Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

Nathan L. Chaplin¹, Madeline Nieves-Cintrón², Adriana M. Fresquez¹, Manuel F. Navedo², and Gregory C. Amberg¹

¹ Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, and; ² Department of Pharmacology, University of California, Davis, CA 95616.

Running title: Subplasmalemmal Mitochondria Promote Ca²⁺ Influx

Subject Terms:
Basic Science Research
Cell Signaling/Signal Transduction
Electrophysiology
Hypertension
Ion Channels/Membrane Transport
Oxidant Stress

Address correspondence to:
Dr. Gregory C. Amberg
Colorado State University, 1617 Campus Delivery.
Fort Collins, CO 80523-1617
Tel: 970-491-4300
Fax: 970-491-7907
Gregory.Amberg@colostate.edu

In August 2015, the average time from submission to first decision for all original research papers submitted to Circulation Research was 14.31 days.
ABSTRACT

Rationale: Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete.

Objective: To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle.

Methods and Results: Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction.

Conclusions: From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases.

Keywords: Calcium sparklets, TIRF microscopy, hypertension, arterial smooth muscle, calcium channel.

Nonstandard Abbreviations and Acronyms:
Ang II angiotensin II
DCF 5-(and-6)-chloromethyl-2'7'-dichlorodihydrofluorescein diacetate acetyl ester
L-NAME Nω-nitro-L-arginine methyl ester
L-NNA Nω-nitro-L-arginine
PKC protein kinase C
ROS reactive oxygen species
RIRR ROS-induced ROS release
TIRF total internal reflection fluorescence

DOI: 10.1161/CIRCRESAHA.115.306996
INTRODUCTION

Mitochondria are central to eukaryotic aerobic metabolism. One consequence arising from the shuttling of electrons onto molecular oxygen during mitochondrial respiration is the formation of reactive oxygen species (ROS). Given the resultant necessity and subsequent ubiquity of ROS formation it is not surprising then that these generally toxic products of metabolism also function as purposeful second messenger molecules.1,2

Advances in cellular pathophysiology implicate mitochondrial dysfunction in the development and progression of illnesses including cancer,3 neurodegeneration,4 diabetes,5 and cardiovascular disease.6,7 As such, mitochondria are being evaluated as potential therapeutic targets for novel disease prevention and management strategies.8,9 If mitochondria are to be viable therapeutic targets then a mechanistic understanding of mitochondrial function in multiple cell types is necessary to rationally predict and account for pharmacological responses to mitochondrial perturbations.

Here we investigated mitochondrial ROS signaling-dependent regulation of Ca2+ influx in arterial smooth muscle. These cells are an ideal experimental model for this work due to their large surface area and because their geometry and morphological simplicity minimizes confounding variables possible in cells with more complex structural features. Furthermore, mitochondria, ROS, and Ca2+ are each integral to arterial smooth muscle function and are thought to be involved in the development of cardiovascular disease.

Ca2+, as with ROS, is a ubiquitous signaling molecule that influences many processes ranging from contraction to gene expression. Ca2+ and ROS as second messenger signaling molecules share at least four key attributes relevant to this study: First, Ca2+ and ROS signaling events are known to be functionally coupled;10,11 second, Ca2+ and ROS signaling cascades attain specificity in part by subcellular compartmentalization;12,13 third, Ca2+ and ROS signaling events are influenced by mitochondria;10 and fourth, Ca2+ and ROS signaling cascades are implicated in the development of disease.11,14

In accordance with the first two attributes, our prior work showed that formation of punctate sites of ROS generation involving NADPH oxidase leads to colocalized Ca2+ influx through L-type Ca2+ channels.15-17 We found that oxidative activation of protein kinase C (PKC),18 which promotes localized Ca2+ influx through L-type Ca2+ channels,19-21 functionally links Ca2+ and ROS microdomain signaling in this context. Here we addressed the second pair of Ca2+ and ROS signaling attributes listed above by investigating mitochondrial ROS-dependent regulation of arterial smooth muscle L-type Ca2+ channels in relation to the development of hypertension-associated arterial dysfunction.

Experiments were performed on single cells, on excised arterial segments, and in living animals. Using this progressive subcellular in vitro-to-organismal in vivo approach we conclude that amplification of hydrogen peroxide (H2O2) microdomain signaling by subplasmalemml mitochondria promotes the opening of adjacent L-type Ca2+ channels and subsequently the development of hypertension-associated arterial dysfunction.
METHODS

Male Sprague-Dawley rats were euthanized with sodium pentobarbital (200 mg/kg intraperitoneally) as approved by the Institutional Animal Care and Use Committee of Colorado State University. Smooth muscle cells were isolated from basilar and cerebral arteries. Confocal microscopy was used to image the plasma membrane and mitochondria of single cells. L-type Ca\(^{2+}\) channel sparklets and subplasmalemmal ROS were imaged with total internal reflection fluorescence (TIRF) microscopy.\(^{15,16}\) Arterial diameters were recorded from middle cerebral arterial segments. Hypertension was induced in rats by including \(N^\omega\)-nitro-L-arginine methyl ester (L-NAME) in their drinking water\(^{22-24}\) and arterial blood pressure was monitored by telemetry as approved by the Institutional Animal Care and Use Committee of the University of California, Davis.

Normally distributed data are presented as the mean±standard error of the mean (SEM). To account for potential variability associated with cell isolation, all single myocyte experimental groups were comprised of cells obtained from \(\geq 4\) rats. Effect sizes, represented in the figures as bracketed values, are reported as Pearson’s \(r\) (range -1.0 to 1.0; 0 indicates no effect);\(^{25,26}\) \(P\) values <0.05 were considered significant. An expanded Materials and Methods section can be found in the Online Supplement at http://circres.ahajournals.org.

RESULTS

A subpopulation of mitochondria associates with the arterial smooth muscle cell plasma membrane at sites of elevated L-type Ca\(^{2+}\) channel activity.

To assess the subcellular distribution of mitochondria in arterial smooth muscle we marked the plasma membrane of cells with a wheat germ agglutinin conjugate (Alexa 555-WGA, red), labelled mitochondria with MitoTracker Green, and visualized the fluorescence with confocal microscopy (Figure 1A). We found that 8.64±0.42% of the total cell volume was occupied by mitochondria; this volume is consistent with prior reports.\(^{27}\) While the majority of the MitoTracker signal was located centrally (>0.5 µm from the center of the Alexa 555-WGA signal), 7.50±0.77% of the mitochondrial volume was peripheral (≤0.5 µm; yellow signal in Figure 1A, panel 3).

Next we examined MitoTracker-loaded cells with TIRF microscopy. Our images showed regions of MitoTracker fluorescence indicating the presence of subplasmalemmal mitochondria (Figure 2A, panel 1). Analysis of thresholded MitoTracker images revealed that only 3.29±0.26% (\(n=7\) cells) of the visible plasma membrane was associated with mitochondria (Figure 2A, panel 2). We imaged Ca\(^{2+}\) influx with a combination of TIRF microscopy and voltage-clamp electrophysiology.\(^{15,19,21}\) This approach permits visualization of Ca\(^{2+}\) influx through L-type Ca\(^{2+}\) channels (“Ca\(^{2+}\) sparklets”). To evoke Ca\(^{2+}\) sparklets we exposed cells to angiotensin II (Ang II; 100 nM), which is known to promote mitochondrial ROS production.\(^{6}\) Similar to our previous reports,\(^{15-17,28}\) Ang II induced L-type Ca\(^{2+}\) channel sparklet sites as revealed by localized changes in fluorescence of the Ca\(^{2+}\) indicator fluo-5F (Figure 2A, panel 3). The L-type Ca\(^{2+}\) channel sparklets induced by Ang II in this study were not different from the L-type Ca\(^{2+}\) channel sparklets observed previously in terms of quantal amplitude (36.2±3.2 nmol/L [Ca\(^{2+}\)]) and site densities and activities (see below).\(^{15-17}\)

To visualize the spatial relationship between L-type Ca\(^{2+}\) channel activity and subplasmalemmal mitochondria we overlaid our fluo-5F and thresholded MitoTracker images (Figure 2A, panel 4). We then measured the distance from L-type Ca\(^{2+}\) channel sparklet site peaks (pixels of highest intensity) to the edge of the nearest MitoTracker signal and plotted the cumulative values (Figure 2B). Mitochondrial-associated
L-type Ca\(^{2+}\) channel sparklet sites were defined \textit{a priori} as those sites with peaks \(\leq 0.5\) µm from the edge of the nearest thresholded MitoTracker signal; this is represented by the vertical dashed grey line in Figure 2B. We found that L-type Ca\(^{2+}\) channel function was associated with subplasmalemmal mitochondria (Figure 2B; n=5 cells). The half-distance of the observed L-type Ca\(^{2+}\) channel sparklet sites (n=41 sites) to the nearest mitochondria was 0.43 µm (95% CI [0.39 to 0.47]) whereas the half-distance of 100 random points within the visible plasma membrane to the nearest mitochondria was 2.10 µm (95% CI [1.99 to 2.19]).

