Radiofrequency Renal Denervation Protects the Ischemic Heart via Inhibition of GRK2 and Increased Nitric Oxide Signaling

David J. Polhemus1,2, Juan Gao1,2, Amy L. Scarborough1, Rishi Trivedi1,2, Kathleen H. McDonough3, Traci T. Goodchild1,2, Frank Smart1, Daniel R. Kapusta1,2, David J. Lefer1,2

1Cardiovascular Center of Excellence, LSU Health Sciences Center, New Orleans, LA; 2Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, and; 3Department of Physiology, LSU Health Sciences Center, New Orleans, LA.

D.R.K., and D.J.L. are both corresponding authors.

Running title: Renal Denervation Protects the Ischemic Heart

Subject Terms:
Autonomic Nervous System
Endothelium/Vascular Type/Nitric Oxide
Ischemia
Oxidant Stress

Address correspondence to:
Dr. David J. Lefer
Cardiovascular Center of Excellence
LSU Health Sciences Center
533 Bolivar St., Suite 408
New Orleans, LA 70112
Tel: (504) 568-2109
FAX: (504) 568-2361
dlefe1@lsuhsc.edu

Dr. Daniel R. Kapusta
Department of Pharmacology
LSU Health Sciences Center
1901 Perdido Street
New Orleans, LA 70112
Tel: (504) 568-4740
FAX: (504) 568-2361
Dkapus@lsuhsc.edu

In May 2016, the average time from submission to first decision for all original research papers submitted to Circulation Research was 14.93 days.
ABSTRACT

Rationale: Catheter-based renal denervation (RDN) is currently under development for the treatment of resistant hypertension and is thought to reduce blood pressure via interruption of sympathetic pathways that modulate cardiovascular function. The sympathetic nervous system also plays a critical role in the pathogenesis of acute myocardial infarction and heart failure.

Objective: We examined whether treatment with radiofrequency (RF)-RDN would protect the heart against subsequent myocardial ischemia/reperfusion (MI/R) injury via direct effects on the myocardium.

Methods and Results: Spontaneously hypertensive rats (SHR) received either bilateral RF-RDN or sham-RDN. At 4 weeks following RF-RDN (n = 14) or Sham-RDN (n = 14) treatment, SHR were subjected to 30 min. of transient coronary artery occlusion and 24 hr – 7d reperfusion. 4 weeks following RF-RDN, myocardial oxidative stress was markedly attenuated and transcription and translation of antioxidants, SOD1 and GPX-1, were significantly upregulated compared to Sham-RDN SHR. RF-RDN also inhibited myocardial GRK2 pathological signaling and enhanced myocardial eNOS function and nitric oxide signaling. RF-RDN therapy resulted in a significant reduction in myocardial infarct size per area-at-risk (AAR) compared to Sham-RDN (26.8 vs. 43.9%, p < 0.01) at 24 hours post-reperfusion and significantly improved left ventricular function at 7 days following MI/R.

Conclusions: RF-RDN reduced oxidative stress, inhibited GRK2 signaling, increased NO bioavailability, and ameliorated myocardial reperfusion injury in the setting of severe hypertension. These findings provide new insights into the remote cardioprotective effects of RF-RDN acting directly on cardiac myocytes to attenuate cell death and protect against ischemic injury.

Keywords: Nervous system, sympathetic; nitric oxide; G protein-coupled receptor kinases; radiofrequency; oxidative stress; renal denervation.
Nonstandard Abbreviation and Acronyms:

RF-RDN Radiofrequency Renal Denervation
RDN Renal Denervation
βAR β Adrenergic receptor
GRK2 G-Protein coupled receptor 2
GPCR G-protein coupled receptor
eNOS endothelial nitric oxide synthase
NO nitric oxide
SHR spontaneously hypertensive rat
WKY Wistar-Kyoto rat
TH tyrosine hydroxylase
LAD left anterior descending
LVEDD left ventricular end diastolic diameter
LVESD left ventricular end systolic diameter
RSNO S-Nitrosothiol
MDA malondialdehyde
NE norepinephrine
GPX-1 glutathione peroxidase-1
SOD superoxide dismutase
ADMA asymmetric dimethyl arginine
nNOS neuronal nitric oxide synthase
iNOS inducible nitric oxide synthase
INF infarct
AAR area-at-risk, ROS: reactive oxygen species
INTRODUCTION

As hypertension and cardiovascular disease rates rise in the developed world, effective interventions and pharmacotherapies are required to optimally manage blood pressure and impede the development of comorbidities associated with hypertension. Recent enthusiasm for the treatment of resistant hypertension arose from preliminary clinical trials that reported effective, sustained reductions in blood pressure following catheter-based radiofrequency renal denervation (RF-RDN), which inhibits activity of renal sympathetic efferent and afferent nerves that lie within and immediately adjacent to the wall of the renal artery. However, data from the SYMPLICITY HTN-3 trial, which was the first randomized, sham-controlled trial, failed to show significant reductions of systolic blood pressure in patients with resistant hypertension 6 months after RDN as compared to control.

