Ankyrin-G Coordinates Intercalated Disc Signaling Platform to Regulate Cardiac Excitability In Vivo

Michael A. Makara1,3, Jerry Curran1,3, Sean C. Little1,3, Hassan Musa1,3, Iuliia Polina1,3, Sakima A. Smith1,2,3, Patrick J. Wright1,3, Sathya D. Unudurthi1,4, Jed Snyder1,4, Vann Bennett5, Thomas J. Hund1,4 and Peter J. Mohler1,2,3

1The Ohio State University Wexner Medical Center, The Dorothy M. Davis Heart & Lung Research Institute; 2Department of Internal Medicine; 3Physiology and Cell Biology; 4The Ohio State University College of Engineering, Department of Biomedical Engineering, Columbus, OH, and; 5Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center; Durham, NC 27709.

Running title: Ankyrin-G Signaling Platform

Subject codes:
[132] Arrhythmias-basic studies
[137] Cell biology-structural biology
[130] Animal models of human disease
[152] Ion channels/membrane transport

Address correspondence to:
Dr. Peter Mohler
The Ohio State University Wexner Medical Center
The Dorothy M. Davis Heart & Lung Research Institute
473 W. 12th Ave.
Columbus, OH 43210
Tel: 614-292-5019
Fax: 614-247-7799
peter.mohler@osumc.edu

In August, 2014, the average time from submission to first decision for all original research papers submitted to Circulation Research was 13.55 days.

DOI: 10.1161/CIRCRESAHA.115.305154
ABSTRACT

Rationale: Na\textsubscript{v}1.5 (\textit{SCN5A}) is the primary cardiac voltage-gated Na\textsubscript{v} channel. Na\textsubscript{v}1.5 is critical for cardiac excitability and conduction, and human \textit{SCN5A} mutations cause sinus node dysfunction, atrial fibrillation, conductional abnormalities, and ventricular arrhythmias. Further, defects in Na\textsubscript{v}1.5 regulation are linked with malignant arrhythmias associated with human heart failure. Consequently, therapies to target select Na\textsubscript{v}1.5 properties have remained at the forefront of cardiovascular medicine. However, despite years of investigation, the fundamental pathways governing Na\textsubscript{v}1.5 membrane targeting, assembly, and regulation are still largely undefined.

Objective: Define the in vivo mechanisms underlying Na\textsubscript{v}1.5 membrane regulation.

Methods and Results: Here, we define the molecular basis of a Na\textsubscript{v} channel regulatory platform in heart. Using new cardiac-selective ankyrin-G−/− mice (cKO), we report that ankyrin-G targets Na\textsubscript{v}1.5, and its regulatory protein, calcium/calmodulin-dependent kinase II (CaMKII) to the intercalated disc. Mechanistically, \(\beta\)\textsubscript{IV}-spectrin is requisite for ankyrin-dependent targeting of CaMKII\(\delta\), however \(\beta\)\textsubscript{IV}-spectrin is not essential for ankyrin-G expression. Ankyrin-G cKO myocytes display decreased Na\textsubscript{v}1.5 expression/membrane localization, and reduced \(I_{Na}\) associated with pronounced bradycardia, conduction abnormalities, and ventricular arrhythmia in response to Na\textsubscript{v} channel antagonists. Moreover, we report that ankyrin-G links Na\textsubscript{v} channels with broader intercalated disc signaling/structural nodes, as ankyrin-G loss results in reorganization of plakophilin-2 and lethal arrhythmias in response to beta-adrenergic stimulation.

Conclusions: Our findings provide the first in vivo data for the molecular pathway required for intercalated disc Na\textsubscript{v}1.5 targeting/regulation in heart. Further, these new data identify the basis of an in vivo cellular platform critical for membrane recruitment and regulation of Na\textsubscript{v}1.5.

Keywords: Na\textsubscript{v}1.5, protein trafficking, targeting, cell biology, ankyrin, sodium channels, cytoskeletal dynamics, mouse mutant, arrhythmia (mechanisms).

Nonstandard Abbreviations and Acronyms:
CaMKII calcium/calmodulin-dependent kinase II
cKO conditional knock-out mouse
GST glutathione-S-transferase
Iso Isoproterenol
AV Atrioventricular

DOI: 10.1161/CIRCRESAHA.115.305154
INTRODUCTION

SCN5A-encoded Na\textsubscript{v}1.5 is the principal voltage-gated Na\textsubscript{v} channel in heart. Na\textsubscript{v}1.5 regulates the rapid upstroke of the cardiac action potential, and human SCN5A mutations are linked with multiple forms of human cardiovascular disease including sinus node dysfunction, atrial fibrillation, conduction defects, and ventricular arrhythmias.1-3 Na\textsubscript{v}1.5 dysfunction is further linked with arrhythmias associated with acquired heart failure.4 Based on the role of Na\textsubscript{v}1.5 in health and disease, therapies to target select Na\textsubscript{v}1.5 properties have remained at the forefront of cardiovascular medicine.5 Unfortunately, the molecular pathways underlying Na\textsubscript{v}1.5 regulation remain largely undefined partially due to lack of essential in vivo data.

Na\textsubscript{v}1.5 is principally regulated by membrane voltage. However, more recent data demonstrate that Na\textsubscript{v}1.5 is secondarily modulated by the calcium/calmodulin-dependent kinase II\textdelta (CaMKII\textdelta) for acute action potential modulation and propagation.6, 7 Importantly, elevated CaMKII activity in heart disease is associated with increased pro-arrrhythmic Na\textsubscript{v}1.5-dependent late sodium current (\(I\textsubscript{Na,L}\)).6, 7 The mechanisms underlying CaMKII\textdelta-dependent regulation of Na\textsubscript{v}1.5 were unknown until recent work revealed phosphorylation of the channel (Na\textsubscript{v}1.5 S571) at baseline and hyper-phosphorylation of the channel in disease.8 However, the cellular pathways underlying this local regulation have remained undefined.

Ankyrin polypeptides play critical roles in ion channel and transporter targeting in excitable and non-excitable cells. Ankyrin-R (ANK1) links membrane transporters to the cytoskeleton in erythrocytes and human ANK1 mutations cause hereditary spherocytosis.9 Ankyrin-B (ANK2) is critical for ion channel and transporter targeting in heart, brain, and pancreas, and ankyrin-B dysfunction has been linked with sinus node disease, atrial fibrillation, ventricular arrhythmia, and diabetes.10-14 Finally, ankyrin-G (ANK3) plays central roles for ion channel targeting in neurons.15 While in vitro work supports an association between ankyrin-G and Na\textsubscript{v}1.5 in heart,16, 17 little is known about the role of this complex in vivo. Further, a link between ankyrin-G/Na\textsubscript{v}1.5 and CaMKII\textdelta is undefined. Finally, the functional pathophysiological consequences for disrupting any of these putative complexes are unknown.

