MicroRNA-26a Regulates Pathological And Physiological Angiogenesis by Targeting BMP/SMAD1 Signaling

Basak Icli¹, Javid Moslehi¹, AKM Wara¹, Xinghui Sun¹, Eva Plovie¹, Meghan Cahill¹, Julio F. Marchini¹, Andrew Schissler¹, Robert F. Padera², Jianru Shi¹, Hui-Wen Cheng¹, Srilatha Raghuram³, Zoltan Arany³, Ronglih Liao¹, Kevin Croce¹, Calum MacRae¹, and Mark W. Feinberg¹

¹Cardiovascular Division, Department of Medicine; ²Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, and; ³Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115.

Running title: MiR-26a Inhibition Rapidly Induces Angiogenesis

Subject codes:
[129] Angiogenesis
[143] Gene regulation
[4] Acute myocardial infarction
[137] Cell biology/structural biology
[130] Animal models of human disease

Address correspondence to:
Dr. Mark W. Feinberg
Department of Medicine
Cardiovascular Division
Brigham and Women’s Hospital
Harvard Medical School
77 Avenue Louis Pasteur
NRB-742F
Boston, MA 02115
Tel: (617) 525-4381
Fax: (617) 525-4380
mfeinberg@partners.org

In August 2013, the average time from submission to first decision for all original research papers submitted to Circulation Research was 12.8 days.

DOI: 10.1161/CIRCRESAHA.113.301780
ABSTRACT

Rationale: The rapid induction and orchestration of new blood vessels is critical for tissue repair in response to injury, such as myocardial infarction (MI), and for physiological angiogenic responses such as embryonic development and exercise.

Objective: We aimed to identify and characterize microRNAs that regulate pathological and physiological angiogenesis.

Methods and Results: We show that microRNA-26a (miR-26a) regulates pathological and physiological angiogenesis by targeting EC BMP/SMAD1 signaling in vitro and in vivo. MiR-26a expression is increased in a model of acute MI in mice and in human subjects with acute coronary syndromes. Ectopic expression of miR-26a markedly induced EC cycle arrest and inhibited EC migration, sprouting angiogenesis, and network tube formation in matrigel, whereas blockade of miR-26a had the opposite effects. Mechanistic studies demonstrate that miR-26a inhibits the BMP/SMAD1 signaling pathway in ECs by binding to the SMAD1 3’-UTR, an effect that decreased expression of Id1 and increased p21WAF/CIP and p27. In zebrafish, miR-26a overexpression inhibited formation of the caudal vein plexus, a BMP-responsive process, an effect rescued by ectopic SMAD1 expression. In mice, miR-26a overexpression inhibited EC SMAD1 expression and exercise-induced angiogenesis. Furthermore, systemic intravenous administration of an miR-26a inhibitor, LNA-antimiR-26a, increased SMAD1 expression and rapidly induced robust angiogenesis within two days, an effect associated with reduced myocardial infarct size and improved heart function.

Conclusions: These findings establish miR-26a as a regulator of BMP/SMAD1-mediated EC angiogenic responses and that manipulating miR-26a expression could provide a new target for rapid angiogenic therapy in ischemic disease states.

Keywords: Angiogenesis, endothelial cells, microRNAs, myocardial infarction, BMP/SMAD1 signaling

Nonstandard Abbreviations and Acronyms:
EC endothelial cell
VEGF vascular endothelial cell growth factor
TNF-α tumor necrosis factor-α
bFGF basic fibroblast growth factor
PIGF placenta growth factor
BMP bone morphogenic protein
HLH helix-loop-helix
MiR microRNA
3’-UTR 3’ untranslated region
LAD left anterior descending artery
CVP caudal vein plexus
SPRED-1 sprouty-related EVH-1 domain containing-1
ACS acute coronary syndromes
AGO2 argonaute2
CTDSP carboxy-terminal domain RNA polymerase II polypeptide
SEMA6A semaphorin 6A
β-gal β-galactosidase
NSm miR negative control mimic
INTRODUCTION

The appropriate progression of events in angiogenesis is controlled by a balance between pro- and anti-angiogenic factors. In response to pro-angiogenic stimuli, vascular ECs need to be rapidly activated to migrate to distant sites and proliferate to form new primary capillaries from existing ones. Failure to do so may delay tissue repair in an array of pathological or physiological conditions. Growth factors such as vascular endothelial cell growth factor (VEGF), tumor necrosis factor-α (TNF-α), basic fibroblast growth factor (bFGF), or placenta growth factor (PIGF) are potent regulators of angiogenesis. Impaired EC angiogenic responses have been linked to exacerbation of a wide range of disease states including poor cardiovascular function and outcomes, diabetic wound healing, and neurodegenerative disorders.

Accumulating studies highlight an important role for bone morphogenic proteins (BMPs) and SMAD1 signaling in promoting angiogenesis. BMPs and receptor-activated SMADs, SMAD1 in particular, induce the expression of Id1, a helix-loop-helix (HLH) transcription factor that lacks a basic DNA-binding domain, which stimulates migration and growth of ECs. SMAD1 knockout mice fail to develop a mature vascular system and die at embryonic day 9.5. Id1 primarily acts as a dominant-negative inhibitor of HLH transcription factors by heterodimerization. One example of this heterodimerization is with the cell cycle kinase inhibitor p21WAF1/CIP, an effect that inhibits cell cycle growth arrest and favors cell cycle progression. Overexpression of Id1 mimicked BMP-induced effects in ECs including cell growth, migration, and network tube formation in vitro. Furthermore, overexpression of Id1 in mature ECs conferred pro-angiogenic properties both in vitro and in vivo in response to hindlimb ischemia. However, the upstream molecular events governing SMAD1 expression in endothelial cell angiogenic responses remain poorly defined.

MicroRNAs (miRs) are small evolutionarily conserved, 20-22 nt, non-coding RNAs capable of repressing gene expression at the posttranscriptional level by base pairing at the 3’ untranslated regions (3’-UTRs) of mRNA targets and have been found to regulate a variety of physiological and cellular functions in health and disease. Several reports have identified miRs in regulating various aspects of the angiogenic response to diverse pathophysiological stimuli. For example, miR-126, miR-130a, miR-210, and the miR-23~miR-27~miR-24 cluster promote pro-angiogenic activity, whereas miR-221/miR-222, miR-92a, and miR-217 inhibit angiogenic activity in ECs. While the role of miRs in tumor-associated angiogenesis has garnered considerable attention, the identification and function of miRs regulating the angiogenic response in cardiovascular disease, remains poorly understood.

NS, miR negative control inhibitor
MiR-26a m, miR-26a mimic
MiR-26a i, miR-26a inhibitor
MiRNP-IP, micro-ribonucleoprotein immunoprecipitation
MI, myocardial infarction
NSTEMI, Non-ST-segment elevation myocardial infarction
STEMI, ST-segment elevation myocardial infarction
SMA, Smooth muscle actin
LVEF, Left ventricular ejection fraction
FAC, Fractional area change
FS, Fractional shortening
LVIDd, Left ventricle internal dimension in diastole
LVIDs, Left ventricle internal dimension in systole
In this report, we show that miR-26a acts as a previously unrecognized pivotal regulator of pathological and physiological angiogenesis by targeting a SMAD1-Id1-p21/WAF1/CIP1/p27 signaling axis to promote an anti-angiogenic program in ECs. Furthermore, neutralization of miR-26a rapidly induced angiogenesis and reduced acute myocardial infarction size and improved heart function in mice. These findings may provide a novel approach for inducing rapid angiogenic therapy in ischemic cardiovascular disease.