Next we compared the activity of mitochondrial-associated (distance \(\leq 0.5\) µm) and non-associated L-type Ca\(^{2+}\) channel sparklet sites. L-type Ca\(^{2+}\) channel sparklet site activity can be expressed by the descriptor \(nP_s\), where \(n\) is the number of quanta detected (i.e., number of functional channels) and \(P_s\) is the probability that the site is active.\(^{21}\) Ang II-induced L-type Ca\(^{2+}\) channel sparklet sites associated with mitochondria were more active than those not associated with mitochondria (Figure 2C; \(P<0.05\), \(r=0.59\), \(n=5\) cells). Indeed, mitochondrial-associated L-type Ca\(^{2+}\) channel sparklet sites accounted for \(\approx 73\%\) of the total Ca\(^{2+}\) sparklet activity observed. From these data we conclude that the spatial distribution of L-type Ca\(^{2+}\) channel activity is highly correlated with subplasmalemmal mitochondria.

\textit{Mitochondrial-derived H\(_2\)O\(_2\) stimulates L-type Ca\(^{2+}\) channels.}

We reported previously that localized H\(_2\)O\(_2\) microdomains stimulate L-type Ca\(^{2+}\) channels in arterial smooth muscle via a PKC-dependent mechanism.\(^{15-17,20}\) As mitochondria are a major source of ROS, we tested the hypothesis that localized H\(_2\)O\(_2\) generated by subplasmalemmal mitochondria stimulate nearby L-type Ca\(^{2+}\) channels.

To promote mitochondrial ROS generation we exposed cells to the electron transport chain complex III inhibitor antimycin (500 nmol/L).\(^{29,30}\) First we investigated the effect of antimycin on subplasmalemmal ROS production with the fluorescent ROS indicator 5-(and-6)-chloromethyl-2'7'-dichlorodihydrofluorescein diacetate acetyl ester (DCF; 10 µmol/L) and monitored for changes in subplasmalemmal fluorescence (Figure 3A). Similar to Ang II,\(^{15,16}\) antimycin induced localized sites of elevated DCF fluorescence (“ROS puncta”;\(^{15}\) Figure 3A and B; \(P<0.05\), \(r=0.65\), \(n=5\) cells); comparable ROS puncta formation was not apparent in time-matched controls. In contrast to the \(\approx 6\)-fold increase in DCF fluorescence associated with ROS puncta, the spatially averaged DCF fluorescence in cells treated with antimycin did not increase (Online Figure IA; \(P>0.05\); \(n=5\) cells). This observation is consistent with the concept of localized ROS generation by subplasmalemmal mitochondria.

Antimycin also induced localized L-type Ca\(^{2+}\) channel sparklets (Figure 3C and D). The L-type Ca\(^{2+}\) channel sparklet site activity (\(nP_s\); \(r=0.43\)) and density (sites/µm\(^2\); \(r=0.75\)) induced by antimycin was not different from that observed with Ang II (Figures 4C and 6D; \(P>0.05\), \(n=5\) cells). Ca\(^{2+}\) sparklet activity was not observed following antimycin treatment in cells pre-treated with nicardipine (10 µmol/L; \(P>0.05\); \(n=5\) cells, data not shown) or the PKC inhibitor Gö6976 (100 nmol/L; Online Figure IB and C). Similarly, dialyzing cells with catalase (500 U/mL) prevented the stimulatory effect of antimycin on L-type Ca\(^{2+}\) channels (Online Figure IB and C). These data are consistent with the hypothesis that antimycin-dependent promotion of localized mitochondrial H\(_2\)O\(_2\) generation stimulates neighboring L-type Ca\(^{2+}\) channels via a PKC-dependent mechanism.

Our previous work and results using the NADPH oxidase inhibitor ML171 (see Online Figure III) indicate that NADPH oxidase activity is necessary for local regulation of L-type Ca\(^{2+}\) channels by Ang II-induced H\(_2\)O\(_2\) microdomain signaling.\(^{15,16}\) Ang II also induces mitochondrial ROS generation.\(^{6,31}\) Therefore, we tested the effect of inhibiting mitochondrial ROS generation on Ang II-dependent stimulation of L-type Ca\(^{2+}\) channels.
The mitochondrial-targeted antioxidant mitoTEMPO attenuates the production of H₂O₂ by mitochondria in response to Ang II.₆,₈,₃¹,₃² We found that Ang II did not promote ROS puncta formation in cells pre-treated with mitoTEMPO (25 nmol/L for 15 min; Figure 4A and B; \(P > 0.05, \ r = -0.80, n = 5\) cells). MitoTEMPO also attenuated the stimulatory effect of Ang II on L-type Ca²⁺ channel sparklet site activity (Figure 4C and D; \(P > 0.05, \ r = -0.39, n = 5\) cells). Interestingly, and in contrast to NADPH oxidase inhibition or catalase¹⁵,¹⁶ mitoTEMPO did not prevent the increase in L-type Ca²⁺ channel sparklet site density (sites/μm²) induced by Ang II (Figure 4D; \(P < 0.05, \ r = -0.09, n = 5\) cells). MitoTEMPO did not have apparent nonspecific effects on macroscopic L-type Ca²⁺ channel currents (see Online Supporting Information i). These data suggest that in the presence of mitoTEMPO, Ang II-induced Ca²⁺ influx is minimal despite increasing the number of observed L-type Ca²⁺ channel sparklet sites. Similar results were observed when mitochondrial ROS production was limited with rotenone (see Online Supporting Information ii).

Mitochondrial ROS production contributes to angiotensin II-mediated arterial contraction.

L-type Ca²⁺ channels are the primary conduit for contractile Ca²⁺ in arterial smooth muscle.³³ As mitoTEMPO reduced Ang II-dependent stimulation of L-type Ca²⁺ channels we reasoned that inhibiting mitochondrial H₂O₂ production with mitoTEMPO should decrease contractile responses to Ang II. To test this we applied Ang II to excised arterial segments pressurized to 60 mmHg. These experiments were performed in the presence of the nitric oxide synthase inhibitor \(N\omega\)-nitro-L-arginine (L-NNA, 300 µmol/L) to prevent vasodilatory influences of endothelial-derived nitric oxide.

In control experiments Ang II constricted arteries to 14.86±0.99% below their baseline diameter (Figure 5A). In arteries incubated with mitoTEMPO (1 µmol/L for 15 min) Ang II induced a smaller contraction to only 3.98±0.99% below baseline (Figure 5B; \(P < 0.05, \ r = -0.93, n = 5\) arteries). MitoTEMPO by itself had no apparent effect on baseline arterial constriction or the contractile response to 140 mmol/L KCl (\(P > 0.05, n = 3\) arteries, data not shown). We reported previously that the non-targeted antioxidant TEMPOL does not suppress Ang II-dependent stimulation of L-type Ca²⁺ channels.¹⁶ Therefore, we replicated our contractile experiments with Ang II on arteries incubated with TEMPOL (10 µmol/L for 15 min). In contrast to mitoTEMPO, even at 10-fold higher concentration, TEMPOL did not reduce Ang II-dependent arterial constriction (Figure 5C and D; \(P > 0.05; \ r = -0.29, n = 5\) arteries). From these data we conclude that mitochondrial-derived ROS contribute to Ang II-dependent constriction of pressurized intact arterial segments.

Reducing mitochondrial ROS production in vivo attenuates hypertensive arterial responses to endothelial dysfunction.

To establish the importance of smooth muscle mitochondrial ROS production on arterial function in vivo we induced hypertension in rats by including the nitric oxide synthase inhibitor \(N\omega\)-nitro-L-arginine methyl ester (L-NAME; 0.75 mg/mL) in their drinking water (dose \(\approx 50\) mg/kg per day).²²-²⁴ A key feature of L-NAME-induced hypertension is frank endothelial dysfunction and increased arterial constriction.³⁴ To examine the involvement of mitochondrial-derived ROS we infused L-NAME treated animals with mitoTEMPO at a rate of 150 µg/kg per day⁸ via subcutaneous osmotic minipumps; rats implanted with saline minipumps served as control. Arterial blood pressure was monitored by telemetry.

L-NAME induced a time-dependent increase in mean arterial pressure (Figure 6A; \(P < 0.05, r = 0.98, n = 5\) rats). Similar to Ang II-induced hypertension,⁸ co-administration of mitoTEMPO blunted (\(r = -0.72\)) the hypertensive response to L-NAME (Figure 6B; \(P < 0.05, r = 0.82, n = 5\) rats). The effect of mitoTEMPO on mean arterial pressure was evident on the third day of L-NAME treatment (Figure 6C \(P < 0.05, r = -0.96\)). Thus, despite continued disruption of endothelial function, mitoTEMPO produced a modest decrease in blood pressure. This observation suggests that mitoTEMPO could be working in vivo, at least in part, by
reducing mitochondrial ROS generation and subsequent stimulation of arterial smooth muscle L-type Ca2+ channels.