While the clinical use of RDN for the treatment of hypertension remains controversial, it is possible that the sympathoinhibitory effects of RF-RDN may have beneficial effects on end organ function in the setting of ischemia-reperfusion injury. It is well established that the sympathetic nervous system plays a role in the pathogenesis of acute myocardial infarction and heart failure. Sustained sympathetic signaling results in elevated oxidative stress and overactive β-adrenergic receptor (βAR) stimulation, which triggers deranged βAR pro-death signaling pathways that exacerbate myocardial injury. When βAR signaling goes awry, it is in large part due to increased levels and activity of cardiac G protein-coupled receptor kinase 2 (GRK2). GRK2 is in a family of G protein-coupled receptor (GPCR) serine/threonine kinases that phosphorylates and desensitizes GPCRs. Up-regulated GRK2 not only attenuates pro-contractile signaling, but also elicits non-canonical signaling pathways that promote cell death. In one such pathway, heightened GRK2 activity inhibits endothelial nitric oxide synthase (eNOS), which results in diminished levels of the cytoprotective molecule, nitric oxide (NO).

In this study, we hypothesized that RF-RDN protects the heart from subsequent myocardial ischemia/reperfusion injury in the spontaneously hypertensive rat (SHR), a rodent model of established hypertension, by attenuating myocardial GRK2 signaling and promoting nitric oxide (NO) signaling.

METHODS

Experimental animals. Male Spontaneously Hypertensive Rats (SHR) and male Wistar-Kyoto Rats (WKY) 19-20 weeks of age (Charles River Laboratories) were used in the present study. All animals were housed in a temperature-controlled animal facility with a 12-hour light/dark cycle, with water and rodent chow provided ad libitum. All animals received humane care in compliance with the Principles of Laboratory Animal Care formulated by the National Society of Medical Research and the Guide for the Care and Use of Laboratory Animals published by the NIH (Publication No. 85-23, Revised 1996). The LSUHSC New Orleans IACUC approved all animal procedures.

Blood pressure telemetry measurements. At 19 weeks of age SHR were implanted with a radiotelemetry transmitter (Data Sciences International, DSI, St. Paul, MN) for measurement of blood pressure and heart rate. Under isoflurane (2% in O2 flow rate 0.5 L/min), an incision was made to expose the right femoral artery. The tip of the transmitter catheter was advanced into the abdominal aorta and secured into position via the femoral artery access. The wound was sutured closed and rats were given 1-2 weeks to recover. Baseline blood pressure recording was then performed daily for four consecutive days. After the sham-RDN or RF-RDN procedure, blood pressure recording was performed daily for the first two weeks and then three times each week for the remaining study (weeks 3-4). Telemetry data was analyzed with Dataquest ART Acquisition Software (version 4.33).
The average arterial blood pressure and heart rate for each day were calculated from values recorded during a 3-hour period between 9:00 a.m. and 12:00 pm.

Radiofrequency renal denervation procedure.
Following baseline measurement of systemic cardiovascular function, SHR were randomly divided into either a RF-RDN or sham-RDN group. For these procedures SHR were anesthetized with isoflurane (2 %) and a flank incision was made to expose the left renal artery. For RF-RDN, a segment (~3 mm in length) of the proximal renal artery adjacent to the renal artery ostium (i.e., bifurcation from the aorta) was carefully dissected leaving any visible extra-vascular nerves intact. A small piece of plastic cut in the shape of a triangle was then placed under the renal artery as a platform and to protect underlying tissue. The tip of the radiofrequency probe (6F, Celsius electrophysiology catheter) was then applied to 4-quadrants (circumferential) of the renal artery for 20s each at 10 Watts for the RF-RDN group or 0 Watts for the Sham-RDN group (Stockert 70 radiofrequency generator and probes graciously provided by Biosense Webster). During RF-RDN the temperature of the probe was not permitted to be higher than 65º C. Following completion of the RF-RDN or Sham-RDN procedure the plastic was removed and the muscle and skin were sutured closed in layers. The same RF-RDN or Sham-RDN procedure was then performed on the contralateral renal artery.

Tyrosine hydroxylase staining of renal arteries in SHR.
At 5 weeks following Sham-RDN or RF-RDN, renal arteries were excised, fixed (paraformaldehyde, 4.0 %), paraffin-embedded and sectioned (3 μm). Sections were deparaffinized and antigen retrieval was performed. Sections were incubated with rabbit polyclonal anti-tyrosine hydroxylase (TH) (Millipore AB152), followed by biotinylated anti-rabbit IgG. In a blinded fashion, stain intensity (degree of TH staining) was scored as 0 = negative; 1 = weak (blush); 2 = mild; 3 = moderate; or 4 = strong. Proportion of nerves showing decreased TH staining was scored as 1 = ~1-25%; 2 = ~25-50%; 3 = ~50-75%; 4 = ~75-100%.