METHODS

Statistical analysis
Data are presented as mean ± SEM. All in vitro experiments are representative of 3 independent experiments. Data were subjected to Student’s t-test or, where applicable, analysis of variance (ANOVA) with Bonferroni correction for multiple group comparisons using GraphPad Prism5 and P<0.05 was considered statistically significant. Human data was analyzed by the Mann-Whitney U test and P<0.05 was considered statistically significant.

For more detailed experimental methods, please refer to the Online Data Supplement.

RESULTS

MiR-26a is regulated by proangiogenic stimuli and inhibits cell growth in ECs.

To identify how pro-angiogenic stimuli regulate EC function, microRNA microarray profiling studies were undertaken using RNA from human umbilical vein endothelial cells (HUVECs) exposed to vehicle alone or the pro-angiogenic stimulus TNF-α for 24 hrs, and reduced expression of miR-26a was noted (data not shown). Using real-time PCR analysis, we verified that both miR-26a and its family member miR-26b were reduced by TNF-α by 70% and 21%, respectively (Online FIGURE IA and IB). Similarly, the prototypical pro-angiogenic growth factor VEGF reduced miR-26a and miR-26b by 56% and 71%, respectively (FIGURE 1A and Online FIGURE IC). The expression of miR-26a was ~3 fold higher than miR-26b suggesting that miR-26a is the dominant family member expressed in HUVECs (FIGURE 1B). The miR-26 family resides in the intronic region of carboxy-terminal domain RNA polymerase II polypeptide a small phosphatase-like (CTDSP) gene family including CTDSPL, CTDSP1, and CTDSP2. Treatment of HUVECs with VEGF reduced CTDSP2 mRNA expression in a similar manner to miR-26a (Online FIGURE ID). The development of angiogenesis is important in response to ischemic injury. We examined if miR-26a expression levels were regulated in human subjects with acute coronary syndromes (ACS) and in mice undergoing coronary ligation. As shown in FIGURE 1C, circulating miR-26a levels increased by 4.2-fold in ACS subjects with coronary angiograms bearing >70% stenotic lesions compared to non-ACS human subjects with coronary angiograms with lesions <20% stenosis. In mice, miR-26a expression increased in an analogous manner after 45 mins of left anterior descending artery (LAD) ligation (FIGURE 1D). Interestingly, one hour after 45 mins of ischemia-reperfusion induced myocardial injury, miR-26a expression increased significantly in the ischemic region (apex) of the heart compared to sham controls. In contrast, by 24 hrs miR-26a expression in the ischemic region decreased compared to sham controls (Online FIGURE II). Collectively, these data suggest that miR-26a is dynamically regulated by pro-angiogenic stimuli in ECs and its rapidly induced expression may correlate with acute injury states such as MI, raising the possibility that targeting this miR may facilitate the induction of angiogenesis. To assess the potential role of miR-26a in endothelial angiogenic functions, we examined the effect of miR-26a on EC growth by gain- and loss-of-function
experiments. Overexpression of miR-26a ‘mimics’ (miR-26am) in HUVECs inhibited cell growth by 40% and cell proliferation by 20%, while miR-26a inhibitors (miR-26ai, complementary antagonist) increased EC growth by 2.8-fold and cell proliferation by 10% (FIGURE 1E and Online FIGURE IIIA). Treatment of HUVECs with miR-26am or miR-26a did not induce apoptosis as shown by expression for caspase-3 and Annexin V (Online FIGURE IIIB). In accordance with the decreased EC growth properties in response to miR-26a, cell cycle analyses of cells transfected with miR-26am demonstrated marked G1-phase cell cycle arrest (76% vs. 61%, respectively) compared to non-specific (NS) control ‘mimics’; conversely, miR-26a inhibition reduced G1/G0 phase (56% vs. 65%, respectively) (FIGURE 1F).

MiR-26a inhibits pro-angiogenic functions in ECs.

To further characterize the role of miR-26a in HUVECs, we assessed vascular network formation assays in matrigel. Overexpression of miR-26a inhibited network tube formation in matrigel in vitro (FIGURE 2A, left) and angiogenesis in matrigel plugs in vivo (FIGURE 2B, left) by 60% and 40%, respectively, whereas miR-26a inhibition significantly increased tube formation in matrigel in vitro (FIGURE 2A, right) and angiogenesis in matrigel plugs in vivo (FIGURE 2B, right) by 30% and 70%, respectively. In addition, miR-26a overexpression decreased EC migration in response to pro-angiogenic stimuli TNF-α, BMP2, and VEGF by 41%, 31%, and 60%, respectively, compared to the NS control, whereas miR-26a inhibition potently increased migration by 4.5-fold in response to VEGF and BMP2, and by 2.4-fold in response to TNF-α compared to the NS control (FIGURE 2C). Furthermore, miR-26a overexpression in ex vivo aortic ring assays reduced sprouting by 36%, whereas miR-26a inhibition increased aortic ring sprouting by 2-fold (FIGURE 2D). Taken together, these data indicate that miR-26a inhibited EC angiogenic functions in vitro and in vivo.

MiR-26a targets SMAD1 in ECs.

To identify potential targets of miR-26a, we analyzed predicted targets according to the algorithms of TargetScan32, PITA33, and miRanda34. All three predicted SMAD1 as a common target of miR-26a with the occurrence of 2 binding sites present in the 3’UTR of the SMAD1 gene. We first verified that SMAD1 expression was significantly reduced (by 55%) in HUVECs overexpressing miR-26a, whereas miR-26a inhibition increased SMAD1 protein expression by 1.8 fold (FIGURE 3A). In addition, this regulation was specific to SMAD1 and not other SMAD family members including SMAD2, SMAD4, and SMAD7 (FIGURE 3B). Overexpression of miR-26a in ECs inhibited the activity of a luciferase reporter construct containing the SMAD1 3’-UTR by 60%; in contrast, inhibition of miR-26a increased SMAD1 3’-UTR reporter activity by 29% (FIGURE 3C). Consistent with our prior observations, pro-angiogenic stimuli that decreased endogenous miR-26a in HUVECs, such as VEGF and TNF-α, increased SMAD1 3’-UTR reporter activity (FIGURE 3D). In addition, mutation of the SMAD1 sites, blocked the increase of SMAD1 3’-UTR reporter activity by pro-angiogenic stimuli (Online FIGURE IVA). To further verify that miR-26a directly targets SMAD1 in ECs, we performed Argonaute2 (AGO2) micro-ribonucleoprotein IP (miRNP-IP) studies to assess whether SMAD1 mRNA is enriched in the RNA-induced silencing complex following miR-26a overexpression in HUVECs. An approximately 5-fold enrichment of SMAD1 mRNA was observed after AGO2 miRNP-IP in the presence of miR-26a, as compared with the miRNA negative control. In contrast, AGO2 miRNP-IP did not enrich the mRNA for KPNA4, a gene that was not predicted to be an miR-26a target (FIGURE 3E). Moreover, lentiviral overexpression of SMAD1 lacking its 3’-UTR was able to completely rescue the inhibitory effect of miR-26a on EC growth (FIGURE 3F). Conversely, siRNA silencing of SMAD1 (FIGURE 3G), ‘phenocopied’ the functional effects of miR-26a overexpression on EC network formation (FIGURE 3H) and growth (FIGURE 3I). Collectively, these data indicate that SMAD1 is a bona fide target of miR-26a in ECs and raise the possibility that miR-26a may be a ‘molecular switch’ in which in response to pro-angiogenic stimuli, reduced levels of miR-26a allow for increased SMAD1 expression, thereby facilitating endothelial cell growth and angiogenesis.
MiR-26a regulates SMAD1 signaling in ECs.