To investigate this we excised arterial segments from L-NAME and L-NAME plus mitoTEMPO treated animals and compared their myogenic set points (i.e., observed levels of myogenic tone). First we pressurized arteries to 20 mmHg and allowed them to equilibrate. Once a stable diameter was reached we increased the pressure to 60 mmHg and waited for an active myogenic contractile response to occur following passive dilation (Figure 6C). Experiments were terminated by superfusing the arteries with a nominally Ca2+-free solution.

Arteries isolated from L-NAME treated animals infused with saline constricted robustly when the intraluminal pressure was increased from 20 to 60 mmHg (48.80±2.06% below passive diameter, n=5 arteries). Arteries from L-NAME treated animals infused with mitoTEMPO constricted substantially less following the same increase in pressure (30.43±1.46% below passive diameter, P<0.05, r=-0.92, n=5 arteries). Note that arteries isolated from normotensive rats pressurized to 60 mmHg constricted to 38.29±3.20% below their passive diameter (n=5 arteries) which was smaller than the constriction seen in arteries from L-NAME treated animals infused with saline (P<0.05) but not significantly different from the constriction seen in arteries from L-NAME treated animals infused with mitoTEMPO (P>0.05). From these data we conclude that systemic inhibition of mitochondrial ROS generation with mitoTEMPO reduces L-NAME-induced arterial dysfunction in vivo (lowers systemic arterial pressure) and ex vivo (lowers arterial myogenic tone).

To investigate the mechanisms underlying mitoTEMPO-dependent preservation of arterial function we examined baseline ROS and Ca2+ microdomain signaling activity in cells isolated from these animals. Using DCF fluorescence as an indicator of ROS generation with TIRF microscopy, we found that ROS puncta density (in the absence of acute stimulation) was elevated in smooth muscle cells from hypertensive L-NAME treated rats compared to non-L-NAME-treated controls (Figure 7A and B; P<0.05, r=0.70, n=5 cells). Importantly, ROS puncta densities in cells isolated from rats receiving L-NAME and mitoTEMPO were lower than those receiving L-NAME alone (P<0.05, r=-0.74, n=5 cells). The ROS puncta density in these cells was negligible and not different from unstimulated control cells (P>0.05, n=5 cells).

Paralleling our ROS puncta data and consistent with previous observations in Ang II-induced and genetic hypertension,28 basal L-type Ca2+ channel function was enhanced in cells isolated from hypertensive L-NAME treated rats as evidenced by elevated Ca2+ sparklet site activities and densities (Figure 7C and D; P<0.05, nP, r=0.75, density r=0.64, n=5 cells). Notably, as with ROS puncta, mitoTEMPO infusion abolished L-NAME enhancement of L-type Ca2+ channel activity (P<0.05, r=-0.51, n=5 cells) with levels not different from unstimulated cells from normotensive animals (P>0.05, n=5 cells). Taken altogether, we conclude that arterial smooth muscle mitochondrial-amplified H\textsubscript{2}O\textsubscript{2} microdomain signaling promotes Ca2+ influx through neighboring L-type Ca2+ channels and that this process contributes mechanistically to the contractile action of Ang II and the development of hypertension-associated arterial dysfunction.
DISCUSSION

In this study we tested the hypothesis that mitochondrial amplification of H\textsubscript{2}O\textsubscript{2} microdomain signaling stimulates L-type Ca2+ channels in arterial smooth muscle. The major findings supporting this hypothesis are: 1) Subplasmalemmal mitochondria associate with sites of elevated L-type Ca2+ channel activity; 2) mitochondrial-derived H\textsubscript{2}O\textsubscript{2} stimulates Ca2+ influx through L-type channels; 3) inhibiting mitochondrial H\textsubscript{2}O\textsubscript{2} production reduces Ang II-mediated arterial contraction; and 4) inhibiting mitochondrial H\textsubscript{2}O\textsubscript{2} production attenuates the development of hypertension-associated arterial smooth muscle dysfunction ex vivo and in vivo. From these data we conclude that mitochondrial amplification of H\textsubscript{2}O\textsubscript{2} microdomain signaling is an important regulator of L-type Ca2+ channels in arterial smooth muscle and contributes to the development of hypertension-associated arterial dysfunction.

Our imaging of subplasmalemmal fluo-5F and MitoTracker fluorescence with TIRF microscopy provides compelling evidence that L-type Ca2+ channel activity is enriched at areas of the plasma membrane associated with mitochondria (Figure 2). Consistent with this observation, the small amount of plasma membrane associated with mitochondria (≈5%) is sufficient to influence the surface area necessary (≈4%) to accommodate the L-type Ca2+ channel sparklet activity observed. This logic supports the conclusion that subcellular localization is a key factor in determining the stimulatory influence of mitochondria on L-type Ca2+ channels (see Online Supporting Information iii).

Evidence suggests that mitochondrial buffering of proximate Ca2+ flux events is an important mechanism by which these organelles influence Ca2+ signaling.35 With respect to L-type Ca2+ channels, localized Ca2+ buffering by mitochondria could reduce the amplitude of the Ca2+ microdomain formed near the pore when the channel is open.48 Lowering the effective Ca2+ concentration around the channel could alter Ca2+ signaling by reducing the Ca2+-dependent inactivation characteristic of L-type Ca2+ channels.37 Prior work in smooth muscle suggests that mitochondrial Ca2+ buffering does not influence Ca2+ influx through L-type Ca2+ channels.35,38 However, our TIRF images demonstrate that L-type Ca2+ channel activity is associated with subplasmalemmal mitochondria (Figure 2). To reconcile these apparently contradictory observations we propose a mechanism of mitochondrial promotion of Ca2+ influx that does not rely on Ca2+ buffering per se. Rather, we propose that mitochondria promote Ca2+ influx by amplifying H\textsubscript{2}O\textsubscript{2} microdomain signaling in the vicinity of L-type Ca2+ channels which leads to oxidant-dependent stimulation of Ca2+ influx.15-17

Functionally compartmentalized submembranous accumulation of H\textsubscript{2}O\textsubscript{2} is thought to bring about competent H\textsubscript{2}O\textsubscript{2} signaling microdomains.39 We reported previously that H\textsubscript{2}O\textsubscript{2} microdomains involving NADPH oxidase promote colocalized Ca2+ influx through L-type Ca2+ channels via oxidative activation of PKC.15-17 Experiments in this study provide evidence indicating that peripheral mitochondria also participate in H\textsubscript{2}O\textsubscript{2} microdomain-dependent stimulation of L-type Ca2+ channels. Antimycin induced the formation of subplasmalemmal ROS puncta and induced L-type Ca2+ channel sparklet activity. Lastly, antimycin-dependent stimulation of L-type Ca2+ channels was abolished by enhanced decomposition of H\textsubscript{2}O\textsubscript{2} with intracellular catalase.

To specifically reduce the influence of mitochondrial ROS on L-type Ca2+ channels we used the mitochondrial-targeted antioxidant mitoTEMPO at a concentration where cytosolic antioxidant effects are not apparent.8,31 MitoTEMPO prevented the induction of ROS puncta formation by Ang II and reduced the stimulatory effect on L-type Ca2+ channel sparklets. This suggests that mitochondrial ROS (visualized as ROS puncta) stimulate L-type Ca2+ channels. Intriguingly, unlike the effect on Ca2+ sparklet activity, mitoTEMPO did not reduce the effect of Ang II on L-type Ca2+ channel sparklet density (sites/µm2). This is in contrast to the effects of NADPH oxidase inhibition and catalase on Ang II-dependent L-type Ca2+ channel sparklets where activity and density are reduced.15,16 While initially perplexing, we believe this subtle observation provides valuable mechanistic insight into the signaling events underlying oxidant-
dependent regulation of L-type Ca\(^{2+}\) channels. Activation of Ang II type 1 receptors stimulates NADPH oxidase resulting in ROS formation.\(^{40,41}\) Evidence suggests that ROS produced by NADPH oxidase can induce subsequent ROS generation from mitochondria through the process of ROS-induced ROS release (RIRR).\(^{8,31,32}\) We suggest that a ROS-induced ROS release mechanism, initiated by NADPH oxidase and carried out by proximate mitochondria, is essential for Ang II-dependent stimulation of L-type Ca\(^{2+}\) channels in arterial smooth muscle.

