Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and Atherosclerosis

Kevin M. Patel1, Alanna Strong1, Junichiro Tohyama1, Xueting Jin2, Carlos R. Morales3, Jeffery Billheimer1, John Millar1, Howard Kruth2 and Daniel J. Rader1

1Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 2Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, and; 3McGill University, Montreal, Quebec.

Running title: Macrophage Sortilin Promotes LDL Uptake and Athero

Subject codes:
[134] Pathophysiology
[144] Other arteriosclerosis
[90] Lipid and lipoprotein metabolism
[96] Mechanisms of atherosclerosis/growth factors

Address correspondence to:
Dr. Daniel J. Rader
11-125 Smilow Center for Translational Research
3400 Civic Center Blvd
Perelman School of Medicine of the University of Pennsylvania
Philadelphia, PA 19104 USA
Tel: (215) 573-4176
Fax: (215) 573-8606
rader@mail.med.upenn.edu

In December 2014, the average time from submission to first decision for all original research papers submitted to Circulation Research was 14.47 days.
ABSTRACT

Rationale: Non-coding gene variants at the SORT1 locus are strongly associated with LDL-C levels as well as with coronary artery disease (CAD). SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apoB-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macrophage uptake of LDL and in atherosclerosis independent of plasma LDL-C levels is unknown.

Objective: To determine the effect of macrophage sortilin expression on LDL uptake, foam cell formation, and atherosclerosis.

Methods and Results: We crossed Sort1-/- mice onto a ‘humanized’ Apobec1-/-; hAPOB Tg background and determined that Sort1 deficiency on this background had no effect on plasma LDL-C levels but dramatically reduced atherosclerosis in the aorta and aortic root. In order to test whether this effect was a result of macrophage sortilin deficiency, we transplanted Sort1-/-;LDLR-/- or Sort1+/+;LDLR-/- bone marrow into Ldlr-/- mice and observed a similar reduction in atherosclerosis in mice lacking hematopoietic sortilin without an effect on plasma LDL-C levels. In an effort to determine the mechanism by which hematopoietic sortilin deficiency reduced atherosclerosis, we found no effect of sortilin deficiency on macrophage recruitment or LPS-induced cytokine release in vivo. In contrast, sortilin deficient macrophages had significantly reduced uptake of native LDL ex vivo and reduced foam cell formation in vivo, whereas sortilin overexpression in macrophages resulted in increased LDL uptake and foam cell formation.

Conclusions: Macrophage sortilin deficiency protects against atherosclerosis by reducing macrophage uptake of LDL. Sortilin-mediated uptake of native LDL into macrophages may be an important mechanism of foam cell formation and contributor to atherosclerosis development.

Keywords: Atherosclerosis, low density lipoprotein cholesterol, macrophage, foam cell, receptor-mediated endocytosis

Nonstandard Abbreviations and Acronyms:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL</td>
<td>low-density lipoprotein cholesterol</td>
</tr>
<tr>
<td>LDLR</td>
<td>low-density lipoprotein receptor</td>
</tr>
<tr>
<td>Tg</td>
<td>transgenic</td>
</tr>
<tr>
<td>ApoB</td>
<td>Apolipoprotein B</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GWAS</td>
<td>genome wide association studies</td>
</tr>
</tbody>
</table>
INTRODUCTION

Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality in the world. A central hallmark of atherosclerosis is the cholesterol-loaded macrophage or ‘foam cell.’ Despite decades of research, the molecular mechanisms by which arterial macrophages take up cholesterol-rich lipoproteins, such as low density lipoproteins (LDL), leading to the development of foam cells and atherosclerotic lesions remain to be fully elucidated. Kruth and colleagues have shown that macrophages internalize native LDL through a process of macropinocytosis, although LDL uptake cannot be fully accounted for by this process. Gene deletion of known receptors of modified LDL, such as scavenger receptor A (SRA) and CD36, do not reduce foam cell formation or the development of atherosclerosis in mice. Thus, pathways that mediate macrophage uptake of LDL leading to foam cell formation and atherosclerosis remain of substantial interest.