We further explored the downstream signaling consequences of miR-26a-mediated repression of SMAD1 expression in ECs. Id1, a helix-loop-helix protein, has been identified as a downstream target of the BMP/SMAD1 signaling pathway and acts as a dominant-negative to inhibit the cell cycle inhibitors p21\(^{WAF/CIP_1}\) or p27 in ECs.\(^{16,17}\) We first verified that overexpression of miR-26a decreased Id1 expression and increased p21\(^{WAF/CIP_1}\) and p27 expression; in contrast, inhibition of miR-26a increased Id1 and decreased these cell cycle inhibitors in HUVECs (FIGURE IVA-B and Online Figure IVB-C). MiR-26a overexpression or inhibition had no effect on other miR-26a targets, cyclin D2 or cyclin E2 (Online FIGURE IVD), reported in hepatoma cells.\(^{35}\) In response to BMP ligands, such as BMP9, ALK1-mediated phosphorylation of SMAD1/5/8 activates the Id1 promoter in microvascular ECs and promotes angiogenesis\(^6\). Accordingly, miR-26a overexpression effectively inhibited BMP9-mediated phosphorylation of SMAD1 (FIGURE 4B) and decreased Id1 reporter gene activity both in the absence and presence of BMP9 (FIGURE 4C), suggesting that miR-26a exerts its effects on EC growth inhibition and angiogenic functions predominantly through its regulation of the BMP/SMAD1/Id1 signaling pathway.

MiR-26a regulates caudal vein plexus formation, a BMP-responsive process, in zebrafish.

In vertebrates, BMP signaling plays an important role in establishing the dorso-ventral axis by promoting ventral fates. Genetic mutants of BMP signaling pathway exhibited a dorsalized axial pattern and pharmacological inhibitors of BMP signaling inhibited sprouting angiogenesis along the caudal vein plexus (CVP) of the axial vein, a ventral structure in zebrafish.\(^{36}\) Conversely, activation of BMP signaling (by overexpression of an activated BMP type II receptor, bmp2b) induced ectopic sprouts along the axial vein.\(^{37}\) To examine the effect of miR-26a on BMP-dependent angiogenesis, we overexpressed miR-26a in zebrafish flk:eGFP embryos (Online FIGURE V) which severely impaired the development of the CVP of the axial vein, a BMP-responsive process, by 48 hrs post-fertilization (FIGURE 5A). Notably, co-expression of SMAD1 RNA with miR-26a in flk:eGFP embryos partially rescued the formation of the CVP by 69% (FIGURE 5B) and increased vascular branching by 68% (FIGURE 5C), suggesting that miR-26a regulates BMP-mediated angiogenesis in vivo.

MiR-26a regulates pathological angiogenesis, myocardial infarct size, and LV function.

On the basis that miR-26a expression is enriched in the vascular endothelium of the heart and in non-cardiomyocyte fractions (Online FIGURE VIA and VIB) and is induced in response to acute myocardial infarction (MI) (FIGURE 1C and 1D), we explored the effect of inhibiting miR-26a on angiogenesis in acute MI consisting of 45 minutes of LAD ischemia/reperfusion in the presence of systemically delivered LNA-antimiR-26a (MiR-26ai) or scrambled non-specific control antimiRs (NSi) (FIGURE 6A). LNA-antimiR-26a effectively decreased miR-26a expression both in the heart and circulation, and increased SMAD1 protein expression in the heart (Online FIGURE VIC-E). Mice that received miR-26a antimiRs exhibited not only significantly reduced myocardial infarct size compared to mice that received control LNA-antimiRs (FIGURE 6B), but, remarkably, also generated rapid induction of myocardial angiogenesis by 48 hrs as measured by CD31 and isolectin staining in the entire left ventricle by 2-fold and 1.7-fold, respectively (FIGURE 6C-D). In addition to inducing angiogenesis, inhibition of miR-26a significantly improved left ventricular ejection fraction by 21% by 48 hours and by 32% by 8 days (FIGURE 6F and Online Tables I and II). Interestingly, LNA-antimiR-miR-26a injected mice displayed decreased myocardial apoptosis by Annexin V staining at 48 hrs (Online FIGURE VIF), whereas no difference was observed in myocardial necrosis or in SM-α-actin (SMA) expression (Online FIGURE VIG-H). Expression of the inflammatory cytokines ICAM-1, VCAM-1, TNF-α, or E-selectin was not different in plasma of mice injected with NS, or miR-26ai (Online FIGURE VII). Finally, there were no differences in the percentage of lin-Scal”KDR” and lin-CD34”KDR” circulating progenitors in
response to LNA-miR-26a or the NS Ctrl groups (data not shown). Thus, targeting miR-26a increased SMAD1 expression, induced myocardial angiogenesis and left ventricular function, and reduced infarct size after acute MI.

MiR-26a regulates physiological angiogenesis.

To explore whether miR-26a also regulated angiogenesis under physiological conditions, we examined the effect of systemically delivered miR-26a mimics on exercise-induced angiogenesis in skeletal muscle (FIGURE 7A and Online FIGURE IXA). After systemic delivery of miR-26a or non-specific miR mimic controls, miR-26a was overexpressed ~4-fold higher in the quadriceps muscle (Online FIGURE IXB-C). After exercise for 8 days, overexpression of miR-26a decreased CD31 and Ki67 expression in the quadriceps of these mice compared to mice injected with scrambled miR mimic controls (FIGURE 7B-E). Furthermore, miR-26a overexpression reduced SMAD1 expression that co-localized with CD31-positive cells and increased p21WAF/CIP1 expression (FIGURE 7F-G). Collectively, these data indicate that increased miR-26a overexpression adversely affects physiological angiogenesis such as in exercise.

DISCUSSION

Impaired EC responses have been implicated in a variety of physiological conditions and pathological disease states. We show here that miR-26a acts as a unique, rapid ‘angiogenic switch’ in both physiological and pathological angiogenesis by suppressing endothelial SMAD1 expression, an effect leading to reduced Id1 and increased p21WAF/CIP1 and p27 expression and EC cycle arrest. Importantly, these effects are distinct from other miRs that have been implicated in regulating angiogenic signals to date. We identified that miR-26a expression is increased in response to acute MI in mice and in human subjects with acute coronary syndromes. MiR-26a overexpression impairs physiological angiogenic responses of CVP formation in zebrafish and exercise-induced angiogenesis in mice. In contrast, in vivo neutralization of miR-26a reduced myocardial infarct size by rapidly inducing robust angiogenesis by two days with improved left ventricular function, suggesting a new therapeutic approach for diseases associated with pathological angiogenesis.