Plasma norepinephrine and epinephrine measurement.
At 4 weeks following Sham-RDN or RF-RDN, plasma was collected and catecholamine levels were measured using ELISA technique according to the manufacturer’s recommendations (Abnova Co.)

Myocardial ischemia/reperfusion.
Rats were fully anesthetized as above. The animals were then attached to a surgical board, orally intubated, and connected to a model 683 rodent ventilator (Harvard Apparatus; Natick, MA). The tidal volume was set at 3.5 ml, and the respiratory rate was set at 80 breaths/min. A median sternotomy was performed and the proximal left anterior descending (LAD) coronary artery was visualized and completely ligated with 7-0 silk suture mounted on a tapered needle (Ethicon). Rats were subjected to 30 minutes of ischemia and either 24 hours or 7 days of reperfusion.

Myocardial infarct size determination.
At 24-h of reperfusion, rats were anesthetized, intubated, and connected to a rodent ventilator. A catheter was placed in the common carotid artery to allow for Evans blue dye injection. A median sternotomy was performed, and the left main coronary artery was re-ligated in the same location as the original ligation. Evans blue dye (2.0 ml of a 2% solution) was injected into the carotid artery catheter into the heart to delineate the ischemic zone from the non-ischemic zone. The heart was rapidly excised and serially sectioned along the short axis in 2-mm-thick sections, which were then incubated in 1.0% 2,3,5-triphenyltetrazolium chloride for 5 min at 37°C to demarcate the viable and nonviable myocardium within the risk zone. Each of the five 1-mm-thick myocardial slices was weighed, and the areas of infarction, risk, and nonischemic LV were assessed in a blinded manner using computer-assisted planimetry (ImageJ).
Plasma troponin measurements.
At 4 hours following reperfusion, plasma was collected and cardiac troponin-I levels were measured using ELISA technique according to the manufacturer’s recommendations (Life Diagnostics).

Echocardiography.
Prior to myocardial infarction, baseline transthoracic echocardiogram was performed using MS250 13-24-MHz probe on a Vevo 2100 (Visualsonics) under anesthesia with isoflurane (1%) supplemented with 100% O₂. 7 days later, echocardiography was also performed in the same manner. To determine cardiac structure and function, LV end-diastolic dimension (LVEDD), LV end-systolic dimension (LVESD) were measured from EKV™ (ECG-Gated Kilohertz Visualization, Visualsonics) generated m-mode long-axis images. Left ventricular ejection fraction (%) was calculated using EKV generated B-mode long-axis images coupled with LV trace software (Visualsonics) whereby the endocardial posterior and anterior walls were traced at end-systole and end-diastole.

Western blot analysis.
Protein quantification was evaluated as previously described 20. Protein samples obtained from LV were analyzed by immunoblotting using specific antibodies to eNOS (BD Biosciences), P-eNOS (Cell Signaling), GRK2 (Santa Cruz), P-GRK2 (Millipore), GPX-1 (Abcam), SOD1 (Abcam), Akt (Cell Signaling), P-Akt (Cell Signaling).

Myocardial and plasma measurements of NO₂.
Plasma nitrite concentrations were quantified by an automated ion chromatography system (ENO30 Analyzer, Eicom). Nitrite was separated by a column (NO-PAK with polystyrene polymer, Eicom). The mobile phase, delivered at a pump rate of 0.33 mL/min, was 10% methanol containing 0.15 mol/L NaCl-NH₄Cl and 0.5 g/L of tetrasodium EDTA. The Griess reagent, which was 1.25% HCl containing 5 g/L sulfanilamide with 0.25 g/L N-naphthylethylenediamine, was delivered at a rate of 0.1 mL/min.

Myocardial measurements of S-Nitrosothiols (RSNO).
Myocardial tissue nitroso compounds were quantified by using group-specific reductive denitrosation by iodine-iodide with subsequent detection of the liberated NO by using gas-phase chemiluminescence (Eco Physics CLD 88 Y). S-nitrosothiol levels were detected by preincubation with 2% mercuric chloride followed by acidified sulfanilamide.

Measurement of MDA levels.
Malondialdehyde (MDA) levels is LV tissue were measured as previously described 21.

Measurement of protein carbonyl content.
Protein carbonyl content in LV tissue was measured as described previously 21.

Measurement of 8-Isoprostane.
LV and Plasma total 8-Isoprostane way assayed using and ELISA kit (Cell Biolabs) according to the manufacturer’s recommendations.

