimental models 26-30. Although YAP
activity is modulated by Gαq protein-coupled receptors19, upstream regulatory extracellular signals are still largely unknown. Overexpression of the Gαq protein-coupled P2Y\textsubscript{2}R resulted in significant downregulation of Hippo signaling pathway upstream kinases MST1 (0.67±0.097 fold change, \(P=0.0419 \)) and LATS1 (0.64±0.055 fold change, \(P=0.0224 \)). No significant differences were observed on phosphorylated MST1/2 or phosphorylated LATS1 levels (Online Figure V). MST1 and LATS1 downregulation was associated with activation of YAP as indicated by reduced phosphorylation at S127 residue (0.86±0.0097 fold change, \(P=0.0005 \)) (Figure 3C-F). Total YAP levels were not significantly impacted by P2Y\textsubscript{2}R overexpression (Figure 3G). Importantly, expression of GFP alone did not alter basal YAP activity (Online Figure IIE).

CPC activation by the P2Y\textsubscript{2}R agonist UTP.

Gαq protein-coupled receptor activation results in calcium release from intracellular stores through phospholipase C/inositol 1,4,5-trisphosphate (PLC/IP\textsubscript{3}) signaling pathway31. Therefore, Gαq protein-coupled P2Y\textsubscript{2}R function was assessed by measurement of intracellular calcium [Ca2+] levels in response to ligand stimulation by UTP. Stimulation of hCPCs with UTP enhanced [Ca2+]\textsubscript{i} levels as indicated by a calcium transient (Figure 4A and Online Figure VI). P2Y\textsubscript{2}R inhibition using the selective antagonist AR-C118925XX impaired UTP-mediated calcium transients in a dose-dependent manner (0.1 \(\mu \text{M}: 0.71±0.095\) fold change; 1 \(\mu \text{M}: 0.44±0.14 \) fold change; 10 \(\mu \text{M}: 0.12±0.019 \) fold change, \(P=0.0005 \)) (Figure 4B), indicating UTP-induced responses are primarily mediated by P2Y\textsubscript{2}R.

P2Y\textsubscript{2}R is a potent stimulator of cell proliferation and migration13-15, 32, 33. Consistent with these findings, hCPC stimulation with P2Y\textsubscript{2}R agonist UTP for 24 hours significantly enhanced cell proliferation (1.56±0.073 fold change, \(P<0.0001 \)) (Figure 4C). Additionally, UTP treatment enhanced hCPC migration on GFR Matrigel as shown by increased distance travelled from origin (from 47326±2029 to 67145±4173 nm, \(P=0.0001 \)) (Figure 4D) as well as cell velocity (from 2.21±0.09 to 3.12±0.19 nm/sec, \(P=0.0001 \)) (Figure 4E). The effect of UTP stimulation upon proliferation and migration was assessed in 6 hCPC lines with varying doubling times (Online Figure VII).

UTP signals through two P2 receptors: P2Y\textsubscript{2} and P2Y\textsubscript{4}. To validate involvement of P2Y\textsubscript{2}R in UTP-induced responses, P2Y\textsubscript{2}R knockdown was performed in hCPCs using lentivirus encoding P2Y\textsubscript{2}R shRNA (hCPC-Y2SH) or scrambled shRNA (hCPC-ScrSH) as a control. Transduction efficiency was assessed by flow cytometry for percentage of GFP+ cells (68.23±8.09% for hCPC-Y2SH and 59±10.48% for hCPC-ScrSH) (Online Figure VIII/A). P2Y\textsubscript{2}R knockdown was confirmed by qRT-PCR showing reduced P2Y\textsubscript{2}R mRNA levels (0.51±0.046 fold change) (Online Figure VIIIIB). P2Y\textsubscript{2}R knockdown impaired UTP-induced hCPC proliferation by ~70% (from 1.44±0.107 to 1.13±0.161 fold change) and migration (from 1.33±0.117 to 0.99±0.113 fold change) (Online Figure VIIIC-D) confirming that UTP acts primarily via P2Y\textsubscript{2}R.

UTP prompts YAP activation and nuclear localization.