This hypothesis is compatible with our data. Disrupting Ang II signaling by NADPH oxidase inhibition or enhancing \(\text{H}_2\text{O}_2\) decomposition with catalase reduces the initial availability of signaling \(\text{H}_2\text{O}_2\) and abolishes the stimulatory effect of Ang II on L-type Ca\(^{2+}\) channel sparklets (i.e., activity and density).\(^{15,16}\) However, mitoTEMPO impairment of \(\text{H}_2\text{O}_2\) generation occurs further along the signaling cascade by limiting ROS-induced ROS release by mitochondria. Thus, the initial production of signaling \(\text{H}_2\text{O}_2\) by NADPH oxidase remains intact which could trigger limited stimulation of L-type Ca\(^{2+}\) channels leading to an increase in low-activity L-type Ca\(^{2+}\) channel sparklet sites. From this we suggest that mitochondria, as a consequence of providing a means of ROS-induced ROS release, function as amplifiers of NADPH oxidase-initiated \(\text{H}_2\text{O}_2\) microdomain signaling and that this mechanism is necessary for physiological stimulation of arterial smooth muscle cell L-type Ca\(^{2+}\) channels by Ang II (Figure 7E).

If mitochondrial ROS-induced ROS release is necessary for physiological stimulation of L-type Ca\(^{2+}\) channels by Ang II then disrupting this process with mitoTEMPO should reduce arterial contractile responses to Ang II. Consistent with this, mitoTEMPO reduced Ang II-dependent contraction of pressurized cerebral arteries by \(\approx 70\) %. In contrast, MitoTEMPO had no effect on the baseline myogenic tone of these arteries. Similarly, we noted previously that inhibition of NADPH oxidase\(^{15}\) and application of cell-permeable catalase\(^{16}\) reduced contractile responses to Ang II without altering arterial tone. These observations suggest that, at least in cerebral arteries from healthy rats, \(\text{H}_2\text{O}_2\) microdomain stimulation of smooth muscle L-type Ca\(^{2+}\) channels contributes to the vasoconstrictor capacity of Ang II but does not influence baseline myogenic function.

In contrast to our observations, work by others has shown that mitochondrial and NADPH oxidase-derived ROS reduce arterial contractility by enhancing activation of hyperpolarizing large-conductance, Ca\(^{2+}\)-activated potassium (BK) channels.\(^{42,43}\) We contend that our \(\text{H}_2\text{O}_2\) microdomain signaling hypothesis reconciles these seemingly diametrically opposed observations. In the case of our data, \(\text{H}_2\text{O}_2\) microdomain signaling is coupled to the activation of L-type Ca\(^{2+}\) channels leading to contraction. For vasodilatory-associated ROS, we hypothesize that discrete ROS signaling events are selectively coupled to vasodilatory processes. In addition, we hypothesize that ROS microdomain signaling attains differential coupling specificity as a consequence of distinct subcellular distribution patterns inherent to the underlying ROS generating mechanisms (see Online Supporting Information iv).

Anomalous Ang II signaling is implicated in the development of arterial dysfunction and hypertension.\(^{6,32,44}\) We found that mitoTEMPO attenuated the vasoconstrictive capacity of Ang II and, conversely, that stimulating mitochondrial ROS production with antimycin increased L-type Ca\(^{2+}\) channel activity. We therefore examined the efficacy of mitoTEMPO in mitigating arterial smooth muscle dysfunction in hypertension. Systemic administration of mitoTEMPO blunts the hypertensive response to Ang II infusion in mice, at least in part, by increasing the bioavailability of nitric oxide and preserving endothelial function.\(^{9}\) To investigate the effect of mitoTEMPO on arterial smooth muscle function we used a nitric oxide-deficient model of hypertension where endothelial dysfunction is an etiological hallmark.\(^{34,45}\) Similar to Ang II infusion,\(^{9}\) co-administration of mitoTEMPO reduced the hypertensive response to L-NAME. This observation suggests that the antihypertensive effect of mitoTEMPO reside, at least in part, at the level of arterial smooth muscle.
To examine the effect of systemically administered mitoTEMPO on arterial smooth muscle function we isolated and pressurized cerebral arteries obtained from L-NAME-treated rats. Arteries from these rats contracted to ≈50% below their passive diameter when pressurized to 60 mmHg. In contrast, arteries from L-NAME-treated rats infused with mitoTEMPO contracted to only ≈30% below their passive diameter. For perspective, the control arteries used in our Ang II/mitoTEMPO experiments contracted to ≈38% below their passive diameter, which was not significantly different from that seen with mitoTEMPO. Thus, systemically administered mitoTEMPO normalized the intrinsic myogenic set point of arteries isolated from L-NAME-treated rats.

To investigate the mechanisms by which mitoTEMPO normalized arterial function in L-NAME-treated rats we examined L-type Ca\(^{2+}\) channel and H\(_2\)O\(_2\) microdomain signaling in isolated cells. Similar to Ang II-dependent and genetic hypertension,\(^{28}\) basal L-type Ca\(^{2+}\) channel sparklet activity and ROS puncta density were elevated in cells from hypertensive L-NAME-treated rats. Strikingly, arterial smooth muscle cells isolated from rats infused with mitoTEMPO showed no increase in either ROS puncta density or L-type Ca\(^{2+}\) channel sparklet activity. From these data we conclude that mitoTEMPO preserves arterial function and reduces arterial blood pressure, at least in part, by inhibiting mitochondrial amplified H\(_2\)O\(_2\) microdomain dependent stimulation of arterial smooth muscle L-type Ca\(^{2+}\) channels.

The implications of our observations are broad. First, we suggest that mitochondrial amplification of H\(_2\)O\(_2\) microdomain signaling in arterial smooth muscle is a potentially viable therapeutic target for reducing hypertension-associated arterial dysfunction. Second, as mitochondria and L-type Ca\(^{2+}\) channels are widely distributed we suggest that localized mitochondrial amplification of H\(_2\)O\(_2\) microdomain signaling could be a general mechanism for promoting Ca\(^{2+}\) influx through L-type Ca\(^{2+}\) channels in many cell types including cardiac myocytes as demonstrated by others.\(^{46-48}\) Indeed, we recently described a mechanism responsible for localized L-type Ca\(^{2+}\) channel function in neuroendocrine pituitary gonadotrope cells which bears a striking resemblance to our observations in smooth muscle.\(^{49}\) Lastly, this mechanism could be an important factor contributing to the exaggerated ROS production and Ca\(^{2+}\) influx associated with the pathogenesis of numerous cardiovascular and non-cardiovascular diseases.

ACKNOWLEDGMENTS
We thank Dr. Chao-Yin Chen for the use of the telemetry system.

SOURCES OF FUNDING
This work was supported by the National Institute of Health Grants 1R01HL111060 (to GCA) and 1R01HL098200 and 1R01HL121059 (to MNF), the American Heart Association (14GRNT18730054; to MNF), the Colorado State University College Research Council (to GCA), and the Pew Charitable Trusts (to GCA).

DISCLOSURES
None.
REFERENCES

10. Feissner RF, Skalska J, Gaum WE, Sheu SS. Crosstalk signaling between mitochondrial Ca2+ and ROS. *Front Biosci*. 2009;14:1197-1218

38. McCarron JG, Muir TC. Mitochondrial regulation of the cytosolic Ca2+ concentration and the InsP\textsubscript{3}-sensitive Ca2+ store in guinea-pig colonic smooth muscle. *J Physiol*. 1999;516:149-161

41. Cheranov SY, Jaggar JH. TNF-\alpha dilates cerebral arteries via NAD(P)H oxidase-dependent Ca2+ spark activation. *American journal of physiology. Cell physiology*. 2006;290:C964-971
43. Xi Q, Cheranov SY, Jaggar JH. Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks. *Circ Res*. 2005;97:354-362

47. Viola HM, Arthur PG, Hool LC. Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes. *Circulation research*. 2007;100:1036-1044

FIGURE LEGENDS

Figure 1. Subplasmalemmal mitochondria are present but sparse in rat cerebral arterial smooth muscle cells. A, Representative confocal images showing the plasma membrane (Alexa 555-WGA fluorescence, red) and mitochondria (MitoTracker fluorescence, green) in an isolated rat cerebral arterial smooth muscle cell. In panel 3, subplasmalemmal mitochondria (≤0.5µm from the plasma membrane) are highlighted yellow. The inset in panel 3 shows z projections at the x and y positions indicated by the dashed yellow lines. B, Plot of the mean±SEM mitochondrial and non-mitochondrial volumes (% of total cell volume; n=5 cells). C, Plot of the mean±SEM non-peripheral (>0.5µm from the plasma membrane) and subplasmalemmal (≤0.5µm) mitochondrial volumes (% total mitochondrial volume; n=5 cells).