We report the molecular basis of a novel signaling platform in heart that couples CaMKII\textdelta to Na\textsubscript{v}1.5. Our in vivo data demonstrate that ankyrin-G serves as an intercalated disc receptor for both Na\textsubscript{v}1.5 and \(\beta\text{IV}\) spectrin, a molecule originally identified in brain and linked with neurological disease.18 Mice harboring a conditional null allele for ankyrin-G in heart (cKO) are surprisingly viable, but display decreased Na\textsubscript{v}1.5 expression, membrane localization, and \(I\textsubscript{Na,L}\) associated with bradycardia, conduction abnormalities, QRS prolongation, and ventricular arrhythmias in response to Na\textsubscript{v} channel antagonists. Further, ankyrin-G cKO mice show loss of \(\beta\text{IV}\) spectrin recruitment to the intercalated disc membrane. \(\beta\text{IV}\) spectrin C-terminal domain associates with CaMKII\textdelta, and ankyrin-G cKO mice, as well as \(\beta\text{IV}\) spectrin mutant mice lacking the C-terminal domain (q4IV) show defects in CaMKII\textdelta targeting and CaMKII\textdelta-dependent regulation of \(I\textsubscript{Na,L}\). Finally, we report that the ankyrin-G-dependent protein platform links Na\textsubscript{v} channels with broader intercalated disc signaling/structural nodes, as in vivo ankyrin-G loss results in remodeling of plakophilin-2, a resident desmosome protein critical for intercalated disc integration with the intermediate filament-based cytoskeleton. Together, our findings identify a novel molecular platform critical for the membrane recruitment and regulation of Na\textsubscript{v}1.5 in heart. These findings further provide new insight into the pathways underlying cardiac excitability in health and disease.
METHODS

Biochemistry.
Immobilized GST-fusion proteins were incubated with 100 μg left ventricular heart lysate overnight in pull-down buffer at 4 °C.19 The samples were washed three times in pull-down buffer, eluted, and proteins were separated by SDS/PAGE. The gels were transferred to nitrocellulose and immunoblotted. Nitrocellulose blots were developed using standard protocols.

Additional Methods are found in Supplemental Materials.

RESULTS

Generation of mice with cardiac-specific deletion of ankyrin-G.

Based on its role in assembly of excitable domains in the nervous system20, and in vitro links with Na,1.5 in myocytes21, we hypothesized that ankyrin-G may serve as a molecular platform for cardiac Nav1.5 signaling. To test this role in vivo, we generated a conditional null mutant allele where exons 22-23 the mouse ankyrin-G gene (Ank3) is flanked by LoxP sites (Ank3fl/pg) and therefore are deleted in the presence of Cre recombinase (Figure 1A-C). We selectively eliminated ankyrin-G in post-natal cardiomyocytes by utilizing αMHC-Cre knock-in mice22; homozygous conditional knockout mice are referred to as αMHC-Cre; Ank3fl/pg or cKO. αMHC-Cre; Ank3fl/pg WT age- and sex-matched littermates were utilized as control mice. Surprisingly, cKO mice were viable, displayed no gross differences in size, weight, feeding, grooming, and showed no apparent deficits in motor function, unlike mice harboring selective deletion of cerebellar ankyrin-G.20 Immunoblots from whole heart lysates showed elimination of ankyrin-G in cKO heart (Figure 1D). Selective loss of ankyrin-G in the heart was confirmed by immunoblot from cortex, cerebellum, skeletal muscle, and kidney of control and cKO mice where we observed no difference in ankyrin-G expression (Figure 1E-F). At the level of the single ventricular myocyte, ankyrin-G is enriched at the intercalated disc along with N-cadherin (Figure 1G). Ankyrin-G expression at the intercalated disc (and minor population at transverse-tubule) was eliminated from cKO ventricular myocytes (Figure 1H).

Ankyrin-G cKO mice display abnormal Na, channel targeting and function.

Ankyrin-G is linked with voltage-gated Na, channel function in cerebellum.20 We therefore examined Na,1.5 expression, localization, and function in ankyrin-G cKO hearts. We observed a significant decrease in Na,1.5 expression in cKO hearts by immunoblot (Figure 2A-B, p<0.05). While primarily localized to the intercalated disc, Na,1.5 is also found in secondary populations at the peripheral sarcolemma23, 24 In line with immunoblot data, Na,1.5 expression was significantly reduced in cKO compared with WT myocytes (Figure 2C-D). Moreover, consistent with the localization of ankyrin-G, we observed selective loss of Na,1.5 from the intercalated disc in cKO myocytes (Figure 2C-F). Na,1.5 immunostaining at the peripheral sarcolemma in cKO myocytes was unaffected (Figure 2C-F). However, we observed populations of intracellular Na,1.5-positive puncta in ankyrin-G cKO myocytes (Figure 2F). This loss was specific for Na,1.5 as expression levels of Ca,1.2, Na/Ca exchanger 1 (NCX), and ankyrin-B were unchanged between WT and cKO hearts (Online Figure I). Consistent with these data, we observed ~50% reduction in peak I,Na in cKO myocytes compared with myocytes from WT littermates (Figure 2G-J). While I,Na was reduced in cKO myocytes, we observed no difference in Na,1.5 steady-state voltage-dependent inactivation or recovery from inactivation (Online Figure II). Finally, consistent with prior findings in Scn5a-/- mice25, loss of I,Na in cKO myocytes resulted in a significant decrease in action potential (AP) amplitude and maximum upstroke velocity (Vmax; Online Figure III). Together, these findings demonstrate an in vivo requirement of ankyrin-G for cardiac Na,1.5 membrane expression and function.

DOI: 10.1161/CIRCRESAHA.115.305154
Ankyrin-G recruits βIV spectrin to the myocyte intercalated disc.

Ankyrins partner with spectrin polypeptides to bridge membrane and cytoskeletal structures. In the nervous system, while ankyrin-G and βIV spectrin are required for assembly of the axon initial segment, ankyrin-G appears to serve as the primary organizing protein. To investigate the functional relationship between ankyrin-G and βIV spectrin in heart, we tested the localization of βIV spectrin in ankyrin-G cKO mice. In WT myocytes and heart, βIV spectrin was concentrated at the intercalated disc membrane (Figure 3, Online Figure IV). However, βIV spectrin was nearly absent from the intercalated disc membrane of cKO myocytes (Figure 3, Online Figure IV). Instead we observed populations of βIV spectrin-positive puncta near the peri-nuclear region in cKO myocytes (Figure 3). Thus, ankyrin-G is required for the recruitment of βIV spectrin to the myocyte intercalated disc.

βIV spectrin is not required for ankyrin-G or Na1.5 targeting in myocytes.