Unbiased genome-wide association studies (GWAS) of coronary artery disease (CAD) have the potential to identify new pathways involved in atherosclerosis. In one of the first GWAS for CAD, non-coding genetic variants at chromosome 1p13 were reported to be significantly associated with myocardial infarction and CAD, a finding that has been widely replicated. The same variants have also shown to be significantly associated with plasma levels of LDL cholesterol. The SORT1 gene, encoding the protein sortilin, appears to be the causal gene at the locus regulating LDL cholesterol levels. Sortilin is a type I transmembrane trafficking receptor initially characterized by its ability to serve as a receptor for proneurotrophins and for its role as a sorting receptor for lysosomal hydrolases. Hepatic sortilin expression modulates VLDL production rates; in addition, hepatic sortilin binds LDL and promotes its cellular uptake and lysosomal degradation. Sortilin is also expressed in macrophages, but little is known about its function in this cell type or its relationship to atherosclerosis. We hypothesized that macrophage sortilin mediates macrophage LDL uptake. Through a combination of in vivo mouse studies and ex vivo macrophage studies utilizing Sort1-/- macrophages, we show here that macrophage sortilin promotes macrophage LDL uptake, foam cell formation, and atherosclerosis independent of plasma LDL-C levels.

METHODS

Detailed descriptions of all Methods can be found in the Online Supplement. Following is a summary of the key experimental approaches.

For studies of the effect of total body sortilin deficiency on atherosclerosis, we used the Apobec1-/-; hAPOB Tg mouse, in which the human apoB transgene is overexpressed in the liver and, in contrast to the wild-type mouse, is not edited, thus producing only the apoB-100 protein. These mice were crossed with total body Sort1-/- mice and experiments compared Sort1-/-;Apobec1-/-; hAPOB Tg mice to Sort1+/-;Apobec1-/-; hAPOB Tg littermates. Mice were fed a western-type diet for 18 weeks and assessed for atherosclerosis in the aortic roots and the entire aorta by en face quantitation. A detailed description of the atherosclerosis methods can be found in the Online Supplement.

For studies of hematopoietic sortilin deficiency on atherosclerosis, we transplanted donor Sort1-/-;Ldlr-/- and Sort1+/-;Ldlr-/- bone marrow into irradiated recipient Ldlr-/- mice. Six weeks post bone marrow transplantation the mice were placed on a western diet for 18 weeks and then assessed for atherosclerosis.

For studies of macrophage LDL uptake, both thioglycollate-elicited peritoneal macrophages and bone-marrow derived macrophages were used. The macrophages were incubated with I-LDL for five hours and uptake and degradation were assessed.

DOI: 10.1161/CIRCRESAHA.116.305811
Statistical analyses were done using 2-tailed paired student’s t test and 1 way ANOVA with a Bonferroni correction (for LPS experiment).

RESULTS

Sortilin deficiency in hematopoietic cells protects against atherosclerosis.

Total body Sort1 deficiency on an Ldlr/- background is associated with reduced plasma cholesterol levels, confounding attempts to address its role in atherosclerosis independent of LDL-C levels. We crossed Sort1/- mice onto the background of an atherosclerosis-prone Apobec1-/-; hAPOB Tg mouse model, which has a human-like lipoprotein profile, and fed the mice a western type diet for 18 weeks. On this genetic background, total and LDL cholesterol levels were not different in Sort1/- mice compared with Sort1+/+ mice (Figure 1a,b). After 18 weeks on diet, Sort1-/- mice had a 68% reduction in en face aorta lesion area (P <0.0001 Figure 1c,d) and an 87% reduction in aortic root lesion area (P <0.0001 Figure 1e,f) compared with Sort1+/+ mice, demonstrating a major effect of sortilin deficiency in reducing atherosclerosis despite no effect on plasma cholesterol in this model.

Macrophages express sortilin and we hypothesized that macrophage sortilin deficiency might account specifically for the reduced atherosclerosis. In order to test this hypothesis, irradiated Ldlr/- mice were transplanted with bone marrow from Sort1-/-;Ldlr/- mice or Sort1+/+;Ldlr/- mice and 6 weeks after transplantation were started on a western type diet and fed for 18 weeks. Bone marrow engraftment was 74% (Online Figure 1a). Body, liver and spleen weights, plasma cholesterol, peripheral blood counts, and hepatic Sort1 expression were similar between groups (Online Figure 1). Mice transplanted with Sort1-/-;Ldlr/- bone marrow had a 69% reduction in en face aortic lesion area (P<0.00001) and a 34% reduction in aortic root lesion area (P < 0.01) compared to mice transplanted with Sort1+/+;Ldlr/- bone marrow (Figure 2a-d), suggesting that hematopoietic, and potentially macrophage sortilin influences the development of atherosclerotic disease.

