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Supplemental Materials and Methods

Mice

All animal experiments were performed according to protocols approved by the

Institutional Animal Care and Use Committee of Peking University. Ezh2fl and cTNT-Cre

were described previously1-3, and the Ezh1-/- allele was provided by Dr. Thomas

Jenuwein1.

The mice were on a mixed C57BL6/J and 129 genetic background. Noon of the day

of a vaginal plug was defined as day 0.5 (E0.5). Mice were injected with AAV9 (1x1012

viral particles/gram body weight) by intraperitoneal injection. Echocardiography was

conducted with a VisualSonics Vevo2100. M-mode images were acquired from awake

mice and used to calculate fractional shortening.

Neonatal MI

Neonatal MI surgery were performed on neonatal mice as previously described 4, 5.

Briefly, following anesthetizing neonatal pups on ice for about 5-12 min, lateral

thoracotomy was performed at the fourth intercostal space and a 7-0 prolene suture

was ligated through the left anterior descending coronary artery(LAD) to induce

infraction. After ligation, incisions were sutured with a 7-0 prolene suture, and the mice

were allowed to recover under a heat lamp for several minutes. Sham-operated

neonatal mice underwent the same procedure except for ignoring the step of LAD

ligation. Mice were subjected to echocardiography, and then euthanized at 1, 2 and 3

weeks after occlusion.

Histology analysis

For Hematoxylin & Eosin (H & E) staining, Masson’s staining, embryos were fixed in

4% PFA overnight at room temperature, dehydrated in ethanol, and embedded in

paraffin. Sections of 5 μm in thickness were deparaffinized in xylene and rehydrated

through the graded ethanol series (100%, 95%, 75%, 50%), then stained for H & E or

Masson’s Trichrome. In morphometric measurements, wall thickness was calculated as

the ventricular compact myocardial thickness divided by its outer circumference.

Trabecular and myocardial area were measured in Adobe Photoshop after selection of
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the image areas with myocardial color range3. To determine the infract size following

Masson’s trichrome staining as labeled by blue area in the sections, percentage of the

infracted LV wall was calculated by using MIQuant as previously described6. For

immunofluorescent staining, fixed embryos or hearts were infused with 30% sucrose

overnight at 4° C and embedded in OCT medium (Leica #14020108926) and sectioned

in 10 μm. Immunostaining was performed with antibodies listed in Online Table I.

Primary antibodies were visualized by staining with Alexa-conjugated secondary

antibodies: Alexa Fluor 488 donkey anti-goat and Alexa Fluor 555 donkey anti-rabbit

(1:200 Invitrogen). All the slides were mounted in VECTASHIELD hardset antifade

mounting medium (Vector Laboratories) and imaged on Zeiss Axio Vert.A1 microscope

or Olympus FV1000 Confocal microscope.

Edu incorporation

For P12 mice, 4 mg/kg of Edu was injected subcutaneously 12 h before heart

harvest. For P15 mice, 5 mg/kg of Edu was injected subcutaneously 36 h before heart

harvest. After dissection, hearts were fixed with 4% PFA, infused with 30% sucrose

overnight at 4° C and embedded in OCT medium. Transverse sections in 10 μm were

made for following staining. Edu incorporation was detected using Click-it Edu imaging

Kit (Life Technologies, #C10638). Tissue slides were imaged with Zeiss Axio Vert.A1

microscope or Olympus FV1000 Confocal microscope.

RNA expression 

Total RNA was extracted from all samples using Trizol (Invitrogen) according to the

manufacturer's instruction. For Quantitative reverse transcription-PCR (qRT-PCR), total

500 ng RNA was reverse transcribed using cDNA synthesis kit (Vazyme R223-01). qRT-

PCR was performed with the ABI Power SRBR Green qPCR master mix (Applied

Biosystems). Gene expression was normalized to actb or 18s rRNA. Primers for qRTPR

are provided in Online Table II.

Genome-wide expression profiling was performed on E12.5 heart apex and P13

heart infarct and border zones by RNA-seq, as described previously7 but steps for

library normalization were omitted. Briefly, polyadenylated RNA was isolated from total

RNA using two rounds of selection on oligo-dT dynabeads(Invitrogen). RNA was
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converted to cDNA with Superscript III Invitrogen) and random hexamer primers. After

RNaseH treatment and PolI catalyzed second strand cDNA synthesis, DNA end repair

performed with End-It DNA End-Repair Kit(Epicentre). DNA was then A-tailed with Exon

(-) Klenow(NEB), and adapters were ligated using T4 quick ligase. Fragments 150-300

bp were size-selected by agarose gel electrophoresis. Recovered DNA was PCR

amplified using Phusion DNA polymerase (NEB), multiplexing PCR primer 1.0, and one

indexed primer. The library was quantitated using the QuantIT DNA quantitation kit

(Invitrogen). Library quality control was performed using an Agilent Bioanalyzer. Paired

end 150 bp reads were obtained using an Illumina Hiseq 2500. Primer sequences are

provided in Online Table II.