The role of P2Y\textsubscript{2}R in regulating Hippo signaling was validated via assessment of LATS1 kinase and YAP activity resulting from P2Y\textsubscript{2}R stimulation. hCPC treatment with UTP for 5, 10 or 15 minutes significantly inhibited phosphorylation of Hippo signaling upstream kinase LATS1 compared to untreated control (5 min: 0.61±0.1218 fold change; 10 min: 0.47±0.06 fold change; 15 min: 0.59±0.089 fold change, \(P=0.0173 \)) while total LATS1 levels were unchanged (Figure 5A and 5C). Moreover, UTP treatment for 5, 10, 15 or 30 minutes reduced YAP phosphorylation at S127 residue (5 min: 0.69±0.0028 fold change; 10 min: 0.62±0.079 fold change; 15 min: 0.69±0.1147 fold change; 30 min: 0.66±0.088 fold change, \(P=0.0007 \)) (Figure 5B and 5D) resulting from inhibition of upstream kinase LATS1. YAP de-phosphorylation leads to activation and shuttling into the nucleus, so YAP nuclear localization was assessed following UTP treatment via immunoblotting on hCPC nuclear extracts. UTP stimulation increased YAP nuclear levels 15 minutes post-treatment (1.97±0.27 fold change, \(P<0.05 \)) (Figure 6A and 6B) as corroborated by confocal analysis showing higher levels of nuclear YAP in response to UTP stimulation for 5 minutes (1.51±0.16
fold change, \(P < 0.05 \)) (Figure 6C and 6D). As expected, the phosphorylated inactive form of YAP (\(p\text{YAP}^{S127} \)) was only detected in the cytoplasmic fraction and excluded from the nucleus (Online Figure IX). Collectively, these findings support P2Y2R-mediated YAP activation and nuclear localization through inhibition of upstream YAP repressor LATS1.

In addition, hCPC stimulation with UTP activated ERK1/2 (Online Figure X), a canonical inducer of cell proliferation and migration \(^{34}\) that is known to crosstalk with both P2Y2R \(^{35-38}\) and YAP signaling pathways \(^{39-42}\).

UTP enhances expression of YAP target genes.

activation, YAP shuttles to the nucleus where it serves as a transcriptional co-activator for induction of gene expression to promote cell proliferation and migration \(^{20}\). Expression of canonical YAP target genes following UTP stimulation revealed significantly elevated mRNA levels of CTGF (1.84±0.19 fold change, \(P < 0.05 \)), INHBA (1.47±0.09 fold change, \(P < 0.05 \)), CYR61 (1.52±0.24 fold change, \(P < 0.05 \)), AMOTL2 (1.88±0.36 fold change, \(P < 0.05 \)), NPPB (2.77±0.46 fold change, \(P < 0.05 \)), NEXN (2.35±0.49 fold change, \(P < 0.05 \)) and ANKRDI (1.38±0.13 fold change, \(P < 0.05 \)) (Figure 7A-G). Peak expression of CTGF, INHBA, CYR61, AMOTL2, NPPB and NEXN occurred 2 hours after UTP stimulation, but ANKRDI expression peaked 24 hours post-treatment (Figure 7A-G). UTP-mediated induction of two representative YAP target genes, CTGF and CYR61, was confirmed at the protein level (Online Figure XI). UTP-induced upregulation of target genes downstream of YAP signaling pathway does not exclude the potential involvement of other UTP-mediated regulatory mechanisms in the expression of those genes.

UTP-induced CPC proliferation and migration are dependent on YAP activation.

Involvement of YAP in UTP-induced proliferation and migration responses in hCPCs was confirmed by pretreatment with the selective YAP inhibitor verteporfin (100nM) for 1 hour prior to UTP treatment. A dose response of 1-1000nM of verteporfin was performed and 100nM was the minimum dose required to significantly impair UTP-induced proliferation (from 1.43±0.072 to 1.15±0.062 fold change, \(P < 0.05 \)) without altering basal proliferation levels (Figure 8A). Verteporfin abolished UTP-induced migration (from 1.57±0.218 to 0.94±0.058 fold change, \(P < 0.05 \)) (Figure 8B and Online Figure XII). Therefore, UTP-induced proliferation and migration in hCPCs are YAP-dependent.

DISCUSSION

Autologous stem cell therapy is a promising approach for treatment of heart failure (HF). However, stem cells derived from HF patients exhibit impaired proliferative and migratory capabilities \(^{43}\), that could be addressed by identifying molecular components regulating these critical phenotypic characteristics of hCPCs. Findings in this study point to P2Y2R as an important regulator of hCPC proliferation and migration and delineate underlying mechanisms. P2Y2R was significantly downregulated in slow-growing hCPCs (S-hCPCs) compared to fast-growers (F-hCPCs). Augmenting P2Y2R levels or P2Y2R stimulation with UTP in hCPCs efficiently improved proliferation and migration potential. P2Y2R-induced responses involved downstream activation of YAP signaling, introducing a novel component into the P2Y2R intracellular signaling network.

A primary role of stem cells emerges following injury and subsequent contribution to tissue repair and regeneration. Nucleotides accumulate in the extracellular milieu following injury/stress and activate purinergic receptors to initiate physiological responses required for the repair process \(^{7,8}\). Stem cells with compromised ability to detect extracellular nucleotides could elicit impaired regenerative responses to
injury. Thus, a major key to improving regenerative capacity of impaired stem cells would be to augment detection of extracellular nucleotides through modulating purinergic receptors. P2Y2R endogenous agonists ATP and UTP accumulate in large levels in the extracellular space in response to cellular stress as a signal to prompt cellular reaction to injury. However, P2Y2R was significantly downregulated in S-hCPCs isolated from cardiac biopsies of HF patients (Figure 2E). Restoration of P2Y2R levels by lentiviral-mediated overexpression augments their proliferative and migratory capabilities (Figure 3). These results reinforce the emerging view of P2Y2R as pro-proliferative in various experimental models including hepatocytes, corneal endothelial cells, and pancreatic duct epithelial cells. In addition, P2Y2R-induced migration in hCPCs is consistent with pro-migratory responses of P2Y2R in fibroblasts, salivary and corneal epithelial cells. Whether ex vivo manipulation of hCPCs by UTP preconditioning or P2Y2R overexpression improves transplanted hCPC homing, expansion and overall reparative potential for injured myocardium remains to be assessed.