RNA isolation and reverse transcriptase RT-PCR.
mRNA levels were assessed by using quantitative real-time RT-PCR (qPCR). Total RNA was extracted from LV tissue. Purified RNA was quantified and cDNA was synthesized using an I-script cDNA synthesis kit (Bio-Rad). TaqMan primers from Life Technology were used to amplify qPCR. 18s was used as a housekeeping gene and 2^ΔΔCT was used for data analysis.
Statistical analysis.

All data in this study are expressed as the mean ± SEM. Differences in data between the groups were compared using Prism 6 (GraphPad Software) with Student’s unpaired, two-tailed t-test when only two groups were compared. Two-way ANOVA with Bonferroni post-test was used for blood pressure and heart rate analysis. Mann-Whitney tests were used for ranked histological analysis. A chi-squared test was used for survival analysis. p value of < 0.05 was considered statistically significant.

RESULTS

Renal artery nerve staining and NE spillover.

Renal artery nerve tyrosine hydroxylase staining at 35 days following RF-RDN or Sham-RDN in SHR rats revealed significantly reduced, but somewhat variable reductions in renal nerve viability following RF-RDN as compared to sham-RDN procedures (Figure 1). As a marker of sympathetic nerve function, spillover norepinephrine (NE) and epinephrine levels were measured 28 days following RF-RDN or Sham-RDN. There was a significant reduction in circulating NE following RF-RDN compared to the sham-RDN. There were no significant changes in plasma epinephrine levels.

Effects of RF-RDN on arterial blood pressure in spontaneously hypertensive rats.

21-week-old male SHR were subjected to either bilateral RF-RDN or Sham-RDN of the nerves surrounding the renal arteries. RF-RDN produced a small, but significant decrease in systolic blood pressure as compared to Sham-RDN at days 15-28 following the procedure, but systolic blood pressures remained significantly elevated (i.e., >170 mmHg) compared to normotensive animals (Figures 2,7). Furthermore, systolic blood pressures in SHR treated with RF-RDN were not significantly reduced when compared to baseline values in the SHR group. RF-RDN did not result in a significant reduction in diastolic pressure in SHR rats compared to the sham-RDN procedure. Mean arterial blood pressure was significantly lower at days 24-28 following RF-RDN (p < 0.05 vs. Sham-RDN). We next examined the rate-pressure product (pressure-rate index) as a parameter of oxygen consumption. Interestingly, despite a reduction in arterial pressure, an accompanied modest increase in HR following RF-RDN resulted in no difference in the rate-pressure product between Sham-RDN and RF-RDN SHR (Figure 2E).

RF-RDN attenuates oxidative stress in SHR.

Previous studies clearly demonstrate that oxidative stress is elevated during hypertension and contributes to disease progression 22, 23. As depicted in Figure 3, myocardial oxidative stress was significantly reduced and multiple antioxidant proteins were up-regulated at 28 days following RF-RDN (Figure 3). Plasma and LV 8-isoprostane and LV malondialdehyde (MDA) levels were reduced in SHR 28 days following RF-RDN compared to sham-RDN suggesting attenuated oxidative stress following RDN. Similarly, LV carbonyl content was attenuated in the RF-RDN treated group. We next examined antioxidant enzyme levels including glutathione peroxidase (GPX-1) and superoxide dismutase (SOD) mRNA and proteins levels in myocardial tissue. mRNA levels of GPX-1, cytosolic SOD (SOD1), and mitochondrial SOD (SOD2) were all increased following RF-RDN. Myocardial GPX-1 and SOD1 protein levels accompanied mRNA changes and were both elevated in the RF-RDN treated animals.
Reduced GRK2 signaling following RF-RDN in SHR.

Myocardial GRK2 signaling is enhanced in the settings of redox imbalance and myocardial ischemia. As shown in Figure 4, RF-RDN produced a significant decrease in LV GRK2 mRNA to 60% of Sham-RDN levels. Although we did not observe a difference in whole cell GRK2 protein levels between groups, phosphorylation at residue Ser670 was significantly down regulated following RF-RDN. Phosphorylation at Ser670 results in GRK2 mitochondrial translocation and cell death induced by mitochondrial permeability transition pore opening.

Myocardial eNOS activity and NO levels following RF-RDN in SHR.

eNOS activity is tightly regulated by post-translational phosphorylation and coupling of the homodimer structure. Hypophosphorylation at Ser1177 is associated with eNOS uncoupling and enzyme inactivation. Reduced phosphorylation at this residue results in deficient NO production and the exacerbation of cardiovascular disease states. Four weeks after RF-RDN in SHR, we observed enhanced myocardial eNOS Ser1177 phosphorylation compared to the sham-RDN (Figure 5). There were unchanged LV whole cell eNOS levels between groups. eNOS generation of NO is also regulated by available enzymatic substrates and cofactors. Asymmetric dimethylarginine (ADMA) inhibits eNOS by competing with the eNOS substrate, L-arginine. The RF-RDN treated group exhibited markedly reduced myocardial tissue ADMA levels compared to sham-RDN. Myocardial mRNA levels of the 3 NOS isoforms; neuronal NOS (nNOS), inducible NOS (iNOS), and eNOS were unchanged between the RF-RDN and Sham-RDN treated groups. Improved eNOS activity in the RF-RDN group resulted in increased NO levels in the heart and circulation. Myocardial Protein S-nitrosylation (RSNO) and nitrite levels were both significantly increased following RF-RDN. Plasma nitrite levels were also increased in the hypertensive SHR following RF-RDN, providing further evidence of a sustained increase in NO bioavailability subsequent to renal nerve ablation.