Figure 2. Active L-type Ca2+ channels associate with subplasmalemmal mitochondria. A, Representative TIRF images showing subplasmalemmal mitochondria (MitoTracker fluorescence, panel 1; thresholded MitoTracker fluorescence, panel 2), L-type Ca2+ channel-mediated Ca2+ influx (fluor-5F fluorescence; panel 3), and an overlay of panels 2 & 3 (panel 4). Yellow circles in panels 3 and 4 indicate sites of bone fide L-type Ca2+ channel sparklet activity (see Online Methods). B, Euclidean distance mapping showing cumulative distribution functions representing the distance of observed Ca2+ sparklet site peaks from mitochondria (solid black line; n=7 cells) and from 100 randomly distributed points within visible TIRF footprint (dashed black line). Solid red lines are best fits of the cumulative distributions with a single exponential function as described in the Online Methods. The vertical dashed grey line marks the distance separating mitochondrial associated (≤0.5µm) and non-associated (>0.5µm) Ca2+ sparklet sites. C, Plot of Ca2+ sparklet site activities (nP, where n is the number of quantal levels detected and P is the probability that the site is active) at sites >0.5µm and ≤0.5µm from the nearest thresholded MitoTracker signal (n=5 cells). The horizontal dashed grey line marks the threshold for high-activity Ca2+ sparklet sites (nP≥0.2; see Online Methods). Bracketed values indicate effect size (r). *P<0.05

Figure 3. ROS generation by subplasmalemmal mitochondria is punctate and stimulates L-type Ca2+ channels. A, Representative TIRF images showing subplasmalemmal DCF fluorescence (indicating intracellular oxidation) in a control cell (left) and in a cell incubated with the mitochondrial electron transport chain complex III inhibitor antimycin (500 nmol/L; right) at the times indicated. Yellow circles indicate sites of bone fide ROS puncta formation (see Online Methods). B, Plot of individual ROS puncta densities in control cells (open circles; n=5 cells) and cells treated with antimycin (filled red circles; n=5 cells) at 0 min and at 10 min (left) and plot of mean±SEM ROS puncta densities at 0 min (all values) and at 10 min in control and antimycin-treated cells (right). C, Representative TIRF images showing Ca2+ influx in a cell before and after application of antimycin (500 nmol/L). Traces show the time course of Ca2+ influx at the 3 circled sites. D, Plot of Ca2+ sparklet site activities (nP) and plot of mean±SEM Ca2+ sparklet densities (Ca2+ sparklet sites/µm2) before and after antimycin (n=5 cells). Bracketed values indicate effect size (r). *P<0.05

Figure 4. Mitochondria contribute to angiotensin II-dependent ROS and Ca2+ microdomain signaling. A, Representative TIRF images showing subplasmalemmal DCF fluorescence in a cell before and after application of Ang II (100 nmol/L; left) and in a cell before and after Ang II in the presence of the mitochondrial targeted antioxidant mitoTEMPO (25 nmol/L; right). Yellow circles indicate sites of ROS puncta formation. B, Plot of individual ROS puncta densities in cells exposed to Ang II (open circles; n=5 cells) and cells exposed to Ang II in the presence of mitoTEMPO (filled red circles; n=5 cells) at 0 min and at 10 min (left) and the plot of mean±SEM ROS puncta densities at 0 min (all values) and at 10 min in Ang II and Ang II in the presence of mitoTEMPO (right). C, Representative traces showing time courses of Ca2+ influx in cells before and after application of Ang II (100 nmol/L) in control cells and in the presence of the mitochondrial targeted antioxidant mitoTEMPO (25 nmol/L). D, Plots showing Ca2+ sparklet site activities (nP) and mean±SEM Ca2+ sparklet densities (Ca2+ sparklet sites/µm2) before after Ang II in control cells and in the presence of mitoTEMPO (n=5 cells each). Bracketed values indicate effect size (r). *P<0.05
Figure 5. Smooth muscle mitochondrial ROS contribute to angiotensin II-dependent arterial contractions. **A-C,** Representative time courses showing luminal diameters (as % passive diameter) of pressurized (60 mmHg) middle cerebral arterial segments exposed to Ang II (10 nmol/L) in the absence (A) or presence of the mitochondrial-targeted antioxidant mitoTEMPO (1 µmol/L) (B) or the non-targeted antioxidant TEMPO (10 µmol/L) (C). The horizontal dashed grey lines represent approximate points of measurement for analysis. **D,** Plot of the mean±SEM induced contraction (% passive diameter) by Ang II in the absence or presence of mitoTEMPO or TEMPO (n=5 arteries each). Bracketed values indicate effect size (r). *P<0.05

Figure 6. Arterial smooth muscle mitochondrial ROS contribute to hypertension-associated arterial dysfunction. **A,** Time courses of mean arterial pressures in rats treated with the nitric oxide synthase inhibitor L-NAME and infused with saline (open circles) or infused with the mitochondrial targeted antioxidant mitoTEMPO (closed circles). **B,** Plot of the terminal mean arterial pressures (mean±SEM) for rats treated with L-NAME and infused with saline or with mitoTEMPO (n=5 rats each). **C,** Time courses of the change in mean arterial pressure in response to L-NAME for rats infused with saline or with mitoTEMPO (n=5 rats each). **D,** Representative time courses showing luminal diameters (as % passive diameter) of pressurized middle cerebral arterial segments (as indicated) isolated from rats treated with L-NAME and infused with saline (left) or with mitoTEMPO (right). The horizontal dashed grey lines represent approximate points of measurement for analysis. **E,** Plot of the mean±SEM contraction induced by increasing the intraluminal pressure (20 to 60 mmHg) of middle cerebral arterial segments isolated from rats treated with L-NAME and infused with saline or with mitoTEMPO (n=5 arteries each). Bracketed values indicate effect size (r). *P<0.05

Figure 7. Endothelial dysfunction increases arterial smooth muscle mitochondrial ROS and Ca$^{2+}$ microdomain signaling. **A,** Representative TIRF images showing subplasmalemmal DCF fluorescence in a cell isolated from rats treated with the nitric oxide synthase inhibitor L-NAME and infused with saline (top) or infused with the mitochondrial targeted antioxidant mitoTEMPO (bottom). Yellow circles indicate sites of ROS puncta formation. **B,** Plot of mean±SEM ROS puncta densities in cells isolated from rats treated with L-NAME and infused with saline or infused with mitoTEMPO (n=5 cells). **C,** Representative TIRF images showing Ca$^{2+}$ influx in cells isolated from rats treated with L-NAME and infused with saline (left) or infused with mitoTEMPO (right). Traces show the time course of Ca$^{2+}$ influx at the 3 circled sites. **D,** Plot of Ca$^{2+}$ sparklet site activities (nPs) and plot of mean±SEM Ca$^{2+}$ sparklet site densities (Ca$^{2+}$ sparklet sites/µm2) in cells isolated from rats treated with L-NAME and infused with saline or infused with mitoTEMPO (n=5 cells). Black asterisks and effect sizes in panels B and D are in reference to non-L-NAME-treated controls. **E,** Proposed mechanism where mitochondrial ROS-induced ROS release (RIRR) amplifies H$_2$O$_2$ microdomain signaling leading to stimulation of colocalized Ca$^{2+}$ influx through L-type Ca$^{2+}$ channels resulting in changes (∆) in cell function or induction of cell dysfunction. CaV=L-type Ca$^{2+}$ channel; ETC=mitochondrial electron transport chain. Bracketed values indicate effect size (r). *P<0.05
Novelty and Significance

What Is Known?

- Angiotensin II (Ang II) is a clinically targeted endogenous vasoconstrictor implicated in the development of cardiovascular diseases including hypertension and congestive heart failure.

- In arterial smooth muscle, Ang II receptor activation promotes localized reactive oxygen species (ROS) generation by NADPH oxidase which is associated with colocalized calcium (Ca\(^{2+}\)) influx through L-type Ca\(^{2+}\) channels.

- Mitochondria are also a source of ROS generation and are known to integrate Ca\(^{2+}\) and ROS signaling pathways in many cells.

What New Information Does This Manuscript Contribute?

- Mitochondria residing near the plasma membrane of rat cerebral arterial smooth muscle cells are associated with sites of elevated Ca\(^{2+}\) influx through L-type Ca\(^{2+}\) channels.

- Following Ang II exposure, subplasmalemmal mitochondria amplify localized ROS (hydrogen peroxide) production initiated by NADPH oxidase in signaling microdomains resulting in protein kinase C-dependent activation of neighboring L-type Ca\(^{2+}\) channels.

- This mitochondrial ROS-dependent stimulation of L-type Ca\(^{2+}\) channels contributes to contraction of rat cerebral arteries by Ang II.

- Disrupting mitochondrial ROS production in vivo normalizes arterial function and attenuates the hypertensive response to pharmacologically-induced systemic endothelial dysfunction.

Mitochondria are a major source of cellular ROS. In addition, mitochondrial dysfunction is associated with cardiovascular disease. However, the importance of mitochondrial ROS in Ang II-dependent arterial contraction and in hypertension-associated arterial dysfunction is unclear. In this study we tested the hypothesis that mitochondrial ROS generation regulates the activity of L-type Ca\(^{2+}\) channels in rat cerebral arterial smooth muscle in the context of Ang II signaling. Using an image-based approach, we found that mitochondrial amplification of ROS (hydrogen peroxide) signaling near the plasma membrane stimulates L-type Ca\(^{2+}\) channels. By providing a means of increased Ca\(^{2+}\) influx, this mechanism contributes to Ang II-dependent arterial contraction. Our data also show that disrupting this mitochondrial amplification mechanism in vivo normalizes arterial function and attenuates the hypertensive response to systemic endothelial dysfunction. From these observations, we conclude that mitochondrial amplification of hydrogen peroxide signaling leads to increased Ca\(^{2+}\) influx through L-type Ca\(^{2+}\) channels. We suggest that this mechanism plays an important role in arterial smooth muscle physiology and contributes to arterial dysfunction in hypertension. We also propose that mitochondrial amplification of ROS signaling in arterial smooth muscle is a potentially viable therapeutic target for reducing hypertension-associated arterial dysfunction.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels
Nathan L Chaplin, Madeline Nieves-Cintrón, Adriana M Fresquez, Manuel F Navedo and Gregory C Amberg

Circ Res. published online September 21, 2015;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2015/09/21/CIRCRESAHA.115.306996

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2015/09/21/CIRCRESAHA.115.306996.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

Detailed Methods

Chemicals.