Several lines of evidence support a key role for the BMP/SMAD1/Id1 signaling pathway regulating angiogenesis. Upstream activation of this pathway, for example with administration of recombinant BMP2, stimulated angiogenesis in developing tumors. SMA1 knockout mice exhibit an immature vasculature and suffer early embryonic lethality. Id1, a known SMAD1 target gene, has been implicated in tumor-associated angiogenesis. Id1-knockout mice exhibited reduced angiogenesis and increased p21WAF/CIP1 expression in several cell types. In addition, genetic ablation of p21WAF/CIP1 in Id1 knockout mice restored a functional endothelial cell population and rescued the defective angiogenesis and tumor growth. Furthermore, activation of BMP signaling in zebrafish increased sprouting along the CVP, whereas inhibition of BMP signaling reduced CVP formation. Thus, our findings that miR-26a regulates the downstream SMAD1 signaling pathway in endothelial cells, zebrafish, and mice is consistent with observed effects in response to perturbation of this signaling pathway in complementary pathological and physiological angiogenic paradigms. Increased miR-26a expression, as observed after myocardial injury in mice (FIGURE 1C), may dampen endogenous angiogenic responses required for early, effective tissue repair. Importantly, increased miR-26a expression is not restricted to murine myocardial injury, but is also detected in human subjects with acute coronary syndromes, thereby potentially providing a new target for ischemic cardiovascular disease.
Consistent with our findings, miR-26a has been shown to target SMAD1 in osteoblasts and myoblasts. Interestingly, inhibition of miR-26a in osteoblasts increased bone marker genes and promoted osteoblast differentiation. In contrast, inhibition of miR-26a decreased skeletal muscle myoblast differentiation. Intriguingly, miR-26a inhibition in vascular smooth muscle cells (VSMCs) in vitro had the opposite effects on cell proliferation and migration that we observed herein on ECs (miR-26a inhibition reduced SMC proliferation and migration in vitro), whereas our findings demonstrate that miR-26a increases EC proliferation, migration, and angiogenesis in vitro and in vivo (Figures 1-3, 5-6). While it is unclear whether SMAD1 or its downstream signaling targets that we identified in this report may be playing an analogous role in these studies, an emerging paradigm from other studies indicates that cell type-specific microRNA-mediated effects may be dependent on the relative expression of the proteins that are regulated by the microRNA. In support of this concept, miR-26a expression in liver cancer cells induces cell cycle arrest through direct targeting of cyclins D2 and E2. Although their cell cycle growth arrest findings are consistent with our study, the mechanism in hepatoma cells appear to be quite different than the results reported here. We showed that miR-26a causes cell cycle and growth arrest in ECs through direct targeting of the SMAD1-Id1-p21WAF/CIP1-p27 pathway (FIGURE 3 and 4). Furthermore, there was no effect of miR-26a on cyclin D2 or cyclin E2 expression in HUVECs (Online FIGURE III). MiR-26a has also been implicated in cell apoptosis by predicting to target a BAK1 pathway; however, we did not detect any effect of miR-26a overexpression or inhibition on EC apoptosis as quantified by caspase-3 and Annexin V expression (Online Figure IIIB). In addition, functional differences may exist between primary cells and transformed/tumor cell lines. Thus, the signaling pathways and targets regulated by miR-26a are likely to be quite different depending on the cellular context.

In addition to miR-26a, other miRs have been implicated in molecular mechanisms controlling EC-driven angiogenesis. For example, inhibition of miR-92a, a part of the miR-17~92 cluster, also reduced infarct size and promoted neovascularization in response to MI. However, the targets identified were quite different than miR-26a’s targets and included integrin-α5 and eNOS. MiR-132 was found enriched in ECs of the tumor vasculature and regulated tumor- and retinal-angiogenesis by targeting p120RasGAP. Another microRNA, miR-126, targets Sprouty-related EVH-1 domain containing-1 (SPRED-1) and regulated developmental angiogenesis in zebrafish and neovascularization after ischemic myocardial injury in mice. Finally, members of the miR-23~miR-27~miR-24 cluster target several known angiogenic factors, including semaphorin 6A (SEMA6A), Sprouty2, GATA2, and p21-activated kinase PAK4, to promote myocardial and retinal neovascularization. Thus, we have identified an unexpected role for miR-26a in its unique ability to rapidly inhibit angiogenesis via targeting the BMP/SMAD1/Id1 signaling, an effect that is distinct from other miRs that have been implicated in regulating angiogenic signals.

Accumulating studies demonstrate that strategies to enhance myocardial angiogenesis after myocardial injury are often associated with improved left ventricular function. Angiogenesis is a critical component in the early reparative process of granulation tissue after acute myocardial infarction and can participate in limiting infarct size and reducing myocardial apoptosis. Consistent with this premise, injection of mice with LNA-anti-miR-26a markedly increased myocardial angiogenesis by 2-fold, an effect associated with improved LV function and reduced myocardial apoptosis by 48 hrs (FIGURE 6 and Online TABLE I). While left ventricular function improved even further by 8 days, there was only a non-significant trend of increased angiogenesis by 8 days (~20%) (Online FIGURE VIII and Online TABLES I and II). Interestingly, miR-26a expression was significantly induced in the ischemic apex 1 hr after acute myocardial infarction, whereas there were no differences in the LV mid and base regions at this time point compared to sham controls; in contrast, by 24 hrs, miR-26a expression was reduced in the apex and mid regions, but not in the base (Online Figure II-A-C). As such, there may be endogenous pressure to reduce miR-26a expression in the ischemic myocardium to promote angiogenesis and myocardial repair. Collectively, these findings raise the possibility that earlier therapeutic
intervention to enhance angiogenesis may confer a more favorable enduring effect for ongoing myocardial remodeling.

In summary, our findings establish miR-26a as an EC-enriched miR that has a key role in regulating both physiological and pathological angiogenesis by targeting a SMAD1-Id1-p21WAF1/CIP1/p27 signaling axis to promote an anti-angiogenic program in endothelial cells. MiR-26a expression is increased in response to acute MI in mice and in human subjects with acute coronary syndromes. Inhibition of miR-26a in mice induced rapid angiogenesis and attenuated myocardial infarct size. These effects were associated with improved left ventricular function. As impaired EC responses have been implicated in a variety of disease states, therapeutic neutralization of miR-26a could be applied for rapid angiogenic induction in other ischemic disease states including chronic ischemic heart disease, peripheral artery disease, and diabetic wound healing, whereas application of miR-26a mimetics could offer new opportunities in treating angiogenesis associated with cancer, age-associated macular degeneration, rheumatoid arthritis, and psoriasis.

ACKNOWLEDGMENTS
We thank Soeun Ngoy and Shikha Mishra of the Cardiovascular Physiology Core for technical assistance and Paul Yu for helpful suggestions.

SOURCES OF FUNDING
This work was supported by funding from the National Institutes of Health (HL091076, HL115141, and HL117994) to M.W.F. an Institutional Ruth L. Kirschstein N.R.S.A. T32HL07604 to B.I.), a J.P. Lemann Cardiovascular Fellowship at Brigham and Women’s Hospital and the Harvard Medical School (to J.F.M.), and a Watkins Cardiovascular Medicine Discovery Award (to M.W.F.).

DISCLOSURES
Mark W. Feinberg, Basak Icli, and The Brigham and Women’s Hospital have a patent pending related to the work that is described in the present study.