RF-RDN protects against myocardial ischemia/reperfusion injury and improves LV function in SHR.

We next evaluated if reductions in GRK2 signaling coupled with restoration of NO-mediated signaling would protect against myocardial ischemia-reperfusion injury. At 4 weeks following RF-RDN, SHR rats were subjected to 30 minutes of left anterior descending (LAD) ligation followed by 24 hours reperfusion. RF-RDN rats displayed a significant reduction in myocardial infarct size (INF) per area-at-risk (AAR) and reduced plasma troponin-I levels compared to the Sham-RDN group (Figure 6). Survival during myocardial ischemia was significantly improved in the RF-RDN treated group as compared to Sham-RDN. In an additional set of animals, LV function and dimension were measured in SHR with and without RF-RDN. Seven days post MI-R, LV function was improved in the RF-RDN group as evidenced by improved LV ejection fraction and LV fractional shortening (Figure 6). There were no changes in LV end-diastolic diameter (LVEDD) between groups 7 days post MI-R; however, there were significantly improved LV endsystolic dimension (LVESD) in the RF-RDN treated animals.

RF-RDN does not protect against myocardial ischemia/reperfusion injury in normotensive rats.

We next examined whether RF-RDN could protect against MI/R injury in normotensive Wistar-Kyoto (WKY) rats (Figure 7). At 4 weeks following RF-RDN or Sham-RDN, WKY rats were subjected to 30 minutes of LAD ligation followed by 24 hours of reperfusion. There were no significant differences in myocardial INF per AAR between groups. Blood pressure and heart rate measurements reveal that RF-RDN does not significantly alter blood pressure or heart rate in normotensive animals. We next examined catecholamine levels, NO signaling, and GRK2 expression in WKY following RF-RDN. RF-RDN did not reduce spillover NE levels as was observed in SHR. Moreover, plasma and LV nitrite levels were unaffected by RF-RDN therapy, indicating that RF-RDN does not augment NO signaling in healthy, normotensive

DOI: 10.1161/CIRCRESAHA.115.308278
animals. Additionally, GRK2 signaling was unaltered in WKY following RF-RDN procedures. These results suggest that RF-RDN mediated MI/R protection is optimal in the setting of a hyperactive sympathetic nervous system with elevated oxidative stress and NOS dysfunction.

DISCUSSION

For years, physicians have controlled excessive sympathetic nervous system activity associated with cardiovascular disease using pharmacological approaches. However, many of the pharmacological agents have unintended and undesirable off-target side effects and their ultimate effectiveness is limited by the complex pathology of hypertension and by patient compliance. Renal denervation (RDN) is currently under clinical investigation as a strategy to reduce blood pressure in resistant hypertensive patients by disruption of the sympathetic nerves that lie within and around the renal artery. We utilized a “reverse translational” approach to investigate the effects of complete renal denervation on myocardial injury in the setting of hypertension and acute myocardial infarction in the SHR. Given that the sympathetic nervous system plays a critical role in the pathogenesis of myocardial infarction, we examined whether RF-RDN could protect the heart against myocardial ischemia/reperfusion injury in the setting of established hypertension.

Recently, several groups have proposed that RDN may have beneficial effects on ventricular remodeling in post-myocardial infarction heart failure. These studies have examined RDN as a potential post infarction therapy as a β-blocker mimetic. In the current study, we propose that elevated activity of the sympathetic nervous system in the setting of hypertension results in myocardial oxidative stress, diminished eNOS-NO signaling, and activation of pro death signaling pathways. Our data clearly demonstrate that RF-RDN treatment prior to the onset of myocardial ischemia and reperfusion, attenuates oxidative stress, restores NO signaling, and downregulates cytotoxic pathways that exacerbate MI/R injury in the setting of hypertension.

Oxidative stress associated with hypertension results in endothelial dysfunction and has detrimental affects on vascular tone, thrombosis, and vascular inflammation. Hypertensive patients have elevated circulating levels of superoxide and hydrogen peroxide as well as reduced antioxidant defenses. Elevated ROS in hypertension is largely due to the abundance of toxic oxygen-derived free radicals ensuing from catecholamine metabolism, NADPH oxidase, and mitochondrial protein adduct formation. Elevated ROS combined with depressed host antioxidant activity results in significant end-organ cellular death. In hypertensive SHR, excess oxygen radicals are produced from a number of sources including activated circulating leukocytes. In the current study, we utilized the SHR as a clinically relevant model of neurogenic hypertension with elevated oxidative stress.