We tested the converse requirement of βIV spectrin for ankyrin-G and Na1.5 targeting in heart. For these experiments, we utilized a βIV spectrin mutant mouse model (qv4J mice) harboring a premature stop codon in the 10th spectrin repeat resulting in a truncated polypeptide lacking ankyrin-G-binding activity (located in 15th spectrin repeat; see Figure 4A). As expected, a GST-βIV spectrin fusion protein harboring the qv4J mutation lacked binding activity for ankyrin-G and Na1.5 (Figure 4B). In contrast to findings in neurons, qv4J myocytes displayed no significant difference in ankyrin-G or Na, channel expression compared to control hearts by immunoblot (Figure 4C-D). Further, we observed no difference in intercalated disc proteins N-cadherin or β-catenin in qv4J hearts (Figure 4C-D). In line with immunoblot data, we observed no difference in ankyrin-G or Na1.5 localization at the intercalated disc between control and qv4J myocytes (Figure 4E-H). However, consistent with the role of the βIV spectrin C-terminus in CaMKIIδ targeting27, qv4J myocytes displayed a significant decrease in CaMKIIδ expression (Figure 4C-D, p<0.05). In summary, our findings define a requirement of ankyrin-G for βIV spectrin targeting to the intercalated disc, whereas ankyrin-G is targeted to the disc independent of βIV spectrin-binding.

Ankyrin-G recruits CaMKIIδ to the myocyte intercalated disc.

βIV spectrin, via a short C-terminal motif, associates with CaMKIIδ. Based on the loss of βIV spectrin in ankyrin-G cKO hearts (Figure 3), we hypothesized that ankyrin-G cKO hearts would display decreased CaMKIIδ expression and abnormal intercalated disc targeting. We observed reduced CaMKIIδ expression by immunoblot in cKO versus control hearts (Figure 5A-B). In cKO heart, we observed selective loss of CaMKIIδ at the intercalated disc (location of βIV spectrin) versus other myocyte membrane populations (i.e. transverse-tubules, Figure 5C-D; Online Figure V). Thus, ankyrin-G, via βIV spectrin, controls the intracellular targeting of CaMKIIδ to the intercalated disc.

Ankyrin-G recruits CaMKIIδ to regulate Na1.5 phosphorylation.

In response to sympathetic stimulation, CaMKIIδ phosphorylates Na,1.5, via serine 571 (S571) to regulate Na1.5-dependent late current (I_{Na,L}). Ankyrin-G recruits both Na,1.5 and CaMKIIδ to the intercalated disc (Figures 2, 5). In line with these data, we observed reduced Na,1.5 S571 phosphorylation by both immunoblot and immunostaining in cKO myocytes compared with control cells (Online Figure VI A-D). When corrected for peak I_{Na}, we did not observe differences in I_{Na,L} between WT and cKO myocytes at baseline (Online Figure VII). However, consistent with the loss of CaMKII-dependent regulation of I_{Na,L} in the absence of ankyrin-G, we observed a significant difference in Iso-induced I_{Na,L} between WT and cKO
myocytes (Online Figure VII). Specifically, while WT myocytes displayed nearly a two-fold increase in $I_{Na,L}$ in response to Iso, we observed no statistical change in $I_{Na,L}$ in cKO myocytes ±Iso regardless of the voltage (Online Figure VII; p<0.05). Our combined data support an in vivo ankyrin-G-based platform with dual roles for Na channel recruitment and CaMKIIδ-dependent regulation.

Ankyrin-G cKO mice display bradycardia, conduction defects, and arrhythmia.

Impaired Na$_{1.5}$ function is associated with phenotypes of sinus node dysfunction, conduction defects, and ventricular arrhythmia. We therefore tested the role of the ankyrin-G-dependent disc platform for cardiac electrical regulation. Conscious ankyrin-G cKO mice monitored by electrocardiogram (ECG) telemetry exhibited significant reduction in resting heart rate compared with control mice (Figure 6A-C). Impaired atrioventricular (AV) conduction in cKO mice was also readily apparent in cKO mice as noted by an increase in PR interval compared with control mice (Figure 6D-F; intra-atrial conduction also reduced as evidenced by increased P wave duration, p<0.05). Moreover, cKO mice displayed a significant increase in the QRS interval, consistent with delayed intraventricular conduction (Figure 6D-E, G). In summary, in vivo findings strongly support a role of the ankyrin-G-based protein complex in regulation of Na channel function and cardiac excitability.

Flecainide induces bradycardia, QRS prolongation, and arrhythmia in cKO mice.

Class 1C anti-arrhythmics (Na channel antagonists) may be utilized in clinical practice to identify individuals with Na channel abnormalities. Moreover, these compounds (e.g. flecainide) have been used to uncover Na channel-based arrhythmia mechanisms in animal models. To test the functional relevance of Na channel dysfunction in the ankyrin-G cKO mouse, we analyzed ECGs of control and cKO mice following flecainide administration. At baseline, cKO mice displayed bradycardia compared to control mice (Figure 7A-B, E). Flecainide reduced heart rate in both control and cKO mice (Figure 7A-E). However, the effect of flecainide on heart rate was significant and potentially pathological in cKO mice as this intervention resulted in an overall ~30% decrease in heart rate compared with a normal mouse at baseline (Figure 7E; p<0.05). Further, in cKO but not control mice, flecainide caused AV block and ventricular arrhythmia (Figure 7F-H). Specifically, 10% of control mice displayed AV block in response to flecainide, whereas we recorded AV block in ~73% of cKO mice (Figure 7F-G; p<0.05). Of the mice showing AV block, the incidence of block was >140 fold greater in cKO mice (control: 0.019 ± 0.019 episodes/min; cKO: 2.75 ± 0.98 episodes/min; p<0.05). Moreover >80% of cKO mice showed arrhythmia including bigeminy and non-sustained ventricular arrhythmia, compared to 10% of control mice (Figure 7H, p<0.05). Consistent with conscious ECG recordings, anesthetized cKO mice displayed prolonged QRS interval compared with control mice (Online Figure VIII). This QRS interval difference between genotypes was further accentuated by flecainide administration (Online Figure VIII; p<0.05). Ankyrin-G cKO mice also showed increased PR interval duration following flecainide (Online Figure IX, p<0.05). Together, these data strongly support the role of ankyrin-G-protein complex in Na channel regulation in vivo, as well as link Na channel-based mechanisms with observed cardiac electrical phenotypes in the ankyrin-G cKO mouse.

Ankyrin-G cKO mice display defects in plakophilin-2 expression and cellular organization.