All chemicals were from Sigma unless stated otherwise.

Isolation of rat cerebral arterial myocytes.

Adult male Sprague-Dawley rats (Harlan) were euthanized with sodium pentobarbital (200 mg/kg intraperitoneally; MWI Veterinary Supply) in accordance with institutional guidelines and approved by the Institutional Animal Care and Use Committee of Colorado State University and the University of California, Davis. Isolated smooth muscle cells were prepared from basilar and cerebral arteries. Arteries were removed, cleaned, and placed in ice-cold Ca$^{2+}$-free buffer containing (mmol/L): 140 NaCl, 5 KCl, 2 MgCl$_2$, 10 glucose, and 10 HEPES (adjusted to pH 7.4 with NaOH). Arteries were incubated for 15 min at 37°C in Ca$^{2+}$-free buffer supplemented with papain (10 U/mL; Worthington Biochemical) and dithiothreitol (1 mg/mL) followed by a second incubation (15 min at 37°C) in Ca$^{2+}$-free buffer supplemented with collagenase (300 U/mL, Type II, Worthington Biochemical). Arteries were then washed with and placed in Ca$^{2+}$-free buffer and kept on ice for 30 min after which trituration with a fire-polished Pasteur pipette was used to create a cell suspension; cells were used within 6 h of dispersion.

Confocal microscopy.

Laser scanning confocal microscopy was used to image the plasma membrane and mitochondria. Freshly prepared smooth muscle cell suspensions were pipetted into a glass bottomed recording chamber. The extracellular face of the plasma membrane was marked with a wheat germ agglutinin Alexa 555 conjugate (Life Technologies; 5 µg/mL for 15 min) and mitochondria were labelled with MitoTracker Green (Life Technologies; 1 µmol/L for 15 min). Alexa 555 was excited with a 543 nm laser and MitoTracker Green was excited with a 488 nm laser; excitation and emission light was separated with appropriate filters. Data were analyzed with Volocity 3D Image Analysis Software (PerkinElmer). Mitochondrial-associated fluorescence located ≤0.5µm from the center of the Alex 555-WGA signal was designated as peripheral as this value falls within the predicted functional distance of intracellular signaling H$_2$O$_2$.1,2

Electrophysiology.

Smooth muscle cell suspensions were pipetted into a glass bottomed recording chamber and the cells were allowed to adhere for 20 min. Membrane potential was controlled with an Axopatch 200B amplifier (Molecular Devices). The perforated whole-cell patch-clamp technique was used to record macroscopic L-type Ca$^{2+}$ channel currents with barium (Ba$^{2+}$) as the charge carrier. For these experiments the amphotericin B (250 µg/ml) supplemented pipette solution contained (mmol/L): 120 CsCl, 20 TEA-Cl, 1 EGTA, and 20 HEPES (adjusted to pH 7.2 with CsOH) and cells were superfused with an external solution composed of (mmol/L): 115 NaCl, 10 TEA-Cl, 0.5 MgCl$_2$, 5.5 glucose, 5 CsCl, 20 BaCl$_2$, and 20 HEPES (adjusted to pH 7.4 with CsOH).

For our Ca$^{2+}$ imaging experiments, we used the conventional dialyzed whole-cell patch-clamp technique. During these experiments cells were superfused with a solution containing (mmol/L): 120 NMDG$^+$, 5
CsCl, 1 MgCl₂, 10 glucose, 10 HEPES, and 20 CaCl₂ (adjusted to pH 7.4 with HCl). Pipettes were filled with a solution composed of (mM): 87 Cs-aspartate, 20 CsCl, 1 MgCl₂, 5 MgATP, 0.1 Na₂GTP, 1 NADPH, 10 glutathione, 10 HEPES, 10 EGTA, and 0.2 fluo-5F (adjusted to pH 7.2 with CsOH). All electrophysiological experiments were performed at room temperature (22-25°C) and were allowed to progress between 5 and 10 minutes. Only recordings with stable GΩ seals were analyzed.

Total internal reflection fluorescence (TIRF) microscopy.

Ca²⁺ influx through L-type channels was visualized with a TILL Photonics through-the-lens TIRF system built around an inverted Olympus IX-71 microscope using a 100X (numerical aperture = 1.45) TIRF oil-immersion objective and an Andor iXON EMCCD camera. To monitor Ca²⁺ influx, myocytes were loaded with the Ca²⁺ indicator fluo-5F (200 µmol/L; pentapotassium salt; Invitrogen) and an excess of EGTA (10 mmol/L) via the patch pipette. To preclude potential contaminating Ca²⁺ release events from the sarcoplasmic reticulum, the Ca²⁺-ATPase inhibitor thapsigargin (1 µmol/L) was present during all experiments. Excitation of fluo-5F was achieved with a 491 nm laser and excitation and emission light was separated with appropriate filters. Ca²⁺ influx was recorded at 50 Hz at a holding potential of -70 mV and elevated external [Ca²⁺] (20 mmol/L) to facilitate the detection of events and provide fluorescent signals of sufficient amplitude to permit quantal analysis.

L-type Ca²⁺ channel sparklet analysis.

Background-subtracted fluo-5F fluorescence signals were converted to [Ca²⁺] using the equation

\[
[Ca^{2+}] = K_d \frac{F/F_{\text{max}} - 1/R_f}{1 - F/F_{\text{max}}}
\]

where \(F\) is fluorescence, \(F_{\text{max}}\) is the fluorescence intensity of fluo-5F in the presence of saturating free Ca²⁺, \(F_{\text{min}}\) is the fluorescence intensity of fluo-5F in a solution where [Ca²⁺] is 0, \(K_d\) is the dissociation constant of fluo-5F, and \(R_f\) is the \(F_{\text{max}}/F_{\text{min}}\) of fluo-5F. \(K_d\) and \(R_f\) values for fluo-5F were determined in vitro and \(F_{\text{max}}\) was determined at the conclusion of each experiment with ionomycin (10 µmol/L). Fluo-5F fluorescence images were analyzed with custom software. For an elevation in [Ca²⁺] to be considered an L-type Ca²⁺ channel sparklet event, a grid of 3 x 3 contiguous pixels had to have a [Ca²⁺] amplitude equal to or larger than the mean basal [Ca²⁺] plus three times its standard deviation.

Quantal analysis of L-type Ca²⁺ channel sparklet activity was performed on histograms generated from individual event amplitudes. The resulting histograms were fitted with the multicomponent Gaussian function

\[
N = \sum_{j=1}^{q} a_j \exp\left(\frac{-([Ca^{2+}] - jq)^2}{2jb}\right)
\]

where \(a\) and \(b\) are constants, [Ca²⁺], is intracellular Ca²⁺, and \(q\) is the quantal unit of Ca²⁺ influx. The quantal amplitude of the Ca²⁺ sparklets observed in this study was 36.2±3.2 nmol/L [Ca²⁺].

L-type Ca²⁺ channel sparklet activity was determined by calculating the \(nP_s\) of each site, where \(n\) is the number of quantal levels detected, and \(P_s\) is the probability that the site is active. \(nP_s\) values were obtained using pCLAMP 10.0 (Molecular Devices) on imported [Ca²⁺] time course records. L-type Ca²⁺ channel sparklet activity was quantified using an initial unitary [Ca²⁺], elevation of 38 nmol/L as determined experimentally. Consistent with previous reports, L-type Ca²⁺ channel sparklet activity
was bimodally distributed with sites of low activity (nPS between 0 and 0.2) and high activity (nPS greater than 0.2). Active L-type Ca\(^{2+}\) channel densities (Ca\(^{2+}\) sparklet sites per µm\(^2\)) were calculated by dividing the number of active sites by the area of cell membrane visible in the TIRF images.

Imaging of subplasmalemmal mitochondria.