Sortilin deficiency has no effect on thioglycollate-elicited monocyte recruitment or LPS-induced inflammatory response in vivo.

Monocyte recruitment is a key determinant of the macrophage content of atherosclerotic lesions. To determine if Sort1 deficiency affects macrophage recruitment, Sort1-/- and Sort1+/+ mice were injected i.p. with thioglycollate to elicit an inflammatory response. Three days after injection, peritoneal macrophages were harvested and counted. There was no difference in macrophage counts between Sort1+/+ and Sort -/- mice (Online Figure IIa). Monocyte recruitment and atherosclerosis development is strongly influenced by inflammation and cytokine production. To determine if Sort1-/- mice have reduced cytokine levels, cytokine multiplexing assays were performed on Sort1-/- and Sort1+/+ mice injected with lipopolysaccharide (LPS). Cytokine levels post LPS injection were found to be similar between Sort1-/- and Sort1 +/+ (Online Figure IIb,c).

Macrophage sortilin deficiency reduces LDL uptake and foam cell formation.

To determine if macrophage sortilin deficiency reduces foam cell formation, primary bone marrow macrophages were isolated from Sort1-/-; Ldlr/- and control Sort1+/+; Ldlr/- mice, cells were differentiated with M-CSF for 7 days, incubated with 1 mg/mL LDL for 5 hours, and Oil Red O staining was performed. Sort1-/-;Ldlr/- macrophages had a clear and consistent reduction in Oil Red O staining (Figure 3a). Sort1 deficient macrophages had a significant 28% reduction in total cellular cholesterol, a 25% reduction in free cholesterol, and a 32% reduction in cholesteryl ester (P<0.05; Figure 3b-d). In vivo...
foam cell formation assays were performed by isolating thioglycollate-elicited peritoneal macrophages from Sort1+/+;ApoBec-/-;hApob Tg and Sort1-/-;ApoBec-/-;hApob Tg mice fed a western type diet for 18 weeks. Consistent with the in vitro loading experiments, macrophages isolated from Sort1-/− mice had reduced Oil Red O staining and a significant 33% reduction in cellular cholesterol content compared to macrophages isolated from Sort1+/+ mice (P<0.05; Figure 3e-f). These studies indicated that sortilin-deficient macrophages have reduced capacity to form foam cells when exposed to high levels of LDL.

As sortilin can act as a receptor for LDL in hepatocytes, we hypothesized that sortilin promotes the internalization of LDL by macrophages. To test the response of sortilin expression to increasing cholesterol concentration in macrophages, thioglycollate-elicited peritoneal macrophages were isolated from wild-type mice and incubated for 24 hours in lipoprotein-deficient serum, lipoprotein-deficient serum supplemented with 25-hydroxycholesterol to reduce intracellular cholesterol content, or with lipoprotein deficient serum supplemented with high concentrations of LDL. In contrast to the LDL receptor, whose expression was reduced by co-incubation with LDL, Sort1 mRNA abundance increased over 400-fold with LDL incubation (P <0.05; Figure 4a) and sortilin protein also increased significantly with LDL incubation (Figure 4b).

To test the hypothesis that sortilin is able to promote the uptake of LDL into macrophages, 125I-LDL uptake studies were performed in thioglycollate-elicited and bone marrow derived macrophages from Sort1+/+ and Sort1-/− mice. Sort1 deficiency was associated with a 48% and 33% percent reduction in LDL uptake, respectively (P <0.05 for both; Figure 4c-d). We next tested if this effect on LDL uptake was independent of the LDL receptor. Bone marrow derived macrophages were isolated from Sort1+/+;Ldlr-/− and Sort1-/−;Ldlr-/− mice and 125I-LDL uptake studies were performed. Sort1 deficiency was associated with a 39% percent reduction in LDL uptake in the absence of the LDLR (P<0.05; Figure 4f).

To further confirm that sortilin deficiency confers atheroprotection by eliminating a receptor dependent pathway for LDL uptake and not by modulating macropinocytosis, LDL uptake studies were performed in bone marrow derived macrophages in the presence of cytochalasin D, a potent inhibitor of actin polymerization and macropinocytosis. Under these conditions, while LDL uptake is reduced, substantial residual LDL uptake still takes place. Sort1 deficiency was associated with a 38% reduction in LDL uptake in the presence of cytochalasin D (P< 0.05; Figure 4f). These studies indicate that macrophage sortilin deficiency reduces macrophage uptake of LDL and formation of foam cells and this effect is independent of the LDL receptor and of macropinocytosis.