Beyond membrane ion channels, in vitro work supports roles of ankyrin-G for membrane protein regulation at cell junctions. We therefore tested the in vivo requirement of ankyrin-G for expression and localization of key intercalated disc proteins as well as Na$_{v}$ β-subunits that have been previously linked with ankyrin polypeptides. Notably, we observed no difference in expression or localization of disc proteins N-cadherin and β-catenin, or Na$_{v}$ channel β2 and β4 subunits between control and cKO hearts (Figure 8A-K; Online Figure X). In contrast, plakophilin-2 showed a 50% increase in expression in cKO hearts (Figure 8A-B). Further, we observed a striking redistribution of plakophilin-2 from the intercalated
disc of cKO myocytes to the cytosolic regions of cKO myocytes (Figure 8K-L; Online Figure XI). While prior work proposed a link for ankyrin-G in targeting of connexin43,17 we observed no difference in connexin43 or ZO-1 expression by immunoblot (Figure 8C-D). Together, our new in vivo data clearly support a role of ankyrin-G in intercalated disc protein organization.

Ankyrin-G cKO mice display catecholamine-induced arrhythmia and death.

Ankyrin-G cKO mice display a number of pro-arrhythmic ECG phenotypes associated with reduced I_{Na} (Figures 6-7). However, based on the additional observed molecular defects in ankyrin-G cKO animals (Figure 8), we tested cKO animals for arrhythmia susceptibility in response to elevated adrenergic stimulation. Ankyrin-G cKO mice showed arrhythmia phenotypes following a standard I.P. epinephrine injection protocol to mimic catecholaminergic stress (Online Figure XII). Specifically, the majority (~62.5%) of cKO mice displayed multiple instances of ventricular arrhythmia and ~38% of cKO mice died of malignant arrhythmias following this protocol (Online Figure XII; 3/8 cKO vs 0/6 control; $p<0.05$). The cKO mice also displayed decreased AV conduction compared to WT mice (increased PR interval; $p<0.05$; n=5/genotype) in these experiments. Examples of sustained premature ventricular contractions (PVCs) as well as polymorphic ventricular arrhythmia in cKO mice are shown in Online Figure XIIIB-C. We recorded no incidence of ventricular arrhythmia (0%) or death (0%; Online Figure XIIA, E) in WT animals using this protocol. In summary, we conclude that loss of the cardiac ankyrin-G-based protein platform results in pro-arrhythmic ECG phenotypes at rest, and arrhythmia and death in response to catecholaminergic stress. Of note, as catecholamine-based arrhythmias in cKO mice were observed in the absence of elevated CaMKIIδ or $I_{Na,L}$, we tested for potential alterations in myocyte calcium handling in cKO myocytes. Consistent with whole animal data (e.g. PVCs), cKO myocytes displayed increased incidence of spontaneous Ca waves compared with WT myocytes (Online Figure XIII; $p<0.05$).

Ankyrin-G cKO mice display cardiac structural phenotypes.

Ankyrins are linked with assembly and maintenance of structural domains in erythrocytes, epithelia, and neurons.36-38 Further, our data, and prior data from Delmar and colleagues17 link ankyrin-G with plakophilin-2, a protein associated with cardiac structural remodeling in humans and mice.31, 39, 40 We therefore examined ankyrin-G hearts for changes in cardiac structure or function at baseline and in aging. At 8 weeks, we observed no difference in heart weight/body weight (or tibia length) or systolic or diastolic wall thickness between WT and cKO mice (Online Figure XIV). While we observed a non-significant trend for increased systolic and diastolic LV diameter in cKO mice ($p=N.S.$), cKO mice displayed a small, but significant decrease in ejection fraction compared to WT littermates (Online Figure XIV). Notably, cKO mice displayed obvious cardiac phenotypes with age (~9 months) as indicated by a further depression in ejection fraction, increase in systolic and diastolic chamber diameters, and reduction of both the anterior and posterior wall thickness compared to WT littermates (Online Figure XV).

DISCUSSION

Voltage-gated Na⁺ channels are critical for the rapid upstroke of the cardiac action potential and cardiac conduction. Defects in Na⁺ channel function are linked with a host of congenital and acquired forms of human disease including sinus node dysfunction, atrial fibrillation, conduction disorders, ventricular arrhythmia, and heart failure.1-3 Despite these compelling human disease linkages and decades of elegant Na⁺ channel biophysical studies, the field still lacks significant fundamental knowledge of the regulatory mechanisms governing the function of this critical molecule. Here we use in vivo animal models to define the cellular pathway underlying the targeting of Na⁺,1.5 and its regulatory molecule, CaMKIIδ to the intercalated disc membrane. Ankyrin-G, a cytoskeletal adapter protein, associates with Na⁺,1.5 and recruits
the channel to the myocyte membrane. Loss of ankyrin-G results in defects in Na\textsubscript{v} channel expression, localization, and function. We further show that ankyrin-G, via the recruitment of \(\beta\text{IV}\) spectrin, also targets CaMKII\(\delta\) to the intercalated disc. As CaMKII\(\delta\) phosphorlates Na\textsubscript{v}1.5 to modulate cardiac myocyte excitability in health and disease8,28, our findings provide data that support the mechanisms underlying the biogenesis of this membrane signaling domain. Finally, our findings confirm in vivo protein pathways for ankyrin-G and Na\textsubscript{v}1.5 in heart. Specifically, as described by Delmar and colleagues in cultured myocytes17, our in vivo data link ankyrin-G with the desmosomal protein plakophilin-2. Further, our data associate ankyrin-G with the disc protein \(\beta\text{IV}\) spectrin.

Ankyrin-G cKO mice were surprisingly viable, but display bradycardia, AV conduction defects, QRS prolongation, and/or arrhythmia associated with flecainide or epinephrine. Consistent with our proposed mechanism of \(I\text{Na}\) dysfunction in these animals, Na\textsubscript{v}1.5 is linked with impulse propagation through the sinoatrial node (SAN2), the AV node41, and the ventricular myocardium.42 Prior in vivo work links Na\textsubscript{v}1.5 dysfunction with bradycardia, and reduced SAN pacemaker potential.42 Moreover, consistent with our findings, flecainide has been previously shown to evoke ventricular arrhythmias in multiple mouse models of Na\textsubscript{v} channel deficiency.30,31 While our findings clearly link ankyrin-G with Na\textsubscript{v}1.5 targeting, they reveal new ankyrin-G associated pathways that are relevant to cardiac electrical, signaling, and structural roles in both health and disease. Genetic mutation in the ankyrin-binding motif of Na\textsubscript{v}1.5 has been previously linked with loss of myocyte \(I\text{Na}\), abnormal Na\textsubscript{v} channel targeting, and human Brugada syndrome.21 However to date, ankyrin-G (\textit{ANK3}) variants have not yet been linked with human arrhythmia. Based on past findings in other tissues, as well as work in this study, a pure loss-of-function \textit{ANK3} allele may be incompatible with life. Mice simply lacking \textit{Ank3} in the cerebellum are frail and display severe neurological defects. Moreover, human \textit{ANK3} variants have been linked with bipolar disease, schizophrenia, and autism.43-45 Ankyrin-G is required for normal retinal protein trafficking, and essential for lateral membrane biogenesis in columnar epithelia.37,46 Based on our findings, we predict that more subtle variants may cause sinus node disease, arrhythmia, and even structural heart disease due to defects in intercalated disc infrastructure.