REFERENCES

27. Chen Y, Gorski DH. Regulation of angiogenesis through a microrna (mir-130a) that down-regulates antiangiogenic homeobox genes gax and hoxa5. *Blood*. 2008;111:1217-1226
32. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. *Cell*. 2005;120:15-20

FIGURE LEGENDS

Figure 1. MiR-26a is regulated by pro-angiogenic stimuli and inhibits cell growth. (A) Real-time qPCR analysis of miR-26a expression in response to VEGF in HUVECs. *P < 0.005 compared to Ctrl. (B) Real-time qPCR analysis of miR-26a and miR-26b in HUVECs. *P < 0.001 (C) Circulating miR-26a levels are increased in plasma from human subjects with acute coronary syndrome (n = 14) compared to subjects with normal coronary angiograms (n = 16). *P < 0.05 compared to normal coronary angiogram. (D) Circulating miR-26a levels are increased in plasma of mice after 45 min of ischemia/reperfusion of the left anterior descending artery (n = 4 per group) *P < 0.05 compared to sham. (E-F) HUVECs transfected with miR negative control (NSm), miR-26a mimics (miR-26am), miR inhibitor negative control (NSi), or miR-26a inhibitor (miR-26ai) were subjected to cell growth assays (E) (n = 6 per group) *P < 0.05 compared to NSm or NSi; ** P < 0.001 compared to NSm or NSi; or cell cycle profiling (F) by propidium iodide staining and FACS (data representative of n = 3 experiments). * P < 0.001 compared to NSm(G0/G1) or NSi (G0/G1).

Figure 2. MiR-26a inhibits pro-angiogenic functions in ECs in vitro and in vivo. (A-B) HUVECs transfected with miR negative control (NSm), miR-26a mimics (miR-26am), miR inhibitor negative control (NSi), or miR-26a inhibitor (miR-26ai) were subjected to tube-like network formation in matrigel (A) (n = 6 per group) or admixed in Matrigel plugs (B) placed subcutaneously in nude mice (n = 5 per group). CD31 staining was examined in matrigel plugs one week later. *P < 0.05 compared to NSm, **P < 0.05 compared to NSi. Scale bars: 500µm upper panel, 25 µm lower panel. EC migration (C) or aortic ring sprouting (D) were examined in response to transfection with miR negative control (NSm), miR-26a mimics (miR-26am), miR inhibitor negative control (NSi), or miR-26a inhibitor (miR-26ai). Transwell Boyden chambers were used for EC-migration (C) with the indicated growth factors (n = 6 per group). *P < 0.001 compared to NSm; **P < 0.001 compared to NSi. (D) Sprouting distance was measured from n = 4-6 aortic rings per group. * P < 0.05 compared to NSm; **P < 0.05 compared to NSi. Scale bar, 125µm.

Figure 3. SMAD1 is a bona fide target of miR-26a in ECs. (A) Protein expression of SMAD1 was examined by Western blotting after HUVECs were transfected with miR negative control (NSm), miR-26a mimics (miR-26am), miR inhibitor negative control (NSi), or miR-26a inhibitor (miR-26ai). (B) Protein expression of SMAD family members in HUVECs was determined by Western blotting using antibodies to SMAD1, SMAD2, SMAD4, SMAD7, and β-actin (n = 3 to 5 experiments). (C-D) Luciferase activity of SMAD1-3’UTR normalized to β-gal was quantified in HUVECs transfected with NSm, miR-26am, NSi, or miR-26a, or stimulated with VEGF or TNF-α for 6 hours (n = 3 experiments). (E) miRNP-IP analysis of enrichment of SMAD1 mRNA in HUVECs transfected with miRNA negative control or miR-26a mimics. *P < 0.01. RT-qPCR was performed to detect SMAD1 (left) or KPNA4 (right). (F) HUVECS transfected with NSm, miR-26am, or with miR-26a in the absence or presence of lentiviral SMAD1 lacking its 3’-UTR were subjected to cell growth assays (n = 4 replicates per condition) *P < 0.005 compared to NSm; **P < 0.0005 compared to miR-26am. (G-I) HUVECs were transfected with siRNA to SMAD1 or scrambled control (ctrl) siRNA. (G) Protein expression was determined by Western analysis using antibodies to SMAD1, Id1, and β-actin (n = 2 experiments); (H) tube-like network formation was quantified in Matrigel. *P < 0.005. (n = 6 replicates per condition); and (I) ECs were subjected to cell growth assays *P < 0.01. Scale bar, 100µm. Results are representative of n = 3 replicates per group and 2 independent experiments. All data represent means ± s.e.m.
Figure 4. MiR-26a regulates the expression of downstream BMP/SMAD1 signaling in ECs. (A) HUVECs transfected with miR negative control (NSm), miR-26a mimics (miR-26am), miR inhibitor negative control (NSi), or miR-26a inhibitor (miR-26ai) were treated in the presence or absence of BMP9 (0.1 ng/mL) for 2 hrs and subjected to Western analysis using antibodies to Id1, p21, p27, SMAD1, and β-actin (n = 3 to 5 experiments). (B) HUVECs transfected with NSm or miR-26am were treated in the presence or absence or BMP9 (0.1 ng/mL) and subjected to luciferase reporter assays (n = 3 experiments). *P < 0.05 compared to NSm; All data represent means ± s.e.m.

Figure 5. MiR-26a regulates caudal vein plexus formation, a BMP-responsive process, in zebrafish. Tg(Flk1:EGFP) zebrafish embryos were injected with NSm or miR-26am in the presence or absence of SMAD1. (A) Vasculature of Tg(flk:EGFP) zebrafish embryos was imaged by immunofluorescence confocal microscopy. Inset highlights region of interest for caudal vein plexus. Scale bars, first panel 20µm, second panel 10µm, third panel 5µm. (B) The formation of the caudal vein plexus, a BMP-responsive region, was quantified 48 hrs post-fertilization on a scale of 1-10 (n = 13 per group) *P < 0.001 and (C) vessel density was quantified using Image J 1.41. *P < 0.005 compared to NSm; ** P < 0.001 compared to miR-26am. All data represent means ± s.e.m.

Figure 6. Inhibition of miR-26a increases angiogenesis, decreases infarct size, and improves LV function in a mouse model of acute MI. (A) After a single tail vein injection in mice of LNA-anti-miR-26a (MiR-26ai) (24mg/kg) or scrambled non-specific control LNA-antimiRs (NSi) (n = 11-12 per group) on day 0, mice underwent acute myocardial infarction consisting of 45 minutes of ischemia and reperfusion of the left anterior descending artery (LAD) and infusion of fluorescent microbubbles on day 1. (B) TTC staining (top) demonstrates areas of infarct in the left ventricle. Myocardial infarction size was normalized to the area at risk. *P < 0.05 compared to NSi. Angiogenesis was quantified by CD31 (C) or isolectin staining (D) in sections from the entire left ventricle on day 2. *P < 0.05 compared to NSi. Scale bars, 500µm in (c) and 100µm in (D). (E) Left ventricular ejection fraction was measured by echocardiography on days 2 and 8. *P < 0.05 compared to NSi. All data represent means ± s.e.m.

Figure 7. Overexpression of miR-26a inhibits exercise-induced angiogenesis in mice. (A) Mice were tail-vein injected with non-specific scrambled control (NSm) or miR-26am (1 nmole) as indicated over the course of 8 days of defined exercise (wheel-running). (B) Representative immunofluorescent staining of CD31 (in red), SMAD1 (in green), Ki67 (in light green), and DAPI (in blue) of the quadriceps muscles are shown. Scale bars, 50 µm. (C-E) Quantification of the number of cells staining for CD31 (C), SMAD1 co-localized with CD31 (yellow) (D), and Ki67 co-localized with DAPI (E) are shown. *P < 0.05 compared to NSm; ** P < 0.01 compared to NSm. (F-G) RNA from the quadriceps muscle was harvested for quantitating the expression of miR-26a (Online Figure 6B), SMAD1 (F), and p21 (G) by RT-qPCR. *P < 0.05 compared to NSm. All data represent means ± s.e.m.
Novelty and Significance

What Is Known?