Finally, to determine whether increased macrophage sortilin results in increased LDL uptake, J774 cells were transduced with lentivirus encoding GFP or Sort1 and LDL uptake studies were performed. Sort1 overexpression in macrophages led to a 29% increase in LDL uptake (P< 0.05; Figure 4e).

DISCUSSION

Genetic variation at the 1p13 SORT1 locus is strongly associated both with CAD, as well as with plasma LDL-C levels. We have previously shown that sortilin is a cell surface receptor for LDL on hepatocytes and its elevated expression in liver reduces LDL-C at least in part by facilitating LDL clearance from blood. Sortilin is expressed in macrophages, which actively take up LDL, leading us to investigate the role of macrophage sortilin in LDL uptake, foam cell formation, and atherosclerosis. After a series of studies of atherosclerosis in mice and LDL uptake in macrophages, we conclude that macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis and that deficiency is protective against atherosclerosis at least in part by reducing LDL uptake.
Macrophage uptake of modified LDL can be mediated by scavenger receptors such as SRA and CD36. However, deletion of SRA or CD36 does not reduce macrophage uptake of native LDL, nor does it ameliorate atherosclerosis in hypercholesterolemic mice. Even CD36−/−, SRA−/− mice still contain abundant lipid laden macrophages in vessel wall and develop atherosclerosis. Kruth has shown that macrophages can take up native LDL through fluid-phase macropinocytosis, but there remains substantial LDL uptake even when this pathway is inhibited. Our data establish macrophage sortilin as the first receptor-mediated pathway of uptake of native LDL leading to foam cell formation and promoting atherosclerosis development. We also found that increasing concentrations of extracellular LDL causes an upregulation of macrophage Sort1 mRNA and protein. Because a function of macrophages is to phagocytose LDL, it is very possible that increased exposure of macrophages to LDL triggers the transcriptional upregulation of sortilin, which then mediates increased LDL uptake. The mechanisms of this upregulation of macrophage Sort1 by LDL require further exploration.

While this manuscript was under preparation, Mortensen et al. reported that sortilin deficiency reduced atherosclerosis in the ApoE−/− mouse model. While the fundamental observation is consistent with our data, these authors suggested a different mechanism, namely that decreased proinflammatory cytokines may have been responsible for the reduced atherosclerosis. We performed our cytokine assays prior to initiation of atherosclerotic disease, while Mortensen et al measured the cytokine profile after disease was present. In addition, these authors did not see a reduction in LDL uptake by sortilin deficient macrophages, although they used an ATTO dye conjugated to the LDL that may have influenced the interaction with sortilin. We also used a different mouse model, the Apobec1−/−; hAPOB Tg mouse, in which human apoB-100 containing LDL is the dominant lipoprotein, in a human-like lipoprotein profile, while Mortensen et al used the Apoe−/− mouse, which is characterized primarily by mouse apoB-48 containing remnant lipoproteins. Overall, the top-line results of the two studies, which used very different mouse atherosclerosis models, are highly comparable, whereas the mechanisms responsible for the reduced atherosclerosis may be complex and multifactorial.

In summary, our findings indicate that SORT1 deficiency in macrophages reduces LDL uptake and macrophage cholesterol loading independent of the LDL receptor or macropinocytosis, and protects against the development of atherosclerosis. The macrophage sortilin pathway is a novel pathway of macrophage cholesterol loading that quantitatively contributes to atherosclerosis.

ACKNOWLEDGEMENTS
We would like to thank Aisha Wilson, Edwige Edoard, Mao-Sen Sun, Amrith Rodrigues and Antonino Picataggi for animal/cell help; Kiran Musunuru and Qiuong Ding for human SORT1 and GFP plasmids. Deborah Cromley for help with lipid measurements; Margaret Nickel and Kevin Trindade for LDL isolation; Human Immunology Core for running Bioplex Pro Assay; Karen Vo for help with Hemavet; Edward Fisher, Peter Davies, Ellen Pure, Richard Assoian, Sissel Lund-Katz, Michael Phillips, Yanqing Gong, Robert Bauer, and Sony Tuteja-Stevens for scientific discussions.

SOURCES OF FUNDING
This work was supported by R01HL109489 from the NHLBI (DJR) and T32GM008076-30 from the NIGMS (KP).