P2Y2R was implicated in mediating enhanced proliferation and differentiation following preconditioning of atrial-derived hCPCs with ATP for 30 minutes in vitro and in vivo, but involvement of P2Y2R in the ATP-induced responses was not confirmed through any inhibitor, loss- or gain-of-function studies. Additionally, ATP-mediated responses were primarily attributed to stimulating calcium signaling. Results obtained herein demonstrate that UTP-induced proliferative and migratory responses in hCPCs are dependent upon YAP activation (Figure 8). Despite extensive study of Hippo signaling pathway as well as the downstream effector YAP, upstream regulatory extracellular signals and their membrane receptors have remained elusive. Recently, two independent studies reported that G protein-coupled receptors play a major role in regulating Hippo pathway. Guq11- and Gai/o-coupled signals induce YAP activity, while Gas-coupled signals repress YAP. Concordantly, our data show Guq protein-coupled P2Y2R induces YAP activation (Figures 3F, 5 and 6) revealing a novel link between extracellular nucleotides released during injury/stress and Hippo signaling, a core component in mediating CPC proliferation and overall cardiac regeneration. Whether crosstalk occurs between YAP and other signaling molecules acting downstream of P2Y2R, such as calcium, growth factor receptors, RGD-binding integrins and Rho GTPases remains to be determined. Furthermore, involvement of YAP in promoting hCPC proliferation and migration supports previous literature demonstrating similar responses downstream of YAP, as extensively studied in several cancer models where YAP inhibition was proposed as a potential therapeutic target to halt tumorigenesis.

Differential expression of P2 purinergic receptors between fast- and slow-growing hCPCs was not restricted to P2Y2R. The ADP receptor P2Y1 (P2Y1R) was also significantly downregulated in S-hCPCs compared to F-hCPCs (Figure 2D). P2Y1R regulates regenerative responses in several tissues. P2Y1R mediates chondrocyte proliferation and cartilage repair in osteoarthritis, neuronal fibre outgrowth in organotypic brain slice co-cultures, expression of wound healing regulator cyclooxygenase-2 in intestinal subepithelial myofibroblasts in addition to regulating proliferation and repair of retinal tissue in response to cytotoxic injury. The UDP-sugar P2Y14 receptor (P2Y14R) is another interesting target downregulated in S-hCPCs compared to fast-growing cells (Figure 2H). Cumulative data over the past decade demonstrate involvement of P2Y14R in inducing proliferation and migration of human keratinocytes, chemotaxis of hHSCs and human neutrophils. In addition, P2Y14R enhances mouse HSC (mHSC) resistance to stress-induced senescence and maintains regenerative capacity after injury. Future studies will aim to assess whether P2Y1R and P2Y14R mediate pro-regenerative roles in hCPCs. Overall, establishing physiological responses downstream of individual members of the P2 receptor family represents the first step towards understanding unexplored roles of purinergic signaling in hCPCs. Purinergic receptors with validated pro-regenerative roles could be used as cell surface markers for initial isolation of hCPCs from tissue specimens of HF patients to enrich for potentiated stem cells with enhanced responsiveness to purinergic drive in the extracellular environment. Many P2 receptors share common agonists indicates a potential crosstalk among P2 family members in hCPCs, reinforcing the importance of understanding signaling interplay between various P2 receptors.
In summary, the present study demonstrates lack of expression of a subset of P2 purinergic receptors in functionally compromised hCPCs derived from HF patients. These findings fit with a growing body of supportive studies focused upon addressing inherent deficits of cardiac stem cells with the ultimate goal of boosting their phenotypic properties. P2Y2R is part of the regulatory network of proliferation and migration responses impaired in CPCs isolated from human HF patients. Restoration of a youthful phenotype to CPCs, possibly including purinergic signaling, can augment engraftment and survival as noted in previous publications from our laboratory. Our findings can shed light upon underlying impairment of endogenous stem cell repair in the aged or pathologically damaged myocardium.

AUTHOR CONTRIBUTIONS
F.G. Khalafalla and M.A. Sussman designed experiments. S. Greene, H. Khan and J. Nguyen, performed experiments. F.G. Khalafalla analyzed data. K. Ilves, B. Norman, R. Alvarez Jr. and M. Chavarria contributed to lentiviral plasmid validation, plasmid expansion and lentiviral particle generation. M. Monsanto participated in isolating hCPCs from tissue specimens of HF patients. F.G. Khalafalla and M.A. Sussman wrote the article. All authors read and approved the final article.