- Angiogenesis, the generation of new blood vessels from pre-existing ones, is an important event in growth, development, and tissue repair.

- Impaired angiogenesis is implicated in a number of disease states such as ischemic cardiovascular diseases [i.e. acute myocardial infarction (MI)], diabetic wound healing, and neurodegenerative disorders.

- Although several microRNA’s have been shown to regulate tumor angiogenesis, their role in the angiogenic response relevant to ischemic cardiovascular disease remains inadequately understood.

What New Information Does This Article Contribute?

- MicroRNA-26a (miR-26a) is an important regulator of pathological and physiological angiogenesis.

- MiR-26a targets a SMAD1-Id1-p21WAF/CIP1/p27 signaling axis to promote an anti-angiogenic program in endothelial cells.

- Targeted inhibition of miR-26a rapidly increases angiogenesis, decreases infarct size, and improves cardiac function after myocardial infarction in a mouse model.

In this report, we identified and characterized miR-26a as a previously unknown regulator of physiological and pathological angiogenesis. We found that expression of miR-26a is increased in acute MI in mice. In addition, circulating level of miR-26a was increased in human subjects with acute coronary syndromes. MiR-26a regulates EC growth, proliferation, and migration and early angiogenesis in animal models of acute MI, and during exercise, or development. These findings suggest that neutralization of miR-26a expression may provide a novel approach for inducing rapid angiogenic therapy in ischemic cardiovascular disease.
Figure 1. MiR-26a is regulated by pro-angiogenic stimuli and inhibits cell growth. (A) Real-time qPCR analysis of miR-26a expression in response to VEGF in HUVECs. * P < 0.005 compared to Ctrl. (B) Real-time qPCR analysis of miR-26a and miR-26b in HUVECs. * P < 0.001 (C) Circulating miR-26a levels are increased in plasma from human subjects with acute coronary syndrome (n = 14) compared to subjects with normal coronary angiograms (n = 16). * P < 0.05 compared to normal coronary angiogram. (D) Circulating miR-26a levels are increased in plasma of mice after 45 min of ischemia/reperfusion of the left anterior descending artery (n = 4 per group). * P < 0.05 compared to sham. (E-F) HUVECs transfected with miR negative control (NSm), miR-26a mimics (miR-26a)m, miR inhibitor negative control (NSi), or miR-26a inhibitor (miR-26ai) were subjected to cell growth assays (E) (n = 6 per group) * P < 0.05 compared to NSm or NSi; ** P < 0.001 compared to NSm or NSi; or cell cycle profiling (F) by propidium iodide staining and FACS (data representative of n = 3 experiments). * P < 0.001 compared to NSi(i)(G0/G1) or NSi(i)(G0/G1).
Figure 2. MiR-26a inhibits pro-angiogenic functions in ECs in vitro and in vivo. (A-B) HUVECs transfected with miR negative control (NSm), miR-26a mimics (MiR-26am), miR inhibitor negative control (NSi), or miR-26a inhibitor (MiR-26ai) were subjected to tube-like network formation in matrigel (A) (n = 6 per group) or admixed in Matrigel plugs (B) placed subcutaneously in nude mice (n = 5 per group). CD31 staining was examined in matrigel plugs one week later. * P < 0.05 compared to NSm; ** P < 0.05 compared to NSi. Scale bars: 500μm upper panel, 25 μm lower panel. EC migration (C) or aortic ring sprouting (D) were examined in response to transfection with miR negative control (NSm), miR-26a mimics (MiR-26am), miR inhibitor negative control (NSi), or miR-26a inhibitor (MiR-26ai). Transwell Boyden chambers were used for EC-migration (C) with the indicated growth factors (n = 6 per group). * P < 0.001 compared to NSm; ** P < 0.001 compared to NSi. (D) Sprouting distance was measured from n = 4-6 aortic rings per group. * P < 0.05 compared to NSm; ** P < 0.05 compared to NSi. Scale bar, 125μm.
Figure 3. SMAD1 is a bona fide target of miR-26a in ECs. (A) Protein expression of SMAD1 was examined by Western blotting after HUVECs were transfected with miR negative control (NS), miR-26a mimics (miR-26a_m), miR inhibitor negative control (NS_i), or miR-26a inhibitor (miR-26a_i). (B) Protein expression of SMAD family members in HUVECs was determined by Western blotting using antibodies to SMAD1, SMAD2, SMAD4, SMAD7, and β-actin (n = 3 to 5 experiments). (C-D) Luciferase activity of SMAD1-3'UTR normalized to β-gal was quantified in HUVECs transfected with NS_m, miR-26a_m, NS_i, or miR-26a_i or stimulated with VEGF or TNF-α for 6 hours (n = 3 experiments). (E) miRNP-IP analysis of enrichment of SMAD1 mRNA in HUVECs transfected with miRNA negative control or miR-26a mimics. *P < 0.01. RT-qPCR was performed to detect SMAD1 (left) or KPNA4 (right). (F) HUVECs transfected with NS_m, miR-26a_m, or with miR-26a_i in the absence or presence of lentiviral SMAD1 lacking its 3'-UTR were subjected to cell growth assays (n = 4 replicates per condition) *P < 0.005 compared to NS_m; **P < 0.0005 compared to miR-26a_m). (G-I) HUVECs were transfected with siRNA to SMAD1 or scrambled control (ctrl) siRNA. (G) Protein expression was determined by Western analysis using antibodies to SMAD1, Id1, and β-actin (n = 2 experiments); (H) tube-like network formation was quantified in Matrigel. *P < 0.005. (n = 6 replicates per condition); and (I) ECs were subjected to cell growth assays *P < 0.01. Scale bar, 100μm. Results are representative of n = 3 replicates per group and 2 independent experiments. All data represent means ± s.e.m.
Figure 4. MiR-26a regulates the expression of downstream BMP/SMAD1 signaling in ECs. HUVECs transfected with (A) miR negative control (NS), miR-26a mimics (miR-26a_m) or (B) miR inhibitor negative control (NS), or miR-26a inhibitor (miR-26a_i) were subjected to Western analysis using antibodies to Id1, p21, p27, SMAD1, and β-actin (n = 3 to 5 experiments). (C) HUVECs transfected with NS_m or miR-26a_m were treated in the presence or absence of BMP9 (0.1 ng/mL) for 2 hrs and subjected to Western analysis using antibodies to SMAD1, phosphorylated-SMAD1 (p-SMAD1), and β-actin (n = 2 experiments). (D) HUVECs were co-transfected with the Id1 promoter along with NS_m or miR-26a_m in the presence or absence of BMP9 (0.1 ng/mL) and subjected to luciferase reporter assays (n = 3 experiments). *P < 0.05 compared to NS_m. All data represent means ± s.e.m.
Figure 5. MiR-26a regulates caudal vein plexus formation, a BMP-responsive process, in zebrafish. Tg(Flk:EGFP) zebrafish embryos were injected with NS_m or miR-26a_m in the presence or absence of SMAD1. (A) Vasculature of Tg(Flk:EGFP) zebrafish embryos was imaged by immunofluorescence confocal microscopy. Inset highlights region of interest for caudal vein plexus. Scale bars, first panel 20µm, second panel 10µm, third panel 5µm. (B) The formation of the caudal vein plexus, a BMP-responsive region, was quantified 48 hrs post-fertilization on a scale of 1-10 (n = 13 per group) *P < 0.001 and (C) vessel density was quantified using Image J 1.41. *P < 0.005 compared to NS_m; ** P < 0.001 compared to miR-26a_m. All data represent means ± s.e.m.
Figure 6. Inhibition of miR-26a increases angiogenesis, decreases infarct size, and improves LV function in a mouse model of acute MI. (A) After a single tail vein injection in mice of LNA-anti-miR-26a (MiR-26a) (24mg/kg) or scrambled non-specific control LNA-antimiRs (NSi) (n = 11-12 per group) on day 0, mice underwent acute myocardial infarction consisting of 45 minutes of ischemia and reperfusion of the left anterior descending artery (LAD) and infusion of fluorescent microbubbles on day 1. (B) TTC staining (top) demonstrates areas of infarct in the left ventricle. Myocardial infarction size was normalized to the area at risk. *P < 0.05 compared to NSi. Angiogenesis was quantified by CD31 (C) or isoelectin staining (D) in sections from the entire left ventricle on day 2. *P < 0.05 compared to NSi. Scale bars, 500μm (left) and 250μm (right) in (C) and 100μm (left) and 50μm (right) in (D). (E) Left ventricular ejection fraction was measured by echocardiography on days 2 and 8. *P < 0.05 compared to NSi.
Figure 7. Overexpression of miR-26a inhibits exercise-induced angiogenesis in mice. (A) Mice were tail-vein injected with non-specific scrambled control (NS_m) or miR-26a_m (1 nmole) as indicated over the course of 8 days of defined exercise (wheel-running). (B) Representative immunofluorescent staining of CD31 (in red), SMAD1 (in green), Ki67 (in light green), and DAPI (in blue) of the quadriceps muscles are shown. Scale bars, 50 μm. (C-E) Quantification of the number of cells staining for CD31 (C), SMAD1 co-localized with CD31 (yellow) (D), and Ki67 co-localized with DAPI (E) are shown. *P < 0.05 compared to NS_m; ** P < 0.01 compared to NS_m. (F-G) RNA from the quadriceps muscle was harvested for quantitating the expression of miR-26a (Online Figure 6B), SMAD1 (F), and p21 (G) by RT-qPCR. *P < 0.05 compared to NS_m. All data represent means ± s.e.m.
MicroRNA-26a Regulates Pathological And Physiological Angiogenesis by Targeting BMP/SMAD1 Signaling
Basak Icli, Akm K Wara, Javid Moslehi, Xinghui Sun, Eva Plovie, Meghan Cahill, Julio F Marchini, Andrew Schissler, Robert F Padera, Jianru Shi, Hui-Wen Cheng, Srilatha Raghuram, Zoltan Arany, Ronglih Liao, Kevin Croce, Calum A MacRae and Mark W Feinberg