Endothelial damage resulting from reactive oxygen species (ROS) in hypertensive subjects is, in part, due to endothelial nitric oxide synthase (eNOS) dysfunction. Oxidative stress uncouples the functional homodimer eNOS enzyme, which results in diminished NO, reduced vasodilation, and exacerbated vascular damage. In the myocardium, heightened oxidative stress resulting from hypertension and myocardial ischemia-reperfusion correlates with cardiac dysfunction and injury. We therefore hypothesized that RF-RDN would reduce myocardial oxidative stress, attenuate pathological GRK2 signaling, promote NO signaling, and improve myocardial injury and function. Four weeks following RF-RDN, we observed reduced circulating and myocardial markers lipid peroxidation, 8-Isoprostane and MDA, as well as decreased protein carbonylation. In addition, RF-RDN up regulated mRNA and protein expression of key antioxidants, SOD1 and GPX-1 in the heart providing strong evidence that RF-RDN attenuates oxidative stress associated with severe hypertension.
GRKs are classically recognized as GPCR desensitization agents36. However, more recent studies suggest that in the setting of elevated ROS or ischemia-reperfusion injury, persistent binding of catecholamines to the βAR results in GRK-mediated cytotoxic cellular signaling pathways17. GRK2 is the most abundant GRK in the myocardium16. Interestingly, GRK2 and eNOS cross talk and interact in the heart37. Previous studies indicate that increased GRK2 activity results in eNOS dysfunction19, while others propose that eNOS inhibits GRK2 through post-translational modifications37. Ultimately, when eNOS dysfunction accompanies GRK2 activity, pro-death signaling pathways ensue. We proposed that improved eNOS function and reduced NE activation of the βAR would result in the inhibition of intracellular GRK2 signaling. Under normal conditions, GRK2 is primarily located in the cytosol and is primarily associated with membrane proteins. However, during pathological conditions, GRK2 levels have been shown to be elevated in the mitochondria, resulting in mitochondrial permeability transition pore opening and detrimental calcium imbalance16. Mitochondrial translocation is directed by a stress-induced phosphorylation event at Ser670 via MAP Kinase17. This activation of GRK2 allows binding to HSP90, which directs it to the mitochondria within the myocyte16. In the current study, we observed reduced phosphorylation at Ser670 following RF-RDN. Interestingly, decreased GRK2 mRNA levels and hypophosphorylation of GRK2 was accompanied by activated eNOS in the cardiac cells. This suggests a healthy homeostasis of GRK2 and eNOS activity that has been reported to protect the heart from ischemia-reperfusion injury.

eNOS-NO cytoprotective signaling also acts independently of inhibiting the GRK2 pathways. NO plays a protective role in the homeostasis of blood pressure, cardiovascular function, and cell survival during pathological disease states. NO is a potent antioxidant38. NO decreases apoptosis39, increases mitochondrial biogenesis40 and promotes angiogenesis41, 42. Altered redox signaling coupled with NO deficiency is critically associated with the development of hypertension and hypertension-induced organ damage such as myocardial infarction. In the current study, we found that RF-RDN recoupled myocardial eNOS as evidenced by increased phosphorylation at Ser1177. The reduction of oxidative stress that accompanies RF-RDN likely plays a role in the re-coupling of eNOS, while the NO that is produced from the re-coupled eNOS up regulates the antioxidant defenses and further attenuates oxidative stress in the heart and circulation. It is possible that elevated NO signaling and endothelial improvements that result from healthy eNOS function and reduced ROS play a role in the reduction in blood pressure following RF-RDN. However, further studies are required to more fully elucidate this possibility.

Because increased sympathetic tone, eNOS uncoupling, GRK2 signaling, and oxidative stress play pivotal roles in the pathogenesis of myocardial ischemia-reperfusion injury, we examined the possibility that RF-RDN protects the myocardium against I/R injury. We observed significant reductions in myocardial infarct size following RF-RDN. Importantly, this preservation of viable myocardium was accompanied by improved left ventricular function following MI/R injury.

Interestingly, we failed to observe a reduction in myocardial infarct size following RF-RDN in normotensive WKY rats. It is well established that normotensive WKY rats do not suffer from heightened sympathetic drive, exacerbated baseline oxidative stress, or eNOS dysfunction seen in SHR43-45. We have also confirmed that the absence of protection afforded by RF-RDN in WKY is explained by low baseline GRK2 signaling and limited eNOS dysfunction. In the current study, we report that RF-RDN protects against MI/R injury in SHR by reducing elevated oxidative stress, restoring eNOS activity and down regulating GRK-2. Although we have reported a relationship between the infarct-sparing effect of RF-RDN and NO/GRK signaling our study does not provide direct evidence that the cardioprotective effects of RF-RDN are a direct result of eNOS activation, increased NO bioavailability, and GRK2 inhibition. Further studies are required to demonstrate direct causality.
In the present study, we observed similar blood pressure lowering effects in SHR that have been reported in recent catheter-based RDN clinical trials in patients with resistant hypertension5,46. We do not believe that this modest reduction in pressure (6-8 mmHg) is entirely responsible for the significant infarct-sparing actions of RF-RDN. We believe that this effect is, in large part, due to upregulation of cardioprotective signaling and reduced oxidative stress in the myocardium.