DISCLOSURES
None.
REFERENCES

DOI: 10.1161/CIRCRESAHA.116.305811

FIGURE LEGENDS

Figure 1: Whole body *Sort1* deficiency reduces atherosclerosis independent of plasma lipid level
A. Eight week old Apobec -/-; hApop Tg and Sort -/-;Apobec -/-; hApopTg mice (n=10 per group) placed on a western diet for 18 weeks and retroorbital bleeds were performed after a 4 hr fast. Plasma was isolated by centrifugation and samples were run individually on a Cobas Mira Autoanalyzer (Roche Diagnostic Systems). B. Samples were pooled and run on FPLC. C. Whole aortas were dissected and tissues harvested. Aortas were stained with Oil Red O. D. Quantification of lesions on aorta E. Aortic roots were sectioned & stained with hematoxylin eosin (H&E) F. Quantification of atherosclerotic lesion area at aortic root P value <0.01

Figure 2: *Sort1* hematopoietic deficiency reduces atherosclerosis
A. After 18 weeks on western diet recipient *Ldlr*--/-- mice carrying donor *Ldlr*--/-- or *Sort1*--/--;*Ldlr*--/-- (n=11 per group) bone marrow transplanted mice aortas were dissected and stained with Oil Red O B. Quantification of lesions on aorta P<0.00001 C. Representative aortic roots stained with H&E D. Quantification of aortic roots P value <0.01

Figure 3: *Sort1* deficiency reduces macrophage cellular cholesterol levels and Oil Red O staining in vivo and in vitro.
A. Bone marrow-derived macrophages were stained with Oil Red O (n=3) B. Cellular total cholesterol C. Free cholesterol D. Cholesterol ester measured by gas chromatography (GC/MS). E. Peritoneal macrophages from mice fed a western diet for 18 weeks were isolated and stained with Oil Red O F. Cellular total cholesterol of peritoneal macrophages measured by GC/MS. All experiments were replicated.

Figure 4: LDL loading increases sortilin in macrophages, where it mediates uptake of LDL.
A. Thio-elicited peritoneal macrophages were incubated in conditions listed above. RNA expression and B. Westerns C. I-125 LDL uptake study from thioglycollate -elicited macrophages from *Sort1* +/+ and *Sort1* -/- mice (n=6) D. I-125 LDL uptake study from bone marrow derived macrophages from *Sort1* +/+ and *Sort1* -/- mice (n=6) E. and F. M-CSF differentiated macrophages from *Ldlr* -/- and *Sort1* -/-; *Ldlr* -/- mice. 250ug/ml LDL was incubated and 4ug/ml cytochalasin D (as indicated) for 5 hours (n=6).
Novelty and Significance

What Is Known?

- Genetic variants at the SORT1 locus are associated with plasma low density lipoprotein cholesterol (LDL-C) levels as well as myocardial infarction and coronary artery disease (CAD).

- The gene SORT1 encodes a protein called sortilin, which in hepatocytes can mediate the uptake and degradation of LDL.

What New Information Does This Article Contribute?

- Deletion of sortilin in macrophages reduces foam cell formation and atherosclerosis without influencing plasma LDL-C levels.

- Macrophage sortilin is a new receptor-mediated pathway promoting uptake of native LDL by macrophages promoting foam cell formation and atherosclerosis.

The mechanisms linking genetic variation at the SORT1 locus with CAD have not been fully elucidated. Using atherosclerosis-prone mice with a human-like lipoprotein profile, we found that deletion of sortilin in the whole body or specifically in macrophages substantially reduced atherosclerosis without affecting plasma cholesterol. We found that macrophage sortilin mediates the uptake of native (unmodified) LDL leading to foam cell formation, a novel receptor-mediated process for macrophage uptake of LDL. This pathway could potentially be targeted as an approach to reducing risk of atherosclerosis.
Figure 2

A. Donor: Ldlr-/- Recipient: Ldlr-/-

B. Whole Aorta (enface)

C. Donor: Ldlr-/- Recipient: Ldlr-/-

D. Aortic Root

E. Donor: Sort1-/-; Ldlr-/- Recipient: Ldlr-/-

F. Donor: Sort1-/-; Ldlr-/- Recipient: Ldlr-/-

Graphs showing lesion area comparison between different genotypes.
Figure 3

A) Ldlr -/-

B) Apobec -/-; hApob Tg

C) Sort1 -/-; Ldlr -/-

D) Sort1 -/-; Apobec -/-; hApob Tg

E) Apobec -/-; hApob Tg

F) total cholesterol (nmol/mg protein)
Figure 4

A

B

C

D

E

F
Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and Atherosclerosis
Kevin M Patel, Alanna Strong, Junichiro Tohyama, Xueting Jin, Carlos R Morales, Jeff Billheimer, John S Millar, Howard Kruth and Daniel J Rader