As noted above, our data demonstrate that ankyrin-G recruits \(\beta\text{IV}\) spectrin to the intercalated disc. In other cell types, \(\beta\)-spectrins, through their association with \(\alpha\)-spectrins and actin form critical submembrane cytoskeletal infrastructure. In fact, defects in spectrins have been linked with a host of pathologies in humans and animals.26 Moreover, \(\beta\text{IV}\) spectrin associates with, and targets a subpopulation of CaMKII\(\delta\) to the intercalated disc to phosphorylate Na\textsubscript{v}1.5.8,28 Defects in CaMKII\(\delta\) phosphorylation of Na\textsubscript{v}1.5 have now been linked with multiple forms of heart failure in humans and animal models.26,47

Our in vivo data support a role of ankyrin-G in organization of the intercalated disc. Plakophilin-2 is a key disc protein, linking desmosomal cadherins with desmoplakin and the intermediate filament system. Human plakophilin-2 loss-of-function variants are linked with arrhythmogenic right ventricular cardiomyopathy (ARVC) and Brugada syndrome.48,49 While cardiac phenotypes in the cKO model are distinct from human ARVC (increased levels of PKP2 in cKO model versus reduced PKP2 levels in ARVC39), the unexpected new data on structural defects in ankyrin-G cKO hearts and association with plakophilin-2 alterations are noteworthy. However, the specific relationship between ankyrin-G and plakophilin-2, as well as the potential link between these pathways and the observed structural defects in cKO mice, will require additional investigation. Interestingly, unlike plakophilin-2, we did not observe alterations in expression of intercalated disc proteins N-cadherin, connexin43, ZO-1, or \(\beta\)-catenin in cKO mice by immunoblot. Notably, Delmar and colleagues previously showed reduced connexin43 expression in ankyrin-G siRNA transfected neonatal myocytes.50 While future experiments will be important in defining the relationship between these molecules (i.e. compensatory changes versus direct protein partners), our findings clearly implicate ankyrin-G as a multifunctional regulatory molecule in the heart. Further, our
work demonstrates that phenotypes observed in the ankyrin-G cKO mouse likely extend far beyond simple I_{Na} deficiency.

Our in vivo findings demonstrate a critical role for ankyrin-G for intercalated disc Na\textsubscript{v}1.5 targeting. However, Na\textsubscript{v}1.5 targeting to non-intercalated disc membranes has been proposed as ankyrin-independent, relying instead on unique cellular machinery including syntrophin/dystrophin, SAP97, caveolin-3, MOG1, and FGF12. Based on the essential role of Na\textsubscript{v} channels for myocyte excitability, we propose that the vertebrate has evolved multiple mechanisms for Na\textsubscript{v}1.5 membrane targeting. Future studies that explore the specific roles of ankyrin-G versus other targeting proteins in ion channel trafficking versus membrane scaffolding will be important to explore the relative contribution of each protein in dictating cardiac excitability and function using in vivo models. Additionally, it will be important to define the identity of populations of Na\textsubscript{v}1.5-positive puncta in cKO myocytes (blue arrows in Figure 2F, i.e. endosomes, T-tubule populations, etc.). Further, based on the in vivo link between ankyrin-G and plakophilin-2, it will be important to further investigate the mechanistic roles of ankyrin-G in regulation of intermediate filaments at the intercalated disc. Finally, it will be important to investigate the role of ankyrin-G for targeting other Na\textsubscript{v} channels in heart (e.g. ‘brain’ Na\textsubscript{v} channel gene products).

SOURCES OF FUNDING
This work was supported by the National Institutes of Health [HL084583, HL083422, HL114383 to PJM]; [HL114893 to TJH]; Saving Tiny Hearts Society (PJM), American Heart Association (PJM), and James S. McDonnell Foundation (TJH).

DISCLOSURES
None

REFERENCES
1. Abriel H. Roles and regulation of the cardiac sodium channel na\textsubscript{v}1.5: Recent insights from experimental studies. Cardiovascular research. 2007;76:381-389

44. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011;43:969-976

FIGURE LEGENDS

Figure 1. Generation of cardiac-specific ankyrin-G null mouse. (A) Scheme for generation of cardiac conditional ankyrin-G null mouse (cKO). LoxP sites were inserted to flank exons 22-23 in ankyrin-G gene (Ank3). Mice homozygous for loxP insertion (f/f) were crossed with mice expressing Cre recombinase under control of the αMHC promoter. Cre-mediated excision of exons 22-23 resulted in the production of a premature stop codon after exon 21. (B) Flox (f) allele (434 bp) and WT (+) allele (366 bp) identified by PCR. (C) Cre expression (+ Cre) evidenced by band at 300 bp not observed in WT animals (- Cre) and in no template control (Ctrl). (D-E) Ankyrin-G expression in WT and cKO mouse tissue lysates. Note that unlike heart, other tissues examined express multiple molecular weight forms of ankyrin-G. (F) Data from experiments in D-E were quantified and expressed relative to WT tissue (corrected for actin expression; n=4/genotype; p<0.05). (G-H) Expression of ankyrin-G (green) and N-cadherin (red) in WT and cKO myocytes. DAPI (blue) was included to stain nuclei.

Figure 2. Ankyrin-G is required for myocyte Na1.5 expression and localization. (A-B) Immunoblots of Na1.5 in WT and cKO heart. We observed reduced Na1.5 protein levels in cKO heart. In B, Na1.5 expression levels are normalized to GAPDH loading control (n=4/genotype; p<0.05). (C-D) Na1.5 immunostaining (red) is significantly reduced at the intercalated disc of cKO myocytes (Bar=10 microns). Myocytes were co-labeled for N-cadherin (green) and nuclei (blue DAPI). (E-F) Magnified images of Na1.5 immunostaining of peripheral sarcolemma and intercalated disc of WT and cKO myocytes. Note in E that Na1.5 is localized at both intercalated disc (white arrow) and peripheral sarcolemma membrane (yellow arrows). While disc staining is reduced in cKO myocytes, the sarcolemmal staining is unaltered (F). In cKO myocytes, we also observed intracellular Nav1.5-positive puncta (blue arrows). (G-H) Representative I_{Na} traces from WT and cKO mouse myocytes. (I-J) Reduced I_{Na} current in cKO versus WT myocytes (WT: n=10; cKO: n=9; p<0.05).