In conclusion, our study is the first to report that RF-RDN protects against myocardial I/R injury in the setting of established hypertension, and that it does so, in part, by inhibiting pro-death signaling pathways that are associated with an overactive sympathetic outflow. These RF-RDN pathways include reduction in systemic and myocardial oxidative stress, inhibition of GRK2 signaling, and enhanced eNOS-NO signaling. These findings provide new insights into the remote cardioprotective effects of RF-RDN. Our data suggest that RF-RDN may exert therapeutic benefits that extend beyond blood pressure reduction in the setting of hypertension and acute myocardial infarction.

ACKNOWLEDGEMENTS

We are grateful to Jessica Bradley, Ph.D. and Kazi Islam, Ph.D. for their assistance during the course of these studies.

SOURCES OF FUNDING

This work was supported by grants from the National Heart, Lung, and Blood Institute (National Institutes of Health; 1R01 HL092141 (DJL), 1R01 HL093579 (DJL), 1U24 HL 094373 (DJL), 1P20 HL113452 (DJL), and P30GM106392 (DRK)). This work was also supported by Biosense Webster IIS-175 to DRK and FS and the American Heart Association 14POST20450173 to JG. We are also grateful for the generous funding from the LSU Medical School Foundation and the LSU Medical School Alumni Association.

DISCLOSURES

DJL, DJP, and DRK have pending patents for the use of renal denervation for the treatment of myocardial infarction and heart failure.

REFERENCES

DOI: 10.1161/CIRCRESAHA.115.308278

33. Costa VM, Carvalho F, Bastos ML, Carvalho RA, Carvalho M, Remiao F. Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart diseases. *Current medicinal chemistry*. 2011;18:2272-2314

FIGURE LEGENDS

Figure 1. Viable renal artery nerve staining and catecholamine spillover following RF-RDN in SHR. Tyrosine hydroxylase staining 35-days following Sham-RDN or RF-RDN. (A) Tyrosine hydroxylase (TH) stain of renal artery section from Sham-RDN treated SHR. Arrows = normal nerves showing score 4 TH staining. A = renal artery. (B) TH stain of renal artery section from Sham-RDN treated SHR. Arrows = nerves showing score 3 TH staining. A = renal artery, arrowheads = ganglion cells showing full intensity cytoplasmic TH staining. (C) TH staining of renal artery section from RF-RDN treated SHR. Arrows = nerves showing score 2 TH staining, A = renal artery, arrowheads = ganglion cells showing full intensity cytoplasmic TH staining. (D) TH stain of renal artery section from RF-RDN treated SHR. Arrows = atrophic nerves showing score 1 TH staining, A = renal artery. (E) Degree of TH staining and (F) proportion of nerves showing decreased TH staining. (G) Plasma norepinephrine and (H) epinephrine 28 days following Sham of RF-RDN. Values are expressed as mean ± SEM.

Figure 2. Arterial blood pressure and heart rate in SHR following RF-RDN or Sham-RDN. (A) Systolic pressure (mmHg), (B) diastolic pressure (mmHg), (C) mean arterial pressure (mmHg), (D) heart rate (beats per minute), and Pressure Rate Index (systolic pressure x heart rate/1000) in 21-week-old male SHR before and for 4 weeks after treatment. RF-RDN and Sham-RDN procedures were performed on day 0 when rats were 21 weeks of age. Values are expressed as mean ± SEM. *p < 0.05 between groups.

Figure 3. RF-RDN attenuates myocardial oxidative stress in SHR. (A) LV 8-Isoprostan e (ng/mg protein), (B) plasma 8-isoprostan e (pg/ml), (C) LV malondialdehyde (nmol/mg protein), and (D) LV carbonyl protein content (nmol/mg protein). Representative immunoblots and relative intensity of LV (E) glutathione peroxidase-1 (GPX-1) and (F) superoxide dismutase-1. Relative LV mRNA levels of (G) superoxide dismutase 2, (H) glutathione peroxidase-1, and (I) superoxide dismutase-1. Circles inside bars denote number of animals per group.

Figure 4. Reduced GRK2 signaling following RF-RDN in SHR. (A) Representative immunoblot of LV GRK2 from SHR following either RF-RDN or Sham-RDN. Relative intensity of (B) total GRK2 and (C) P-GRK2Ser670. (D) Relative mRNA levels of GRK2. Circles inside bars denote number of animals per group.