TIRF microscopy was also used to image subplasmalemmal mitochondria in isolated cells. Briefly, dispersed arterial smooth muscle cells were incubated with MitoTracker Green or MitoTracker Red CM-XRos (1 µmol/L) for 15 min. Subplasmalemmal MitoTracker Green was excited with a 491 nm laser and MitoTracker Red was excited with a 561 nm laser and excitation and emission light was separated with appropriate filters. For an area of elevated MitoTracker fluorescence to be considered indicative of subplasmalemmal mitochondria the fluorescence amplitude had to be equal to or larger than the mean basal fluorescence plus three times its standard deviation. Using this criterion we generated thresholded MitoTracker TIRF images to establish clear mitochondrial boundaries. The % of plasma membrane associated with subplasmalemmal mitochondria was calculated by dividing the area of membrane associated with mitochondria by the area of plasma membrane visible. We defined mitochondrial-associated L-type Ca\(^{2+}\) channel sparklet sites as those sites with peaks (pixels of highest intensity) ≤0.5 µm from the edge of the nearest thresholded MitoTracker signal.

Note that the subplasmalemmal MitoTracker fluorescence image shown in Figure 2A was obtained from a cell where we also recorded Ca\(^{2+}\) influx. This required placing a glass pipette onto the top of the cell. With this experimental configuration, MitoTracker fluorescence was associated with 8.52±2.22% of the visible plasma membrane (n=5 cells). We attribute this modest increase in plasma membrane associated with mitochondria (versus 3.29±0.26% in non-patched cells; P<0.05) to the downward pressure exerted on the cell from the dorsally placed pipette. Regardless, our TIRF images indicate that subplasmalemmal mitochondria are associated with a relatively small fraction of the plasma membrane (≈5%).

Euclidean distance mapping analysis was used to quantitate the distance of observed Ca\(^{2+}\) sparklet site peaks from the nearest thresholded MitoTracker signal and from 100 randomly distributed points located within visible TIRF footprint of the cells analyzed. Each cumulative distribution was fit with a single exponential function $Y = Y_0 + (\text{plateau} - Y_0) \times \left[1 - \exp \left(-\frac{\ln 2}{X_{0.5}} \times X\right)\right]$ where Y is the cumulative frequency, Y_0 is the Y value when X (distance) is zero, plateau is the Y value at infinite times, and $X_{0.5}$ (half-distance) is X where 50% of the Y values are distal to $X=0$.

Detection of reactive oxygen species generation.

TIRF microscopy was also used to visualize subplasmalemmal ROS generation as described previously by us. Cells were loaded in Ca\(^{2+}\)-free buffer supplemented with the cell-permeant ROS indicator 5-(and-6)-chloromethyl-2\(^{7}\)-dichlorodihydrofluorescein diacetate acetyl ester (DCF; 10 µmol/L; Invitrogen) for 20 min at room temperature. Following removal of excess DCF with un-supplemented Ca\(^{2+}\)-free buffer, excitation of subplasmalemmal DCF was achieved with a 491 nm laser and excitation and emission light was separated with appropriate filters. Analogous to L-type Ca\(^{2+}\) channel influx, for an area of elevated DCF fluorescence to be considered a localized site of increased ROS generation (a ROS “puncta”), a grid of 3 x 3 contiguous pixels had to have a fluorescence amplitude equal to or larger than the mean basal DCF fluorescence plus three times its standard deviation. ROS puncta densities (ROS puncta per µm\(^2\)) were calculated by dividing the number of sites detected by the area of cell membrane visible in the TIRF images. Changes in DCF fluorescence (ΔDCF) were calculated from the mean pixel intensities of the total intracellular submembranous slice visible in the TIRF images (average ΔDCF) and the areas confined to nascent ROS puncta (puncta ΔDCF).
Intact arterial diameter measurements.

Intact arterial diameters were recorded from middle cerebral arterial segments as previously described. Briefly, isolated arteries were stored in ice-cold MOPS buffer containing (mmol/L): 145 NaCl, 5 KCl, 1 MgSO₄, 2.5 CaCl₂, 1 KH₂PO₄, 0.02 EDTA, 2 pyruvate, 5 glucose, 1% bovine serum albumin, and 3 MOPS (adjusted to pH 7.4 with NaOH). Arteries were transferred to a vessel chamber (Living Systems), one end of the artery was cannulated onto a glass micropipette and secured with monofilament suture and the other end was cannulated onto an opposing micropipette. Arteries were pressurized to 20 mmHg with a bicarbonate-based physiological saline solution containing (mmol/L): 119 NaCl, 4.7 KCl, 1.8 CaCl₂, 1.2 MgSO₄, 24 NaHCO₃, 0.2 KH₂PO₄, 10.6 glucose, and superfused (3 mL/min) with warmed physiological saline solution (37°C) aerated with a normoxic gas mixture (21% O₂, 6% CO₂, balance N₂). To block the effects of endothelial-derived nitric oxide, the nitric oxide synthase inhibitor Nω-nitro-L-arginine (L-NNA; 300 µmol/L) was included in the superfusate.

Following a 15-minute equilibration period, intraluminal pressure was increased to 60 mmHg, arteries were stretched to remove bends, and the pressure was lowered back to 20 mmHg for a second 15-minute equilibration period. Intraluminal pressure was then increased back to 60 mmHg and the inner diameter continuously monitored using video microscopy and edge-detection software (Ionoptix). To assess viability, all arteries were exposed to isotonic physiological saline solution containing 60 mmol/L KCl. For experiments with mitoTEMPO (Enzo Life Sciences) and TEMPOL (EMD Millipore), these antioxidants were added after a stable level of tone was obtained at 60 mmHg. Following stabilization with mitoTEMPO and TEMPOL, Ang II was added and experiments were terminated by superfusing with a nominally Ca²⁺-free physiological saline solution to obtain the passive diameter of the artery. Arterial contraction was calculated as the percentage difference in active luminal diameter versus passive luminal diameter. Passive luminal diameters were not different for our all experimental groups (P>0.05) and myogenic tone at 60 mmHg under control conditions (i.e., with only L-NNA present) in arteries from normotensive rats was also not different between all groups (P>0.05).

L-NAME-induced hypertension, mitoTEMPO infusion, and blood pressure monitoring.

Hypertension was induced in adult male Sprague Dawley rats by including Nω-nitro-L-arginine methyl ester (L-NAME; 0.75 mg/mL) in their drinking water for ten days. Daily water consumption in these rats was ≈70 mL/kg/day resulting in a dose of ≈50 mg/kg per day. Rats were also implanted with subcutaneous osmotic minipumps (Alzet) eluting mitoTEMPO (150 µg/kg per day) or saline (for control) as previously described.

Arterial blood pressure was monitored continuously in conscious freely moving rats by telemetry (Data Science International). Briefly, rats were anesthetized with isoflurane and a ventral midline incision through the abdominal wall was made. The intestines were manipulated with sterile cotton tip applicators to locate the abdominal aorta. Once located, the intestines were retracted using a sterile 4 x 4 gauze sponge. The overlying tissue was separated from the aorta surface, just caudal to the crossover of the left renal vein and cranial to the iliac bifurcation with sterile cotton tips and the aorta was temporary occluded with suture. A 22-gauge needle with the tip bent to a 90° angle was used to pierce the artery cranial to the iliac bifurcation and the catheter was inserted. The entry site was dried of blood and a small amount of tissue adhesive was applied to prevent leakage and maintain the catheter in place. Tension was carefully released from the occlusion suture and the catheter entry area monitored for leakage. The catheter was anchored in place using a small sterile fiber patch and secured with tissue adhesive. The transmitter was placed on top of the intestines parallel to the long axis of the body. The abdominal wall was close using non-absorbable sutures of appropriate size. An absorbable suture was used to close the skin.
minipumps were implanted concurrently to avoid additional pain and distress associated with a second survival surgery; L-NAME administration (when appropriate) was initiated ≈5 days later.

Statistics.

Statistical analyses were performed with GraphPad Prism 6 and OriginPro 8.1 software. Normally distributed data are presented as the mean±standard error of the mean (SEM). Two-sample comparisons of these data were performed using either a paired or unpaired (as appropriate) two-tailed Student’s t test and comparisons between more than two groups were performed using a one way ANOVA with Tukey’s multiple comparison post-test. L-type Ca$^{2+}$ channel sparklet activity (i.e. nP_s) datasets were bimodally distributed,4,6,8 thus two-sample comparisons of nP_s data were examined with the non-parametric Wilcoxon-Mann-Whitney test (two-tailed) and comparisons between more than two groups were performed using the non-parametric Friedman test with Dunn’s multiple comparison post-test. Arithmetic means of nP_s datasets are indicated in the figures (solid grey horizontal lines) for non-statistical visual purposes and dashed grey lines mark the threshold for high-activity Ca$^{2+}$ sparklet sites ($nP_s \geq 0.2$).3,4,6