Figure 3. Ankyrin-G targets βIV spectrin to the intercalated disc. (A-B) βIV spectrin intercalated disc targeting is altered in cKO myocytes. βIV spectrin expression is clustered in the peri-nuclear region of cKO myocytes (arrows).

Figure 4. Ankyrin-G targets Na1.5 to the intercalated disc independent of βIV spectrin. (A) Diagram of βIV spectrin domains and location of qv^δ truncation upstream of ankyrin-G-binding site. (B) GST- βIV spectrin associates with Na1.5 (via ankyrin-G), βIV spectrin representing the qv^δ mouse truncation lacks binding activity for ankyrin-G and thus Na1.5. (C-D) WT and qV^δ hearts display no difference in expression of ankyrin-G or Na1.5 by immunoblot. CaMKIIδ levels are reduced in cKO hearts consistent with CaMKIIδ-binding site (see A). Levels in C are normalized for actin expression (n=4/genotype; p<0.05). (E-H) WT and qV^δ myocytes display no difference in ankyrin-G or Na1.5 localization. Bar=10 microns.

Figure 5. Ankyrin-G targets CaMKIIδ to the intercalated disc via βIV spectrin. (A-B) CaMKIIδ expression and localization is altered in cKO myocytes. Levels in A are normalized for actin expression (n=4/genotype; p<0.05). (C-D) CaMKIIδ expression is selectively reduced at the intercalated disc of cKO myocytes (yellow arrows in C versus white arrows in D. Asterisk notes no change in CaMKIIδ localization at T-tubules between genotypes. Bar=10 microns.

Figure 6. Cardiac-specific ankyrin-G null mice exhibit bradycardia and conduction abnormalities. (A-C) Ankyrin-G cKO mice display bradycardia compared with WT littermates (WT: n=5; cKO: n=7; p<0.05). Bar in B,C = 200 ms. Representative ECG traces for (D) WT and (E) cKO mice. cKO mice show increased PR (F) and QRS (G) intervals compared with WT mice (WT: n=6; cKO: n=7; p<0.05).
Figure 7. Ankyrin-G cKO mice display conduction defects and arrhythmia in response to Na, channel antagonist. (A-B) ECG traces from WT and ankyrin-G cKO mouse 30 seconds prior to flecainide administration. (C-D) ECG traces from same mice (in A-B) observed 10 minutes post-flecainide administration (20 mg/kg, I.P.; bar=200 ms). Examples of AV block (arrowheads) and ventricular phenotypes (brackets) are noted in D. (E-H) Ankyrin-G cKO mice show significant decrease in heart rate and increase in frequency of AV block and ventricular arrhythmia following flecainide compared with WT littermates (p<0.05).

Figure 8. Plakophilin-2 organization is disrupted in cKO myocytes. (A-B) Immunoblots of myocyte intercalated disc proteins in WT versus cKO heart. Note that plakophilin-2 levels are significantly increased in cKO hearts (n=4/genotype; p<0.05). (C-K) Confocal imaging of WT (left) and cKO (right) myocytes labeled with antibodies for resident intercalated disc proteins. Note that while primarily localized to the disc of WT myocytes, plakophilin-2 is clustered in the peri-nuclear region of cKO myocytes (arrowheads; Bar=10 microns).
Novelty and Significance

What Is Known?

- Cardiac voltage-gated Na\textsubscript{v} channels (Nav1.5) are critical for ventricular depolarization and cardiac conduction.
- Defects in Na\textsubscript{v}1.5-based pathways have been linked with both congenital and acquired forms of human cardiovascular disease.
- The molecular pathways underlying Na\textsubscript{v}1.5 regulation remain largely undefined partially due to lack of essential in vivo data.

What new information does this Article Contribute?

- Ankyrin-G, associates with Na\textsubscript{v}1.5 and recruits the channel to the myocyte intercalated disc membrane.
- Ankyrin-G, via the recruitment of \(\beta_{IV}\) spectrin, targets the critical cardiac signaling molecule CaMKII\(\delta\) to the intercalated disc to regulate Na\textsubscript{v}1.5 activity.
- In vivo loss of ankyrin-G results in defects in cardiac excitability and arrhythmia.

Nav1.5 is the primary cardiac voltage-gated Na\textsubscript{v} channel (SCN5A). Nav1.5 is central for initiation of the ventricular action potential and both loss- and gain-of-function mutations in SCN5A have been linked with diverse cardiovascular pathologies including ventricular arrhythmia, conduction defects, sinus node dysfunction, and atrial fibrillation. Based on critical role of Na\textsubscript{v}1.5 in human disease, therapies to target select Na\textsubscript{v}1.5 properties have remained at the forefront of cardiovascular medicine. Unfortunately, the molecular pathways underlying Na\textsubscript{v}1.5 regulation remain largely undefined partially due to lack of essential in vivo data. Ankyrin-G, associates with Na\textsubscript{v}1.5 and recruits the channel to the myocyte membrane. Loss of ankyrin-G results in defects in Na\textsubscript{v} channel expression, localization, and function. We Ankyrin-G, via the recruitment of \(\beta_{IV}\) spectrin, also targets CaMKII\(\delta\) to the intercalated disc. Mice harboring a conditional null allele for ankyrin-G in heart (cKO) display decreased Na\textsubscript{v}1.5 expression, membrane localization, and \(I_{Na}\) associated with bradycardia, conduction abnormalities, QRS prolongation, and ventricular arrhythmias in response to Na\textsubscript{v} channel antagonists. Finally, in vivo ankyrin-G loss results in remodeling of plakophilin-2. Together, our findings identify a novel molecular platform critical for the membrane recruitment and regulation of Na\textsubscript{v}1.5 in heart.
Figure 1

A.

\[\text{Ank3} \]

\[\text{Ank3}^{\text{fl}} \]

\[\alpha\text{MHC-Cre} \]

\[\text{Ank3}^{\text{fl}} \]

B.

\[\text{WT} +/+ \]

\[+/- \]

\[+/- \]

\[+/- \]

C.

\[\text{WT} \]

\[\text{cKO} \]

D.

\[\text{WT} \]

\[\text{cKO} \]

\[\text{Heart} \]

\[\text{Actin} \]

\[\text{WT} \]

\[\text{cKO} \]

E.

\[\text{WT} \]

\[\text{cKO} \]

\[\text{Cortex} \]

\[\text{Sk. Mus.} \]

\[\text{Cerebellum} \]

\[\text{Kidney} \]

\[\text{AnkG} \]

\[\text{Actin} \]

F.

\[\text{cKO ankyrin-G expression (% WT)} \]

\[\text{Heart} \]

\[\text{Cortex} \]

\[\text{Skeletal Muscle} \]

\[\text{Cerebellum} \]

\[\text{Kidney} \]

G.

\[\text{N-cadherin} \]

\[\text{Ankyrin-G} \]

\[\text{Merge} \]

\[\text{WT} \]

\[\text{cKO} \]

H.

\[\text{N-cadherin} \]

\[\text{Ankyrin-G} \]

\[\text{Merge} \]
Figure 2

(A) Western blot analysis showing Na_v 1.5 expression in WT and cKO samples, normalized to GAPDH.