Figure 5. Myocardial eNOS activity and NO levels following RF-RDN in SHR. (A) Representative immunoblots of endothelial nitric oxide synthase (eNOS) from SHR following either RF-RDN or Sham-RDN. (B) Relative intensity of P-eNOSSer1177, and (C) total eNOS protein expression. (D) Relative mRNA levels of nNOS, iNOS, and eNOS in LV tissue. (E) LV asymmetric dimethyl arginine (ADMA, ng/mg protein) and (F) plasma ADMA (ng/ml). (G) NV nitrite (nmol/mg), (H) plasma nitrite (μM), and (I) LV S-nitrosothiols (RSNO, nmol/mg). (J) Representative immunoblots of protein kinase G-1 (PKG-1) from SHR following either RF-RDN or Sham-RDN and (K) relative intensity of PKG-1. Circles inside bars denote number of animals per group.

Figure 6. RF-RDN protects against myocardial ischemia/reperfusion injury and improves LV function in SHR. (A) Representative mid-ventricular photomicrographs of rat hearts after 30 min of myocardial ischemia and 24 h reperfusion. (B) Bar graphs of myocardial AAR/LV and INF/AAR. (C) Cardiac troponin-1 levels after 4 h reperfusion (ng/ml) and (D) survival rate during ischemia. (E) LV ejection fraction before RDN, 4weeks following RDN, and 7days following ischemia-reperfusion injury. (F) LV fractional shortening before RDN, 4weeks following RDN, and 7days following ischemia-reperfusion injury. (G) LV end-diastolic diameter before RDN, 4weeks following RDN, and 7days following ischemia-reperfusion injury. (H) LV end-systolic diameter before RDN, 4weeks following RDN, and 7days following ischemia-reperfusion injury. (I) LV end-systolic diameter before RDN, 4weeks following RDN, and 7days following ischemia-reperfusion injury. Circles inside bars denote number of animals per group. * p < 0.05 between groups.
Figure 7. RF-RDN does not protect against myocardial ischemia/reperfusion injury in normotensive WKY. (A) Representative mid-ventricular photomicrographs of rat hearts after 30 min of myocardial ischemia and 24 h reperfusion. (B) Bar graphs of myocardial AAR/LV and INF/AAR. (C) Plasma norepinephrine and (D) epinephrine levels in WKY 4 weeks following Sham-RDN or RF-RDN. (E) Plasma and (F) LV nitrite levels in WKY 4 weeks following Sham-RDN or RF-RDN. (G) Representative immunoblot of LV GRK2 from WKY following either RF-RDN or Sham-RDN. Relative intensity of (H) total GRK2 and (I) P-GRK2Ser670. (J) Mean arterial pressure and (K) Pressure-Rate Index using calculated from radiotelemetry recordings in 21-week-old male WKY before and for 4 weeks after Sham-RDN or RF-RDN treatment. Circles inside bars denote number of animals per group. N = 6/group for blood pressure and pressure-rate index data (telemetry recordings).
Novelty and Significance:

What Is Known?

- Renal Nerve Denervation (RDN) is a minimally invasive, endovascular procedure currently under investigation for the treatment for resistant hypertension and mixed results of clinical trials have raised questions about its ability to effectively reduce blood pressure.

- High blood pressure is a significant risk factor for coronary heart disease and the sympathetic nervous system plays a critical role in the pathogenesis of acute myocardial infarction.

What New Information Does This Article Contribute?

- We show that RDN remotely protects the heart against ischemic injury by inhibiting pro-death signaling pathways and reducing oxidative stress in hypertension.

In this study we examined, whether RDN could have remote infarct-sparing effects on the heart in the setting of essential hypertension. We found that RDN limits myocardial ischemic injury by inhibiting pro-death signaling pathways, improving redox status, and enhancing nitric oxide signaling in cardiac myocytes. Our data suggest that in the setting of hypertension, RDN may have therapeutic potential beyond blood pressure reduction.
Figure 6

(A) Images of Sham-RDN and RF-RDN.

(B) Graph showing %LV or AAR with p values.

(C) Graph showing Troponin-I levels with p < 0.05.

(D) Graph showing survival rates with p < 0.05.

(E) Graph showing LVEF with different time points.

(F) Graph showing LVEDD with different time points.

(G) Graph showing LVESD with different time points.
Radiofrequency Renal Denervation Protects the Ischemic Heart via Inhibition of GRK2 and Increased Nitric Oxide Signaling
David J Polhemus, Juan Gao, Amy Scarborough, Rishi K Trivedi, Kathleen H McDonough, Traci T Goodchild, Frank Smart, Daniel R Kapusta and David J Lefer

Circ Res. published online June 13, 2016;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2016/06/13/CIRCRESAHA.115.308278
Free via Open Access

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/