Circ Res. published online January 15, 2015;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2015/01/15/CIRCRESAHA.116.305811

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2015/01/15/CIRCRESAHA.116.305811.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

METHODS

Animals

Sort1-/- mice were obtained from Dr. Carlos Morales at McGill University and crossed onto the Apobec1-/-; hAPOB Tg background. Ldlr-/- mice for the bone marrow transplant studies. The University of Pennsylvania IACUC approved all animal protocols.

Total body sortilin deficient mouse atherosclerosis studies

Female Sort1-/-:Apobec1-/-; hAPOB Tg mice (n=10) and Sort1+/+;Apobec1-/-; hAPOB Tg littermates (n=10) at 8 weeks of age were started on a western-type diet. Mice placed on a western diet (21% fat, 50% carbohydrate, 20% protein Research Diets D12079B), which was continued for 18 weeks. Mice were bled at weeks 0, 2, and 9 and after 18 weeks on the diet were sacrificed and assessed for atherosclerosis in the aortic roots and the entire aorta by en face quantitation (see below).

Hematopoietic sortilin deficient mouse atherosclerosis studies

Donor bone marrow was isolated from male Sort1-/-;Ldlr-/- and Ldlr-/- mice by flushing femurs and tibias with sterile PBS. Female Ldlr-/- recipient mice (8-10 weeks old) were irradiated with 900 rads from a cesium g source prior to transplantation. Each irradiated mouse was then injected with 4 E6 donor bone marrow cells via tail vein injection. The recipient Ldlr-/- mice were given water with sulfamethoxazole and trimethoprim for 2 weeks post bone marrow transplantation. For bone marrow engraftment, Sort1 mRNA was quantified in spleen using quantitative PCR. Six weeks post transplantation mice were placed on a western diet for 18 weeks. Mice were bled at weeks 0, 4, and 14, and after 18 weeks on the diet were sacrificed and assessed for atherosclerosis in the aortic roots and the entire aorta by en face quantitation (see below).

Atherosclerosis quantitation and assessment

Mice placed on a western diet (21% fat, 50% carbohydrate, 20% protein Research Diets D12079B) for 18 weeks were anesthetized with isoflurane followed by a cervical dislocation after a four-hour fast. Aortas were collected from the base of ascending aorta and to the iliac bifurcation, whereas aortic roots with heart were harvested and both are fixed in 4% paraformaldehyde. Aortas for en face were stained with Oil Red O. Aortic roots were dehydrated and paraffin embedded and used for lesion area quantification. Images were captured with Leica MZ12 microscope at a 40x magnification and quantification was performed with Image Pro Plus Software. For en face atherosclerotic lesion area was quantified in reference to the total surface area of the aorta as previously described. For aortic root
atherosclerosis, lesion area was measured over the hematoxylin and eosin stained sections prepared from paraffin embedded hearts. In aortic roots atherosclerosis in either Sort1-/- or Sort +/- on Apobec1-/-; hAPOB Tg model, we quantified representative section where captures 3 aortic valve leaflet equally observed in the section slice (same section as described below). In the quantification of aortic roots atherosclerosis in irradiated / bone marrow transplanted experiment; we quantified lesion area of 5 serial sections (80um between sections) in each mice. For choosing 5 sections, we first defied a “zero-point” where meets all 3 leaflet of the aortic valve moving from aortic vessel towards internal lumen of the vessel. Then 2 serial sections towards aortic arch and another 2 distal serial sections to the zero point into the ventricle chamber were quantified. For each mouse, the data was represented as average lesion area (average area across the 5 points).

Monocyte recruitment assay

Sort1+/+ and Sort1 -/- (n=10 per group) were injected i.p. with thioglycollate (3%) and three days later macrophages were isolated and counted by hemocytometer.

Assessment of cytokine response to LPS injection

Sort1+/+ and Sort1 -/- (n=10 per group) were injected i.p. with LPS (3mg/kg). Mice were bled retroorbitally 2 and 5 hours post injection. Serum was isolated and run on the Bioplex Pro Mouse Cytokine 23-plex Immunoassay (#M60-009RDPD).