(B) Bar graph displaying Na_v 1.5 Expression normalized to GAPDH.

(C) Immunofluorescence images of wild-type tissue showing N-cadherin, Nav1.5, and merge.

(D) Immunofluorescence images of AnkG cKO tissue showing N-cadherin, Nav1.5, and merge.

(E) Electrophysiological traces of WT and AnkG cKO showing Nav1.5 currents.

(F) Analysis of peak currents graph comparing WT and cKO.

* Indicates statistical significance.
Figure 3

A WT
βIV spectrin

B AnkG cKO
βIV spectrin

Downloaded from http://circres.ahajournals.org/ on July 10, 2017.
Figure 4

(A) Diagram showing actin-binding and other protein interactions.

(B) Western blot analysis of Nav1.5 expression with WT and qv⁻/⁻ samples.

(C) Bar graph showing relative protein expression levels for different proteins.

(D) Western blot analysis of various proteins with loading controls.

(E) Immunostaining for N-cadherin, ankyrin-G, and merge images for WT and qv⁻/⁻.

(F) Immunostaining for N-cadherin and ankyrin-G, and merge images for qv⁻/⁻.

(G) Immunostaining for N-cadherin and Na⁺,1.5, and merge images for WT.

(H) Immunostaining for N-cadherin and Na⁺,1.5, and merge images for qv⁻/⁻.
Ankyrin-G Coordinates Intercalated Disc Signaling Platform to Regulate Cardiac Excitability In Vivo

Michael A Makara, Jerry Curran, Sean Little, Hassan Musa, Iuliia Polina, Sakima A Smith, Patrick J Wright, Sathya D Unudurthi, Jedidiah S Snyder, Vann Bennett, Thomas J Hund and Peter J Mohler

Circ Res. published online September 19, 2014;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2014/09/19/CIRCRESAHA.115.305154

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2014/09/19/CIRCRESAHA.115.305154.DC1
Supplemental Material

Supplemental Methods

Generation of cardiac ankyrin-G-deficient mice. Mutant ankyrin-G^{fl/fl} mice were generated by the introduction of LoxP sites flanking exons 22-23 of Ank3 as described.¹ These animals were then crossed with mice expressing Cre under the cardiac promoter α-myosin heavy chain (αMHC-Cre) resulting in specific loss of ankyrin-G in adult cardiac myocytes (cKO; NEO selection cassette removed from line). For all experiments, 8-10 week WT and cKO male mice (C57/Bl6 background) were used. Qv^{A/J} mice (C57/Bl6) harboring truncated β_{IV} spectrin allele were also utilized for experiments.² All animal studies were performed in accordance with the American Physiological Society Guiding Principles for Research Involving Animals and Human Beings, and approved by The Ohio State University Institutional Animal Care and Use Committee. The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996).

Immunoblots and antibodies. Whole heart, brain (cortex or cerebellum), muscle and kidney lysates, following quantitation by BCA assay (Pierce), were loaded into 4-15% precast gels and transferred to nitrocellulose membranes. Membranes were blocked for >1hr at room temperature in 5% milk and incubated in primary antibody overnight at 4°C. Primary antibodies included ankyrin-G (1:1,000)³, Na_v1.5 S571 (1:500)⁴, Na_v1.5 (1:500)⁴, CaMKIIδ (1:500, Badrilla), β_{IV} spectrin (1:1000, gift from M. Komada, Tokyo Institute of Technology, Yokohama, Japan), N-Cadherin (1:2000, Invitrogen), connexin43 (1:1000 Invitrogen), plakophilin-2 (1:500 Abcam), β-catenin (1:2000, BD Biosciences), ZO-1(1:1000, Invitrogen), ankyrin-B³ (1:2000), Na/Ca exchanger (1:500, Swant), Ca_v1.2 (1:1000, Invitrogen), actin (1:2000, Santa Cruz), Nav channel β2 and β4 (1:400; NeuroMabs), GAPDH (1:5000, Fitzgerald). Secondary antibodies
used were donkey anti-mouse-HRP and donkey-anti-rabbit-HRP (Jackson Laboratories). Densitometric analysis was performed using Image Lab software and all data was normalized to GAPDH or actin.

Immunofluorescence. Cardiomyocytes (left ventricle) were isolated from WT and cKO hearts as described.\(^5\) Isolated cells were fixed and permeabilized in 100% ethanol at -20°C. Cells were blocked in 3% bovine serum albumin and 1% fetal goat serum in PBS. Cells were stained with primary antibody overnight in blocking solution. Cells were stained with secondary antibodies in blocking solution for >1 hr at room temperature. Secondary antibodies included Alexa-conjugated donkey anti-mouse 488, 568 and donkey anti-rabbit 488, 568. Cells were imaged on a LSM 780 confocal microscope (Carl Zeiss). Myocytes were imaged using identical confocal settings between genotypes. At least 20 myocytes were examined for each staining protocol.

Electrocardiography. Electrocardiogram (ECG) recordings were obtained from both conscious and anesthetized mice. For conscious ECG recordings, >20g WT and cKO mice were implanted with ETA-F10 radiotelemeters as described.\(^6\) Following surgery, mice recovered for seven days prior to ECG recordings. ECGs were recorded at rest and following epinephrine administration (2 mg/kg, I.P.). Average resting heart rates were obtained from continuous 2 hr ECG recordings. Arrhythmia was defined as sustained if >2 seconds as described.\(^6\) ECG traces were analyzed using P3 Plus software (Ponemah). For anesthetized surface ECG recordings, mice were anesthetized with 2% isoflurane and oxygen at rate of 1.0 L/min. Mice were placed in the prone position on a heated pad to maintain body temperature. Anesthesia maintained at 1% isoflurane at 1.0 L/min. Subcutaneous electrodes were placed in the lead II configuration and ECGs were recorded on a Powerlab 4/30 (AD Instruments). Baseline ECG was recorded for 3 minutes after anesthesia. Flecainide (20 mg/kg, i.p.)\(^7\) was administered at 3 min after anesthesia and ECGs were recorded per protocol of Knollmann and colleagues.\(^8\) ECG traces were analyzed using LabChart 7 Pro (AD Instruments).
Electrophysiology: I_{Na} currents were recorded utilizing a patch-clamp configuration using an Axopatch 200B amplifier and Digidata 1440A digitizer on left ventricular myocytes. Data acquisition and analysis was performed using pCLAMP software (ver.10.3; Molecular Devices, Sunnyvale, CA). Sodium currents (I_{Na}) were recorded at room temperature (20-22 °C) with pipette resistances <2.8 MΩ when filled with pipette filling solution containing (in mM): NaCl (5), CsF (135), EGTA (10), MgATP (5), Hepes (5), pH 7.2. The extracellular bathing solution contained (in mM): NaCl (5), MgCl2 (1), CaCl2 (1.8), CdCl2 (0.1), glucose (11), CsCl (132.5) and Hepes (20); pH was maintained at 7.4 with CsOH at room temperature. Appropriate whole-cell capacitance and series resistance compensation ($\geq60\%$) was applied along with leak subtraction. To assess the I_{Na} density, cells were held at -160 mV and stepped to various test potentials from -100 to 30mV in 5 mV increments, with 200 ms duration pulses and 2800 ms interpulse intervals. Voltage-dependence of inactivation was assessed by holding the cells at -160 mV followed by a 300 ms test pulse from -140 to -40 mV in 5 mV increments; interpulse interval was 2700 ms. Recovery from inactivation was studied by holding cells at -160 mV and applying two 20 ms test pulses (S1, S2) to -45 mv, separated by increasing increments of 1 ms to a maximum S1-S2 interval of 50 ms. The S1-S1 interval was kept constant at 2000 ms. I_{Na} late was determined by quantifying the persistent current during an active voltage pulse at time range of 100-200msec after the activation of I_{Na} and was expressed as a percentage of I_{Na} peak amplitudes. Prior to quantification, baseline was set to zero. Action potentials were measured as described.4,5