Circ Res. published online September 18, 2013;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2013/09/18/CIRCRESAHA.113.301780

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2013/09/18/CIRCRESAHA.113.301780.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling

Basak Icli, MS, PhD\(^1\), Javid Moslehi, MD\(^1\), AKM Wara, PhD\(^1\), Xinghui Sun, MD, PhD\(^1\), Eva Povie, PhD\(^1\), Meghan Cahill, BS\(^1\), Julio F. Marchini, MD\(^1\), Andrew Schissler, MD\(^1\), Robert F. Padera, MD, PhD\(^2\), Jianru Shi, PhD\(^1\), Hui-Wen Cheng, MD\(^1\), Srilatha Raghuram, MS, PhD\(^3\), Zoltan Arany, MD, PhD\(^3\), Ronglih Liao, PhD\(^1\), Kevin Croce, MD, PhD\(^1\), Calum MacRae, MD\(^1\), and Mark W. Feinberg, MD\(^1\)*

\(^1\)Cardiovascular Division, Department of Medicine, and \(^2\)Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115. \(^3\)Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115.

*Corresponding author: Dr. Mark W. Feinberg, Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-742F, Boston, MA 02115. Email: mfeinberg@rics.bwh.harvard.edu, Tel: (617) 525-4381, Fax: (617) 525-4380
Detailed Methods

Cell Culture, transfection, and lentiviral transduction

Human umbilical vein endothelial cells (HUVECs) passaged less than five times were used for all experiments. For transfection studies, HUVECs were cultured overnight before being transfected with Lipofectamine™ 2000 transfection reagent. HUVECs were transduced with lentivirus expressing GFP or SMAD1 at 10 MOI. For reporter studies, HUVECs were transfected with 800 ng of the indicated reporter constructs and 200 ng β-galactosidase (β-gal) expression plasmids. Each reading of luciferase activity was normalized to the β-gal activity read for the same lysate. Human umbilical vein endothelial cells (HUVECs) (cc-2159; Lonza, Walkersville, MD) were cultured in growth media EGM®-2 (cc-3162; Lonza Walkersville, MD). VEGF-A, TNF-α, and BMP-2 were obtained from R&D Systems. HUVECs were treated with 10 ng/ml TNF-α for 24 h, collected into TRIzol, and total RNAs were prepared for miRNA microarray analysis (LC Sciences). For transfection studies, HUVECs were plated at 50,000 cells/well and cultured overnight before being transfected with Lipofectamine™ 2000 transfection reagent (Invitrogen), following manufacturer’s instructions. MiRNA negative controls, miR-26a mimics, and miR-26a inhibitor (AM17100; Ambion, Inc.) were transfected in HUVECs at 30 nM concentration except where indicated. MiR-26a inhibitor and negative control was transfected at 100 nM concentration. Cy™3 labeled-negative control #1 (AM17120; Ambion) was transfected in parallel to assess transfection efficiency which was >90%. HUVECs were transduced with lentivirus expressing GFP(OHS5899-101186481; ThermoScientific) or SMAD1 (PLOHS_100005140; ThermoScientific) at 10 MOI. For reporter studies, HUVECs were plated (50,000/well) in triplicate on a 12-well plate, grown to 70-80% confluency, and transfected with 800 ng of the indicated reporter constructs and 200 ng β-galactosidase (β-gal) expression plasmids. MiR-26a mimics or inhibitors were co-transfected at 30 or 100 nM final concentration where indicated. Transfected cells were collected in 200 µl Reporter Lysis Buffer (Promega). Each reading of luciferase activity was normalized to the β-gal activity read for the same lysate.