Studies of macrophage foam cell formation

For in vitro studies, M-CSF differentiated bone marrow macrophages from Sort1-/-;Ldlr -/- and Ldlr -/- mice (n=3 per group; for procedure see below) on day 7 were incubated with 1 mg/ml LDL for 5 hours. The cells were fixed with paraformaldehyde and stained with Oil Red O and hematoxylin. For in vivo foam cell formation studies, Sort1-/-;Apobec1-/-; hAPOB Tg mice and Sort1 +/-;Apobec1-/-; hAPOB Tg littermates (n=3 per group) were placed on a western diet for 18 weeks. Thioglycollate (3%) was injected i.p. and 3 days later cells were peritoneal macrophages were isolated, plated, and stained with Oil Red O and hematoxylin.

Studies of macrophage LDL uptake

For studies of macrophage LDL uptake, both thioglycollate-elicited peritoneal macrophages and bone marrow derived macrophages were used. For isolation of thioglycollate-elicited peritoneal macrophages, Sort1+/+ and Sort1 -/- (n=6 per group) were injected i.p. with thioglycollate (3%) and three days later macrophages were isolated. Thioglycollate-elicited peritoneal macrophages after plating were incubated
with 500ug/ml of LDL in 10% LPDS overnight. The next day the LDL uptake assay was performed with 25ug/ml I-125 LDL. For isolation of bone marrow derived macrophages, bone marrow was isolated from mice femurs from Sort1+/+ and Sort1 -/- (n=2 per group). Monocytes were differentiated for 7 days in M-CSF media into macrophages and on day 7 an LDL uptake study was performed with 250 ug/ml I-125 LDL. For lentiviral expression of SORT1 in J774 macrophages, lentivirus encoding human was generated as previously described.10 J774 cells were transduced with viral supernatant (Control: GFP + rtTA, Experimental SORT1 + rtTA). The cells were incubated at 37°C overnight, viral supernatant was removed, and cells were grown in RPMI medium. LDL uptake assay was performed with 25 ug/ml I-125 LDL.

LDL uptake assay

The macrophages (thioglycollate-elicited peritoneal or bone marrow derived) were incubated with¹²⁵I-LDL for five hours. In some experiments, cytochalasin D (4ug/ml) was added to bone marrow derived macrophages as indicated right before LDL incubation. Cells were dissolved in 0.2M NaOH. The values were standardized to protein content of the dissolved cells in NaOH by bicinechonic acid (BCA) assay (Thermo). After incubation the media was removed. Trichloroacetic acid was added to precipitate out unreacted LDL, followed by chloroform extraction of free iodine. Total Uptake values represent the sum of LDL associated and degraded.

Statistics

Statistical analyses were done using 2-tailed paired student’s t test for total body knockout atherosclerosis, bone marrow transplant atherosclerosis, LDL uptake, macrophage recruitment, cellular cholesterol experiments. A 1 way ANOVA with a Bonferroni correction was done for the LPS experiment.
Online Figure I

Online Figure I: Characterization of recipient Ldlr-/- mice carrying donor Ldlr-/- or Sort1-/-;Ldlr-/- bone marrow. N=11
A. Sort1 deficiency in bone marrow has no effect on body weight. B. Sort1 deficiency in bone marrow has no effect on Liver, C. Spleen, or D. Adipose Mass. E. Sortilin deficiency in bone marrow has no effect on plasma lipids. F. Sort1 deficiency in bone marrow has no effect on white blood cells (WBC), neutrophils (NE#), lymphocytes (LY#), G. monocytes (MO#), eosinophils (EO#), basophils (BA#). H. Sort1 deficiency in bone marrow has no effect on platelet number. I. Bone marrow engraftment was 74% as measured by Sort1 expression in spleen. N=11 P value <0.01
Online Figure II

Online Figure II: Sortilin deficiency has no effect on macrophage recruitment or modulation of inflammation. **A.** Thioglycollate (3%w/v) was injected into peritoneal cavity and after 3 days peritoneal macrophages were counted from Sort1 +/+ and Sort -/- mice (n=10) **B.** Serum cytokine levels were measured 2 hours and **C.** 5 hours post lipopolysaccharide injection in Sort1 +/+ and Sort -/- mice (n=10)