ACKNOWLEDGEMENTS
We sincerely acknowledge Dr. Marcello Rota for his advice on calcium imaging protocols.

SOURCES OF FUNDING
This work is supported by National Institutes of Health (F32HL131299 Ruth L. Kirschstein Postdoctoral Individual National Research Service Award (NRSA) to F.G. Khalafalla; 1R37HL091102, 1R01HL105759, 5R01HL067245, 1R01HL113656, 1R01HL117163, 1R01HL113647 to M.A. Sussman) and Foundation Leducq.

DISCLOSURES
CardioCreate company owned by M.A. Sussman.

REFERENCES

40. Jablons D. Inhibition of ERK1/2 down-regulates the Hippo/YAP signaling pathway in human NSCLC cells. 2015.

FIGURE LEGENDS

Figure 1. P2Y2R proposed mechanisms in CPCs.
Schematic representation of P2Y2R proposed mechanisms for inducing hCPC proliferation and migration through YAP activation resulting from inhibition of Hippo upstream kinases MST1 and LATS1.

Figure 2. Differential P2 receptor subset expression in fast- and slow-growing CPCs.
Expression of (A) P2X4, (B) P2X5, (C) P2X6, (D) P2Y1, (E) P2Y2, (F) P2Y4, (G) P2Y11 and (H) P2Y14 receptor mRNA by qRT-PCR analysis in fast-growing hCPCs (F-hCPC) and slow-growing hCPCs (S-hCPC). Cycle numbers were normalized to 18S and data is represented relative to F-hCPC. P2Y1, P2Y2 and P2Y14 mRNA expression levels are significantly downregulated in S-hCPC compared to F-hCPC (n=5-7). *P < 0.05 indicates significant difference from F-hCPC as measured by unpaired Student t test.

Figure 3. Enhancing CPC proliferation, migration and YAP activation by P2Y2R overexpression.
(A) Proliferation (n=7) and (B) migration (n=6) analysis showing that hCPC-Y2 exhibit enhanced proliferative and migratory capabilities compared to control hCPC-mGFP. Cell proliferation was measured using CyQuant assay and cell migration on GFR Matrigel was assessed by measuring the distance that cells traveled from origin after monitoring by time-lapse live cell imaging for 6 hours. hCPC immunoblotting analysis (C) and corresponding quantitation (D, E, F, G) showing downregulation of YAP repressors MST1 (n=4) and LATS1 (n=5) and decreased YAP S127 phosphorylation (indicating activation) (n=4) and no significant change in total YAP levels (n=4) in hCPC-Y2 compared to control hCPC-mGFP. pYAP S127 was normalized to total YAP. Total MST1, LATS1 and YAP levels were normalized to β-actin (loading control). *P < 0.05 and **P < 0.01 indicate significant difference from hCPC-mGFP as measured by paired Student t test.

Figure 4. CPC activation by the P2Y2R agonist UTP.
(A) Intracellular calcium [Ca^{2+}], transient in hCPCs in response to stimulation with UTP (100µM). [Ca^{2+}] transients were measured using the calcium-dependent fluorescent dye Fura-2AM (4µM). Data is represented as the ratio of fluorescence intensities at 340nm excitation (F340) [Ca^{2+}-bound Fura-2] and 387nm (F387) excitation [Ca^{2+}-free Fura-2]. (B) P2Y2R is the primary mediator of UTP-induced [Ca^{2+}] transients as indicated by a decrease in [Ca^{2+}] amplitude following hCPC treatment with selective P2Y2R inhibitor AR-C 118925XX (0.1, 1 and 10µM) for 2 hours. Data is represented relative to 0µM P2Y2R inhibitor. **P < 0.01 and ***P < 0.001 indicate significant difference from 0µM P2Y2R inhibitor as measured by one-way ANOVA followed by Dunnett’s post hoc test. (C) UTP induces hCPC proliferation as assessed by CyQuant assay on hCPCs treated with or without UTP (100µM) for 24 hours (n=32). ***P < 0.001 indicates significant difference from control group as measured by unpaired Student t test. (D) hCPC stimulation with UTP increases migration on GFR Matrigel as assessed by measuring the distance traveled from origin and (E) cell velocity 6 hours following UTP (100µM) treatment. Cell migration was monitored using time-lapse live cell imaging (n=18). ***P < 0.001 indicates significant difference from control group as measured by unpaired Student t test.