Calcium Measurements. Myocyte calcium measurements were performed as described.9

Sinus node myocytes. Sinoatrial node myocytes were prepared and stained as described.10
Statistics. P values were determined with the unpaired Student t test (2 tailed) for single comparisons. Multiple comparisons were analyzed by use of 1-way ANOVA. The Bonferroni test was used for post hoc testing (SigmaPlot 12.0). If the data distribution failed normality tests with the Shapiro-Wilk test, rank-based ANOVA and the Dunn multiple-comparisons test were performed. Incidence of arrhythmia was analyzed by Chi Square Test. A p-value $<$0.05 was considered statistically significant.

References

Online Fig. I. Ankyrin-B, Cav1.2, and NCX expression levels are not altered in cKO heart. (A-C) Immunoblots and normalized expression levels of myocyte proteins in WT versus cKO heart (n=4/genotype; p=N.S.).
Online Fig. II. A) Voltage-dependent inactivation (h’ curve) and B) time-dependent recovery of INa in WT (n=10) and cKO (n=10) myocytes. We observed no significant difference in either property between genotypes (N.S.).
Online Figure III

Online Fig. III. Ankyrin-G cKO myocytes display defects in action potential amplitude and Vmax compared with WT myocytes, consistent with reduced INa (n>8/genotype; p<0.05.).
Online Fig. IV. Heart sections from ankyrin-G cKO mouse (B) display reduced βIV spectrin intercalated disc staining (arrows) compared with WT heart (A) (bar equals two microns).
Online Fig. V. Heart sections from ankyrin-G cKO mouse display reduced CaMKIIδ intercalated disc staining compared with WT heart (bar equals ten microns). Image on right is magnified view of CaMKIIδ localization.
Online Fig. VI. Ankyrin-G cKO myocytes display reduced phosphorylation of Nav1.5 pS571. (A-B) Immunostaining of Nav1.5 pS571 in WT and cKO myocytes. Bar=10 microns. (C-D) Nav1.5 pS571 levels are significantly reduced in cKO hearts compared with hearts of WT mice. Levels are normalized for GAPDH (n=4/genotype; p<0.05).
Online Fig. VII. Iso-induced enhancement of $I_{Na,L}$ in WT but not cKO myocytes. A) Transient and late I_{Na} currents evoked in response to 200 ms duration voltage clamp steps to -25 mV in the absence (black trace) and presence (red trace) of Iso in WT (A) and AnkG KO (B) myocytes. C) Bar graph of $I_{Na,L}$ at multiple experimental voltages ±Iso. WT: -ISO (black), +Iso (blue). AnkG cKO: –Iso (red), +Iso (gray). D) $I_{Na,L}$ was significantly increased in the presence of ISO in WT cells at several of the tested voltages while currents from AnkG cKO myocytes were insensitive to ISO treatment. $n ≥ 6$ for all conditions.
Online Fig. VIII. Ankyrin-G ckO mice display significant increase in QRS duration following flecainide challenge (p<0.05).
Online Fig. IX. (A) Following flecainide, AnkG cKO mice display increased PR intervals. N>5/ genotype; p<0.05.
Online Fig. X. Nav channel beta subunit expression is not altered in cKO heart. (A-C) Immunoblots and normalized expression levels of myocyte proteins in WT versus cKO heart. (n=4/genotype; p=N.S.).
Online Fig. XI. Heart sections from ankyrin-G cKO mouse display normal plakophilin 2 (PKP2) intercalated disc staining (arrows) compared with WT heart (bar equals ten microns) but increased intracellular staining.
Online Fig. XII. Ankyrin-G cKO mice display arrhythmias and death. (A) ECG of WT mice post-injection of epinephrine (2 mg/kg, I.P.). (B-C) Ankyrin-G cKO mice following identical epinephrine administration display arrhythmia. (B) cKO mouse exhibiting ectopic ventricular beats (red arrowheads). (C) Ankyrin-G cKO mouse presenting polymorphic ventricular arrhythmia just prior to death (bottom). (D-E) Frequency of ventricular arrhythmias and death in WT and cKO mice following epinephrine injection (p<0.05). Bars equal 200 msec.
Online Fig. XIII. Ankyrin-G cKO myocytes display increased calcium waves compared with myocytes from WT littermates. N>10/genotype; *p<0.05.
Online Fig. XIV. Ankyrin-G cKO mice display minor cardiac structural phenotypes at 8-10 weeks. Representative short-axis M-mode images of wild-type (A) and cKO (B) mice at 8 weeks of age. The ratios of HW/BW (C) and HW/TL (D) are preserved as well as no change in anterior wall thickness (E) or LV diameters (F) in cKO mice. However, cKO mice display a small but significant decrease in fractional shortening (G) and ejection fraction (H) compared to WT mice. For each measurement n>5/genotype; *p<0.05.
Online Fig. XV. Ankyrin-G cKO mice display structural abnormalities and reduced ventricular function with age. Representative short-axis M-mode image of 9 month WT (A) and cKO (B) mice. cKO mice display an increase in both the systolic (C) and diastolic (D) left ventricular chamber diameter and a decrease in both the posterior wall (LVPW, E) and anterior wall (LVAW, F) thickness. Consistent with chamber dilation and thinned walls, cKO mice display a significant reduction in performance as indicated by reduced fractional shortening (G) and ejection fraction (H). For each measurement n>5; *p<0.05.