PE150 RNA-seq reads were filtered by cutadapt (v1.10) and then aligned to the

mm10 mouse genome using TopHat2 (v2.1.1, -N 10 --read-gap-length 3 --read-edit-dist

10 -a 8 -m 0 –r 0 --no-coverage-search --segment-length 30 --segment-mismatches 2)8.

The mapped reads were further filtered to only keep uniquely mapped reads. Cufflinks (-

G –b) was used to estimate gene expression level which is measured by fragments per

kilobase per million fragments mapped (FPKM)9. Cuffdiff (-b --library-norm-method

classic-fpkm --total-hits-norm) module in Cufflinks was used to determine differentially

expressed genes. The significant differentially expressed genes were determined by p-

value less than 0.05 and the absolute log2 fold change greater than 0.5. Gene Ontology

(GO) terms enrichment analysis was determined using Metascape with all mouse genes

as background10. 

All up-regulated genes in AAV-cTNT-Ezh1 hearts were filtered to keep genes if

FPKM > 1 in at least 1 sample of both replicates. FPKM was further log10 transformed

for hierarchical clustering by samples. Clustering was generated using the “complete”

agglomeration method, in which the distance metric was measured by "euclidean".

Western blotting

Mice heart apex was homogenized with a T10 homogenizer(IKA) and lysed in

Nuclear Lysis buffer (NLB, 10% glycerol, 20 mM Tris-Hcl pH 8.0, 137 mM NaCl, 1%

Nonidet P-40 (NP40), 10 mM EDTA, 1 mM EGTA and fresh 1 mM PMSF and protease

inhibitor cocktail (PIC) ) for 30 min before 0.2% SDS was added to lysates and
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incubated on ice for 15 min. Samples were centrifuged at 4 , 1300rmp for 15min and

supernatant was saved for protein concentration measurement and Western blotting.

Equal amounts of proteins were resolved on 7.5% or 10% or 14% SDS polyacrylamide

gels and immunoblotted with primary antibodies listed in Online Table I.

ChIP-seq

Chromatin immunoprecipitation followed by parallel next-generation sequencing

(ChIP-seq) was performed as previously described11 using antibodies listed in Online

Table I. Briefly, ventricular heart apex was minced to 1~2 mm3 and immediately fixed in

1% V/V formaldehyde at room temperature for 15min. Formaldehyde was neutralized

with 2.5M glycine. Tissue was homogenized with a T10 homogenizer(IKA). Samples

were then placed in hypotonic lysis buffer and dounce homogenized for 10 strokes.

DNA was then fragmented in a Misonix 4000 sonicator to an average size of 150-500bp.

Chromatin was then precleared with protein G Dynabeads (Invitrogen),

immunoprecipitated with antibodies (Online Table I, The Ezh1 antibody was a kind gift

from Dr. Vittorio Sartorelli) and protein G Dynabeads. After extensive washing,

complexes were eluted and reverse croslinked overnight in ChIP elution buffer (1%SDS,

50mM Tris-Hcl pH 8.0, and 10 mM EDTA) at 70 . DNA was purified using the QIAquick

PCR purification kit(Qiagen). 

ChIP-seq libraries were prepared using the NEB Next DNA sample preparation kit

(NEB, E7370) and primers were listed in Online Table II. Libraries were sequenced

(paired end 150 bp) on an Illumina Hiseq 2500. Reads were filtered by cutadapt (v1.10)

(http://dx.doi.org/10.14806/ej.17.1.200) and then aligned to the mm10 mouse genome

using bwa (v0.7.13-r1126) BWA-MEM algorithm. PCR duplicates were removed using

samtools (v1.3.1) rmdup command. and uniquely mapped reads with map quality

greater than 30 are used to call peaks by MACS2 (v2.1.1) with parameters (-f BAMPE -

g 1.87e9 –q 0.05). ChIP-seq signals used to generate heat maps were processed as

following. The fragment coverage of ChIP and input samples were calculated by

deeptools (v2.4.2) and normalized to 10 million fragments 12. ChIP subtracted by input

was log2 transformed with a pseudocount 1 added. The color codes in all ChIP-seq

signal heat maps were performed by rescaling the value in each single heat map in the
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range of 0 to 1. The overlap of ChIP-seq peaks were calculated by bedtools (v2.20.1)

multiinter and then generated venn diagram by R package “eulerr”.

Statistical analysis

qRT-PCR, ChIP-qPCR and protein quantification of Western blotting results were

expressed as mean ± SEM. Two group comparisons were performed with Student’s t-

test with P values less than 0.05 taken as statistically significant. *, P<0.05; **, P<0.01;

***, P<0.001.
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