Figure 5. UTP inhibits LATS1 and activates YAP in CPCs.
hCPC immunoblotting analysis (A, B) and corresponding quantitation (C, D) showing reduced phosphorylation of LATS1 (indicating inhibition) and YAP S127 (indicating activation) in response to UTP (100µM) treatment. pLATS1 (n=3-4/time point) and pYAP S127 (n=5-6/time point) were normalized to total LATS1 and total YAP levels, respectively. Total LATS1 (n=8) and total YAP levels (n=4) were normalized to β-actin (loading control). Data is represented relative to 0 min (no UTP treatment). *P < 0.05 and **P < 0.01 indicate significant difference from 0 min as measured by one-way ANOVA followed by Dunnett’s post hoc test.
Figure 6. UTP enhances YAP nuclear localization in CPCs.
Cytoplasmic and nuclear extracts of hCPCs on immunoblot (A) with corresponding quantitation (B) shows increased nuclear levels of YAP 15 minutes after UTP (100µM) stimulation. Cytoplasmic YAP was normalized to β-tubulin and nuclear YAP was normalized to Lamin A (n=4-6/time point). (C) Representative fluorescence microscopy images of hCPCs and (D) corresponding quantitation showing increased nuclear levels of YAP 5 minutes after UTP (100µM) treatment (n=3). YAP nuclear signal intensity was normalized to nuclear area. DAPI nuclear stain: white; YAP: red. Scale bar = 50µm. Data is represented relative to 0 min (no UTP treatment). *P < 0.05 indicates significant difference from 0 min as measured by one-way ANOVA followed by Dunnett’s post hoc test.

Figure 7. UTP enhances expression of YAP target genes in CPCs.
Enhanced mRNA expression of YAP canonical target genes by qRT-PCR analysis for (A) CTGF, (B) INHBA, (C) CYR61, (D) AMOTL2, (E) NPPB, (F) NEXN and (G) ANKRD1 after UTP (100µM) treatment. mRNA levels of CTGF, INHBA, CYR61, AMOTL2, NPPB and NEXN peaked 2 hours following UTP stimulation while increase in ANKRD1 mRNA levels was observed 24 hours post UTP treatment (n=3-6/time point/gene). Data is represented relative to 0 hour (no UTP treatment). *P < 0.05, **P < 0.05 and ***P < 0.001 indicate significant difference from 0 hour as measured by one-way ANOVA followed by Dunnett’s post hoc test.

Figure 8. UTP-induced CPC proliferation and migration are dependent on YAP activation.
hCPC proliferation (n=6) (A) and migration (n=3) (B) analysis showing that UTP-mediated responses require YAP activation as assessed by stimulating hCPCs with UTP (100µM) following treatment with or without YAP selective inhibitor verteporfin (100nM) for 1 hour. Cell proliferation and migration were measured as described in Figure 4. *P < 0.05 indicates significant difference between UTP groups treated versus non-treated with YAP inhibitor as measured by two-way ANOVA followed by Bonferroni post hoc test.
NOVELTY AND SIGNIFICANCE

What Is Known?

- Aged/diseased cardiac progenitor cells (CPCs) derived from heart failure (HF) patients display functional impairment due to inherent molecular deficits.
- P2 purinergic receptors regulate crucial inflammatory and regenerative responses in cardiovascular system with largely undefined roles in CPCs.

What New Information Does This Article Contribute?

- Expression levels for a subset of P2 receptors including pro-regenerative P2Y\(_2\) receptor (P2Y\(_2\)R) correlate with altered phenotypic properties of CPCs isolated from cardiac biopsies of HF patients.
- Proliferative and migratory responses of functionally compromised CPCs are improved by P2Y\(_2\)R activation or overexpression that is associated with modulating YAP activity.

Cardiac Progenitor Cell (CPC) function deteriorates with age and is further compromised by chronic diseases and environmental stresses. Identification of inherent molecular deficits in aged/diseased CPCs will be valuable information to design interventional approaches to improve phenotypic characteristics that restore functional competency. Herein, we report significant correlations between growth kinetics of human CPCs derived from HF patients and expression levels of a subset of P2 purinergic receptors. Specifically, expression of several P2 receptors including P2Y\(_2\)R, known to mediate regenerative responses in various tissues, is diminished in slow-growing CPCs. CPC proliferation and migration was improved by augmenting P2Y\(_2\)R levels or P2Y\(_2\)R stimulation with UTP via inhibiting Hippo signaling and activating the concordant downstream effector YAP. Overall, impaired functional capacity of CPCs could be caused, in part, by lack of purinergic receptor expression that impairs responsiveness to extracellular nucleotides. Findings from this study suggest modulating purinergic signaling as part of a multifaceted approach to enhance CPC functional activity. Mechanistically, this report introduces P2Y\(_2\)R as a novel upstream regulator of Hippo signaling revealing a link between extracellular nucleotides released during injury/stress and YAP that is critical for CPC growth and myocardial repair in response to injury.
Table 1. Clinical Profile of Patients Used for Stem Cell Isolation