To account for potential variability associated with cell isolation, all single myocyte experimental groups were comprised of cells obtained from a minimum of 4 rats. Effect sizes, represented in the figures as bracketed values, are reported as Pearson’s r (range -1.0 to 1.0; 0 indicates no effect).14-17 $P<0.05$ were considered significant and asterisks (*) used in the figures are included to indicate significance; ns = not significantly different.
Online Figure I. ROS generation by subplasmalemmal mitochondria is punctate and mitochondrial H$_2$O$_2$ stimulates L-type Ca$^{2+}$ channels. A, Plot of the mean±SEM change (Δ) in the spatially averaged DCF fluorescence (average) and that of nascent ROS puncta in cells exposed to antimycin (500 nmol/L; n=5 cells). The horizontal dashed grey line represents zero change in fluorescence in response to antimycin. B, Representative TIRF images showing Ca$^{2+}$ influx in a cell before and after application of antimycin (500 nmol/L) in the presence of the H$_2$O$_2$ decomposing enzyme catalase (500 U/mL) or the PKC inhibitor Gö6976 (100 nmol/L). Traces show the time course of Ca$^{2+}$ influx at the 3 circled sites. C, Plot of Ca$^{2+}$ sparklet site activities (nP) and plot of mean±SEM Ca$^{2+}$ sparklet densities (Ca$^{2+}$ sparklet sites/µm2) before and after antimycin in the presence of catalase (n=7 cells) or Gö6976 (n=5 cells). The horizontal dashed grey lines mark the threshold for high-activity Ca$^{2+}$ sparklet sites (nP≥0.2). Bracketed values indicate effect size (r). * P<0.05
Online Figure II. Rotenone attenuates Ang II-dependent stimulation of L-type Ca2+ channels. A, Representative macroscopic L-type Ca2+ channel currents traces using barium (Ba2+) as the charge carrier during step depolarizations to 10 mV from a holding potential of -70 mV before (top) and after mitoTEMPO (25 nmol/L; bottom). B, Plot of the mean±SEM peak barium current densities (pA/pF) before and after mitoTEMPO (n=5 cells). C, Representative traces showing time courses of Ca2+ influx in cells before and after application of Ang II (100 nmol/L) in the presence of the mitochondrial electron transport chain complex I inhibitor rotenone (500 nmol/L). D, Plots showing Ca2+ sparklet site activities (nP) and mean±SEM Ca2+ sparklet densities (Ca2+ sparklet sites/μm2) before after Ang II in control cells, in the presence of mitoTEMPO, and in the presence of rotenone (n=5 cells each). The horizontal dashed grey line marks the threshold for high-activity Ca2+ sparklet sites (nP≥0.2). Bracketed values indicate effect size (r). * P<0.05
Online Figure III. NADPH oxidase inhibition with ML 171 attenuates angiotensin II-dependent ROS and L-type Ca2+ channel microdomain signaling.

A, Representative TIRF images showing subplasmalemmal DCF fluorescence in a cell before and after application of Ang II (100 nmol/L) in the presence of the NADPH oxidase inhibitor ML171 (1 \mu mol/L; Tocris). Yellow circles indicate sites of ROS puncta formation.

B, Plot of individual ROS puncta densities in cells exposed to Ang II in the presence of ML171 at 0 min and at 10 min (left) and the plot of mean\pm SEM ROS puncta densities at 0 min (all values) and at 10 min in Ang II, Ang II in the presence of ML171 (right; n=5 cells).

C, Representative traces showing time courses of Ca2+ influx in cells before and after application of Ang II (100 nmol/L) in the presence of ML171 (1 \mu mol/L).

D, Plots showing Ca2+ sparklet site activities (nP.s) and mean\pm SEM Ca2+ sparklet densities (Ca2+ sparklet sites/\mu m2) before after Ang II in control cells and in the presence of ML171 (n=5 cells). Bracketed values indicate effect size (r). * P<0.05 (from Figure 4B)
Supplemental Material

i) MitoTEMPO has no apparent nonspecific effects on macroscopic L-type Ca2+ channel currents.

To examine the possibility that mitoTEMPO could have nonspecific inhibitory effects on L-type Ca2+ channels we recorded macroscopic L-type Ca2+ channel currents (using barium as the charge carrier) in the presence and absence of mitoTEMPO. Suggesting that the inhibition of L-type Ca2+ channel sparklet activity by mitoTEMPO is not due to nonspecific perturbation of the Ca2+ channels we found that mitoTEMPO had no apparent effect on whole-cell L-type Ca2+ channel current amplitude or kinetics (Online Figure IIA and B; \(P>0.05\), \(n=5\) cells). Note that similar to their stimulatory effect on L-type Ca2+ channel sparklets, Ang II, ROS generated by exogenous xanthine oxidase, and bath-applied H\textsubscript{2}O\textsubscript{2} all increase macroscopic L-type Ca2+ channel currents.\(^4,8\) Conversely, ROS-dependent stimulation of macroscopic L-type Ca2+ channel currents (and Ca2+ sparklets) is abolished by inhibiting either protein kinase C or NADPH oxidase.\(^4\)

ii) Inhibition of mitochondrial ROS generation with rotenone decreases L-type Ca2+ channel sparklet activity.

As an alternative to mitoTEMPO we tested the effect of the mitochondrial electron transport chain complex I inhibitor rotenone on L-type Ca2+ channels (Online Figure IIC and D). Acute application of nanomolar concentrations of rotenone to intact cells is associated with a decrease in mitochondrial ROS production.\(^18,20\) Similar to mitoTEMPO, rotenone (500 nmol/L for 5 min) prevented the stimulatory effect of Ang II on L-type Ca2+ channel sparklet site activity (\(nP_s; P<0.05\), \(r=-0.58\), \(n=5\) cells) but not Ca2+ sparklet site density (sites/\(\mu m^2\); \(P>0.05\), \(r=-0.07\), \(n=5\) cells). From our independent observations with mitoTEMPO and rotenone we conclude that inhibition of mitochondrial ROS production substantially reduces Ang II-dependent Ca2+ influx by preventing the induction of highly active L-type Ca2+ channel sparklet sites.

iii) Subplasmalemmal mitochondria are found at sites of elevated L-type Ca2+ channel activity

Our confocal imaging showed that mitochondria accounted for only \(\approx 10\%\) of the total arterial smooth muscle cell volume and only \(\approx 10\%\) of this small volume was peripheral (\(\leq 0.5\ \mu m\) from the plasma membrane). Therefore, the mitochondria ideally positioned to regulate L-type Ca2+ channels represented only \(\approx 1\%\) of the total cell volume. With TIRF microscopy we found that \(\approx 5\%\) of the plasma membrane was associated with mitochondria. Although direct comparison of these values is pointless, the small amount of plasma membrane associated with mitochondria (\(\approx 5\%\)) and the small volume occupied by peripheral mitochondria (\(\approx 1\%\)) are in relative accord with each other.

Arterial smooth muscle cells have an average surface area of \(\approx 1000\ \mu m^2\).\(^21\) Our observed L-type Ca2+ channel sparklet densities were \(\approx 0.04/\mu m^2\). As such we expect \(\approx 40\) active L-type Ca2+ channel sparklet sites per cell. Since the spatial spread of single L-type Ca2+ channel sparklets is \(\approx 1\ \mu m^2\) we estimate that \(\approx 40\ \mu m^2\) (only \(\approx 4\%\)) of the plasma membrane is associated with active L-type Ca2+ channels. From this we conclude that the peripheral mitochondria visualized in our experiments, representing only \(\approx 1\%\) of the total cell volume and associated with only \(\approx 5\%\) of the plasma membrane, are sufficient to influence the surface area necessary (\(\approx 4\%\)) to accommodate the L-type Ca2+ channel sparklet activity observed.
iv) Divergent ROS signaling in arterial smooth muscle.

In contrast to our observations in this paper, work by others has shown that mitochondrial and NADPH oxidase-derived ROS reduce arterial contractility by enhancing ryanodine receptor/Ca2+ spark-dependent activation of hyperpolarizing large-conductance, Ca2+-activated potassium (BK) channels.24,25 We contend that our H\textsubscript{2}O\textsubscript{2} microdomain signaling hypothesis reconciles these seemingly diametrically opposed observations. In the case of our data, H\textsubscript{2}O\textsubscript{2} microdomain signaling is coupled to the activation of L-type Ca2+ channels which leads to contraction. Indeed, previously we provided direct evidence showing that the spatial distribution of ROS puncta mirrors that of L-type Ca2+ channel sparklets as evident in DCF and fluo-5f fluorescence images recorded from the same cell.4

In the case of vasodilatory-associated ROS, we hypothesize that discrete ROS signaling events, uncharacterized at present but possibly analogous to the H\textsubscript{2}O\textsubscript{2} microdomains reported by our group (this paper and Refs4,8), are selectively coupled to vasodilatory processes. In addition, it is possible that ROS microdomain signaling attains differential coupling specificity as a consequence of distinct subcellular distribution patterns inherent to the underlying ROS generating mechanisms. Perhaps ROS signaling by peripheral mitochondria is selectively coupled to plasmalemmal L-type Ca2+ channels while ROS generated by another mitochondrial subpopulation is selectively coupled to vasodilatory processes (e.g., Ca2+ sparks and BK channels). Future studies are necessary to address these intriguing concepts and hypotheses.

References

11.

Chaplin et al. Supplemental Material