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>hCPC Doubling Time (hr)</th>
<th>Age (yr)</th>
<th>Sex</th>
<th>EF (%)</th>
<th>Cardiac Index</th>
<th>Diabet</th>
<th>Hypercholesterolemia</th>
<th>Smoking</th>
<th>Infarct</th>
<th>Ischemia</th>
<th>Ace Inhibitor</th>
<th>β-blocker</th>
<th>Anticoagulant</th>
<th>NYHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10-014</td>
<td>21</td>
<td>73</td>
<td>M</td>
<td>17</td>
<td>x</td>
<td>√</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>√</td>
<td>IV</td>
</tr>
<tr>
<td>H11-020</td>
<td>22</td>
<td>68</td>
<td>F</td>
<td>20</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>√</td>
<td>IV</td>
</tr>
<tr>
<td>H10-001</td>
<td>24</td>
<td>68</td>
<td>M</td>
<td>11</td>
<td>√</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>√</td>
<td>x</td>
<td>√</td>
<td>IV</td>
</tr>
<tr>
<td>H12-053</td>
<td>24</td>
<td>59</td>
<td>M</td>
<td>15</td>
<td>√</td>
<td>√</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>√</td>
<td>IV</td>
</tr>
<tr>
<td>H12-047</td>
<td>25</td>
<td>72</td>
<td>M</td>
<td>8</td>
<td>√</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>√</td>
<td>IV</td>
</tr>
<tr>
<td>H10-004</td>
<td>28</td>
<td>81</td>
<td>M</td>
<td>8</td>
<td>2.0</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>IV</td>
</tr>
<tr>
<td>H13-067</td>
<td>30</td>
<td>84</td>
<td>M</td>
<td>-</td>
<td>22.6</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H13-073</td>
<td>31</td>
<td>73</td>
<td>M</td>
<td>-</td>
<td>23.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H13-064</td>
<td>41</td>
<td>57</td>
<td>M</td>
<td>15-25</td>
<td>23.5</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>√</td>
<td>IV</td>
</tr>
</tbody>
</table>

EF, ejection fraction; NYHA, New York Heart Association; patient information: (√) positive; (X) negative; (-) unavailable.
FIGURE 1

The diagram illustrates the signaling pathway involving P2Y2R, UTP, MST1, LATS1, and YAP. When UTP binds to the P2Y2R receptor, it activates MST1, which in turn activates LATS1. This leads to the inactivation of YAP, which normally migrates to the nucleus and regulates the expression of target genes. In the absence of YAP, proliferation and migration are upregulated.

- UTP activates P2Y2R.
- P2Y2R activates MST1.
- MST1 activates LATS1.
- LATS1 inhibits YAP.
- Inactive YAP is retained in the cytoplasm.
- Active YAP enters the nucleus and regulates gene expression.
- YAP target genes are activated, leading to proliferation and migration.
FIGURE 3

A. Proliferation (Fold over Day 0)

B. Distance from Origin (Relative to hCP-mGFP)

C. Western blot analysis of MST1 and LAT51

D. MST1 expression

E. LAT51 expression

F. pYAP527 expression

G. YAP expression
FIGURE 5

A

UTP

0 5 10 15 30 (min)

pLATS1

LATS1

β-actin

240 kDa

140 kDa

42 kDa

B

UTP

0 5 10 15 30 (min)

pYAP5127

YAP

β-actin

65 kDa

65 kDa

42 kDa

C

pLATS1

LAT S1

(D) 1.5

1.0

0.5

0.0

0 5 10 15 30 (UTP, min)

(D) 1.5

1.0

0.5

0.0

0 5 10 15 30 (UTP, min)

D

pYAP5127

YAP

β-actin

(D) 2.0

1.5

1.0

0.5

0.0

0 5 10 15 30 (UTP, min)
FIGURE 7

A. CTGF
B. CYR61
C. INHBA
D. AMOTL2
E. NPPB
F. NEXN
G. ANKRD1
P2Y₂ Nucleotide Receptor Prompts Human Cardiac Progenitor Cell Activation by Modulating Hippo Signaling

Farid G Khalafalla, Steven R Greene, Hashim Khan, Kelli Ilves, Megan M Monsanto, Roberto Alvarez, Jr., Monica Chavarria, Jonathan H Nguyen, Benjamin Norman, Walter P Dembitsky and Mark A Sussman

Circ Res. published online September 18, 2017;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2017/09/18/CIRCRESAHA.117.310812

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2017/09/18/CIRCRESAHA.117.310812.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/
Online Figure I: P2Y₂R expression correlates with hCPC doubling time.
(A) P2Y₂R mRNA expression in hCPCs derived from multiple heart failure patients plotted against hCPC doubling time showing that low doubling time (fast growth kinetics) corresponds to low cycle number (high P2Y₂R mRNA expression levels). Data is represented as Δ C(t) (cycle numbers normalized to 18S). *P < 0.05 indicates significant correlation between the assessed variables as measured by two-tailed Spearman correlation analysis. (B) Immunoblot analysis and (C) corresponding quantitation showing P2Y₂R downregulation in a slow-growing hCPC line (S-hCPC; H13-064 [Doubling Time 41 hours]) compared to relatively fast-growing hCPC line (F-hCPC; H10-001 [Doubling Time 24 hours]). **P < 0.01 indicates significant difference from F-hCPC as measured by paired Student t test.
Online Figure II: Lentiviral-mediated overexpression of P2Y$_2$R-mGFP in CPCs.

(A) Transduction efficiency of hCPCs with lentiviral particles encoding for P2Y$_2$R and mGFP (hCPC-Y2) or mGFP alone (hCPC-mGFP) by flow cytometry analysis with percentage of GFP$^+$ cells (56% for hCPC-mGFP and 50.1% for hCPC-Y2). (B) Elevated P2Y$_2$R mRNA levels by qRT-PCR analysis in hCPC-Y2 compared to control hCPC-mGFP. (C) A representative blot showing a 28 kDa band corresponding to mGFP in hCPC-mGFP and a shifted ~75 kDa mGFP band in hCPC-Y2 validating overexpression of the P2Y$_2$R-mGFP fused construct at the protein level. (D) Proliferation assay showing that mGFP expression does not impact hCPC proliferation (n=6). (E) Immunoblot analysis showing that mGFP expression does not alter YAP activation in hCPCs.
Online Figure III: Enhancing proliferation and migration of individual hCPC lines by P2Y\(_2\)R overexpression.

Enhanced proliferation (n=2-3/line) (A) and migration (n=2-3/line) (B) of 3 representative hCPC lines by P2Y\(_2\)R overexpression. Cell proliferation and migration were assessed as described in Figure 3.
Online Figure IV: Improving hCPC migration by P2Y₂R overexpression.
Representative images from time-lapse live cell imaging showing enhanced migration of hCPCs overexpressing P2Y₂R (hCPC-Y2) on GFR matrigel as assessed by increased distance travelled by single cells from origin (denoted by red circle).
Online Figure V: MST1/2 or LATS1 phosphorylation is not impacted by P2Y$_2$R overexpression.

(A, B) Immuno blot analysis showing no difference in levels of phosphorylated MST1/MST2 or phosphorylated LATS1 in hCPCs overexpressing P2Y$_2$R.
Online Figure VI: Functional response to P2Y$_2$R agonist UTP in hCPCs.
A dose response of P2Y$_2$R agonist UTP (1, 10 and 100µM) showing increase in intracellular calcium [Ca$^{2+}$] levels, indicated by increased amplitude of [Ca$^{2+}$] transient, in a dose-dependent manner.
Online Figure VII: Enhancing proliferation and migration of individual hCPC lines by P2Y₂R agonist UTP.

Enhanced proliferation (n=2-11/line) (A) and migration (n=3-5/line) (B) of 6 hCPC lines in response to UTP treatment (100µM). Cell proliferation and migration were assessed as described in Figure 3.
Online Figure VIII: UTP-induced hCPC proliferation is primarily mediated by P2Y₂R.
(A) shRNA-mediated P2Y₂R knockdown using lentiviral particles encoding for P2Y₂R shRNA (hCPC-Y2SH) or scrambled shRNA (hCPC-ScrSH). Transduction efficiency was 59% for hCPC-ScrSH and 68% for hCPC-Y2SH as assessed by flow cytometry analysis for percentage of GFP⁺ cells.
(B) Lower P2Y₂R mRNA levels by qRT-PCR analysis in hCPC-Y2SH compared to control hCPC-ScrSH confirming P2Y₂R knockdown.
(C, D) Proliferation and migration assays showing impairment of UTP-induced responses in hCPC-Y2SH (n=4) validating that UTP acts primarily via P2Y₂R. Proliferation and migration assays were performed as described in Figure 4. *P < 0.05 indicates significant difference as measured by two-way ANOVA followed by Bonferroni post hoc test.
Online Figure IX: Exclusion of inactive pYAP5127 from the nuclear fraction of hCPCs.
Representative immunoblot showing exclusion of the inactive phosphorylated form of YAP from the nuclear extracts of hCPCs. Nuclear protein Lamin A was used as additional control to validate the purity of nuclear fraction.
Online Figure X: Induction of ERK1/2 activation by UTP treatment. Representative immuno blot showing enhanced ERK1/2 phosphorylation in response to stimulation with UTP (100μM) in hCPCs.
Online Figure XI: Upregulation of CTGF and CYR61 expression by UTP treatment. Representative immunoblot showing enhanced CTGF and CYR61 expression following stimulation with UTP (100μM) for 4 hours in hCPCs.
Online Figure XII: Impairment of UTP-induced hCPC migration by YAP inhibition. Representative images from time-lapse live cell imaging showing impaired UTP-induced migration of hCPCs in the presence of YAP inhibitor verteporfin (100nM) as indicated by diminished distance travelled by single cells from origin (denoted by red circle).
Online Table I. List of primers

<table>
<thead>
<tr>
<th>Target</th>
<th>FWD Primer Sequence</th>
<th>REV Primer Sequence</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2X4</td>
<td>GATACCAGCTCAGGAGGAAAAC</td>
<td>GCATCATAAATGCACGACTTGAG</td>
<td>1</td>
</tr>
<tr>
<td>P2X5</td>
<td>GGCATTCTCAGGGGCGTGTG</td>
<td>GGCACCAGGCAAGATCTCAGC</td>
<td>1</td>
</tr>
<tr>
<td>P2X6</td>
<td>AGCAGCTGCCCTATGAACCAC</td>
<td>AGTGAGGCCAGCAGCAGAG</td>
<td>1</td>
</tr>
<tr>
<td>P2Y1</td>
<td>CCTGGGTGCTGATTCTGGCTG</td>
<td>GCTCGGGAGAGTCTCTCTCTG</td>
<td>2</td>
</tr>
<tr>
<td>P2Y2</td>
<td>CGGTGGAGCTTAGCCTGAGG</td>
<td>GCCTCCAGATGGGCTATGA</td>
<td>3</td>
</tr>
<tr>
<td>P2Y4</td>
<td>CGCTGCCACCCTCATCTAC</td>
<td>CCGAGTGATGGTCATGGCACAG</td>
<td>2</td>
</tr>
<tr>
<td>P2Y11</td>
<td>GAGGCCTGCATCAAGTGCTGT</td>
<td>AGTTGAGCAACCGAGCATGAT</td>
<td>2</td>
</tr>
<tr>
<td>P2Y14</td>
<td>CGCAACATATTCAGCAGCATCGTGT</td>
<td>CAAAGTATCTGTGCTTTCAAGT</td>
<td>4</td>
</tr>
<tr>
<td>CTGF</td>
<td>CAAGGGCCTCTTCTGTGACT</td>
<td>ACGTGCACTGGTACTTCCAG</td>
<td>5</td>
</tr>
<tr>
<td>INHBA</td>
<td>CCTGGAGATCATCAGCTTGGT</td>
<td>GCGGATGGTGACCTTTTGT</td>
<td>6</td>
</tr>
<tr>
<td>CYR61</td>
<td>GAGTGGGTCTGTGAGCAGGAT</td>
<td>GGTTGTATAGGATGCGAGCT</td>
<td>7</td>
</tr>
<tr>
<td>ANKRD1</td>
<td>AACGAGGAGGATCTGAACATT</td>
<td>GTTGTTTCGCTTTCCACCTGT</td>
<td>8</td>
</tr>
</tbody>
</table>
| AMOTL2 | GACAGCCATTCTGGGCTCAGCAGTA | GCTCAGAGTCCTGAACGCCACGCTC
Online Table II. List of antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Vendor</th>
<th>Catalog Number</th>
<th>Immunoblotting Dilution</th>
<th>Slides Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2Y<sub>2</sub>R</td>
<td>Abcam</td>
<td>ab168535</td>
<td>2.5μg/mL</td>
<td>-</td>
</tr>
<tr>
<td>mGFP</td>
<td>Origene</td>
<td>TA150124</td>
<td>1:500</td>
<td>-</td>
</tr>
<tr>
<td>GAPDH</td>
<td>SICGEN</td>
<td>AB0067-200</td>
<td>1:2000</td>
<td>-</td>
</tr>
<tr>
<td>pMST<sub>1</sub>T<sup>183</sup>/MST<sub>2</sub>T<sup>180</sup></td>
<td>CST</td>
<td>3681</td>
<td>1:500</td>
<td>-</td>
</tr>
<tr>
<td>MST1</td>
<td>CST</td>
<td>3682</td>
<td>1:500</td>
<td>-</td>
</tr>
<tr>
<td>pLATS<sub>1</sub>S<sup>909</sup></td>
<td>CST</td>
<td>9157</td>
<td>1:500</td>
<td>-</td>
</tr>
<tr>
<td>LATS1</td>
<td>CST</td>
<td>3477</td>
<td>1:500</td>
<td>-</td>
</tr>
<tr>
<td>pYAP<sub>ST27</sub></td>
<td>CST</td>
<td>13008</td>
<td>1:500</td>
<td>-</td>
</tr>
<tr>
<td>YAP</td>
<td>CST</td>
<td>12395</td>
<td>1:500</td>
<td>1:100</td>
</tr>
<tr>
<td>CTGF</td>
<td>R&D</td>
<td>MAB9190-100</td>
<td>2μg/mL</td>
<td>-</td>
</tr>
<tr>
<td>CYR61</td>
<td>CST</td>
<td>14479</td>
<td>1:500</td>
<td>-</td>
</tr>
<tr>
<td>β-actin</td>
<td>Santa Cruz Biotechnology</td>
<td>sc-81178</td>
<td>1:500</td>
<td>-</td>
</tr>
<tr>
<td>Lamin A</td>
<td>Sigma-Aldrich</td>
<td>L1293</td>
<td>1:500</td>
<td>-</td>
</tr>
<tr>
<td>β-tubulin</td>
<td>CST</td>
<td>2146</td>
<td>1:500</td>
<td>-</td>
</tr>
<tr>
<td>DAPI</td>
<td>Sigma-Aldrich</td>
<td>D9542</td>
<td>1:10,000</td>
<td>-</td>
</tr>
</tbody>
</table>
References