Real-time qPCR

HUVECs were suspended in TRIzol® reagent (Invitrogen) and total RNA and microRNA was isolated using Trizol® reagent (Invitrogen) per manufacturer’s instructions. Reverse transcriptions were performed by using miScript Reverse Transcription Kit from Qiagen (218061). Either QuantiTect SYBR Green RT-PCR Kit (204243) or miScript SYBR Green PCR Kit (218073) from Qiagen was used for quantitative real-time qPCR analysis with the Mx3000P Real-time PCR system (Stratagene) following the manufacturer’s instructions. Gene-specific primers were used to detect mouse SMAD1 (forward primer: TTCCGCAACCTGGGACAAAAT; reverse primer: AGGCTGGAACAACCATGCC) and p21 (forward primer: CCTGGTGATGTCCGACCTG; reverse primer: CCATGAGCGCATCGCAATC). To amplify mature miRNA sequences, miScript primer assays for Hs_RN5S1_1 (MS00007574), Hs_miR-26a_1 (MS00006559), and Hs_miR26b_1 (MS00003234) from Qiagen were used. Samples were normalized to endogenous 5S RNA (human). Fold changes were calculated by ΔΔCt method.
Tube-like network formation on Matrigel in vitro and in vivo

Matrigel (BD Bioscience) basement membrane matrix was added to 96-well culture plates and incubated at 37°C until gelation occurred as described\(^1\). HUVECs transfected with miR-26a mimic, miR-26a inhibitor, and non-specific negative controls were cultured for 72 hours before being plated on Matrigel at 20,000 cells/well. Network tube formation was assessed 14 hours post-plating and quantitated by counting the number of tubes formed per high power field as described.\(^2\) Six technical replicated were used per condition. For in-vivo angiogenesis assay, HUVECs transfected with miR-26a mimic, miR-26a inhibitor, or non-specific negative controls were cultured for 72 hours before admixed with Matrigel (1x10\(^6\)cells/ml), bFGF (250 ng per mL, R&D Systems), and heparin (60 units per mL; Hospira, Inc.). Matrigel plugs admixed with transfected HUVECs were implanted subcutaneously into nude mice and collected 7 days post implantation. Angiogenesis in matrigel plugs was analyzed using human CD31 Ab staining of the paraffin embedded matrigel sections.

Aortic Ring Assay

The aortic ring assay was performed in an analogous manner as described\(^3\)-\(^5\). Briefly, aortas were harvested from 8-10 weeks old, C57BL/6 mice (Charles River), cut into 1 mm pieces, and placed in 12-well plates with 1ml medium. Aortas were then transfected with miR-26a mimic, miR-26a inhibitor, or non-specific miR negative control using Lipofectamine™ 2000 transfection reagent for 12 hrs followed by embedding into matrigel (BD354006). Aortic sprouting was observed 4-7 days post embedding into matrigel. Sprouting distance was measured using Image J software (NIH).

Chemotaxis assays

Migration assay was performed using ChemTX multiwell system (Neuro probe Inc, MD) with 5 mm pore size and 96-well format as described\(^6\). HUVECs transfected with miR-26a mimic, miR-26a inhibitor, or non-specific negative controls were cultured for 72 hours before being plated on the upper compartment of the multiwell plate to assess migration. Lower compartments were filled with EBM-2 medium containing TNF-\(\alpha\), BMP-2 or VEGF (R&D Systems). The number of cells migrating to the lower chamber was counted using a hemocytometer after 5 hours. Three technical replicated were used per condition and studies were validated in at least 2 independent experiments.

Western Blots Analysis

HUVECs transfected with miR-26a mimic, miR-26a inhibitor, or non-specific negative controls were cultured for 72 hours. Total cellular protein was isolated by RIPA buffer (50 mM Tris-HCL pH 7.4, 150 mM NaCl, 1%NP-40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with protease inhibitors (Roche). Cell or tissue debris was removed by centrifugation at 12000rpm for 10 min. Lysates were separated by 8% or 10% SDS-PAGE gels, transferred to PVDF membranes (Bio-Rad). Protein quantification was performed using the BCA kit (Thermo Scientific) and cellular lysates were subjected to Western blotting using antibodies against SMAD1 (Cell Signaling), SMAD2 (Abcam), SMAD4 (Cell Signaling), SMAD7 (Abcam), Id1 (Abcam), p21(Cell Signaling), p27 (Cell
Signaling), cyclin D2 (Cell Signaling), cyclin E2 (Cell Signaling), and β-actin (Cell Signaling). HRP-conjugated goat anti-rabbit or mouse antibody (Santacruz) was used at 1:5000 dilution. ECL assay was performed per manufacturers instructions (RPN2132; GE Healthcare).

BrdU Assay
HUVECs transfected with miR-26a mimic, miR-26a inhibitor, or non-specific negative controls were cultured for 5 days. Cell proliferation was measured using the BrdU ELISA assay as described by the manufacturer (Roche).

Argonaute2 (AGO2) micro-ribonucleoprotein IP (miRNP-IP) studies
MiRNP-IP was performed as we previously described. Briefly, Myc-tagged Ago-2 (a kind gift from G. Hannon, Cold Spring Harbor, NY) was co-transfected with either miR-26a or miRNA negative control in HUVECs. Cells were washed in ice cold PBS, released by scraping, and lysed in buffer (10 mM Tris-HCl pH 7.5, 10 mM NaCl, 2 mM EDTA, 0.5% Triton X-100, 100 units/ml of RNasin Plus (Promega) supplemented with 1x protease inhibitor (Roche). The lysed cell solution was adjusted to a final NaCl concentration of 150 mM prior to centrifugation. One-twentieth of the supernatant volume was collected in TRIzol for use as an extract control. The remaining portion of the supernatant was pre-cleared with Protein A/G UltraLink Resin (Pierce), to which 2 µg anti-c-myc antibody was added and the mixture allowed to incubate overnight at 4°C; the following day Protein A/G UltraLink Resin was added. After 4h of mechanical rotation at 4°C, the agarose beads were pelleted and washed four times in wash buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05% Triton X-100). Finally, 1 ml of TRIzol was added into the beads and RNA was isolated. Total RNA was reverse transcribed into cDNA for real-time qPCR analysis.

ELISA
After acute myocardial infarction, plasma from mice injected with LNA-anti-miR-26a or NS ctrl were collected after 24 hrs for ELISA analysis by means of SearchLight Multiplex Immunoassay Kit (Aushon BioSystems, Inc) as we previously described.

In vivo miR-26a inhibition or over-expression and mouse experiments
Animal protocols were approved by the Laboratory Animal Care at Harvard Medical School. For acute myocardial infarction, male, 8-10 weeks old, C57BL/6 mice (Charles River) were used to tail-vein inject either scrambled control LNA-anti-miR or LNA-anti-miR-26a (Exiqon, Inc) at 24 mg/kg. Twenty-four hrs later, mice underwent 45 minutes of ischemia and 5 min into ischemia, 50 µl of fluorescent microspheres (10-µm FluoSpheres, Molecular Probes, Inc (F8834) were injected into the LV cavity. After 45 min, the LAD ligature was released, and reperfusion visually confirmed. To delineate the size of infarct, the heart was sliced into 2-mm sections. Each slice was used to quantify the area at risk (AAR) and the infarct area. To delineate the infarct, sections were incubated in 1% (wt/vol) triphenyltetrazolium chloride (TTC, Sigma) in PBS (pH 7.4) at 37°C for 20 minutes. For each section, the AAR and infarct area were measured from enlarged digital micrographs with NIH Image (ImageJ). Percent myocardial infarction (%MI) was calculated as the total infarction area divided by the total AAR for that heart.
Angiogenesis in heart was analyzed by mouse CD31 staining and isolectin B4 (B-1205; Vector Laboratories, Inc) of the paraffin embedded heart sections. Myocardial apoptosis and necrosis was quantified using Annexin V (LS Bio C171652) and C5B9 antibodies (Abcam 55811). Smooth muscle α-actin (SMA) expression in the heart was detected using SMA antibodies (Abcam 7817). Fluorescent images were acquired by Olympus Fluoview FV1000 confocal microscope. For exercise studies, C57BL/6, 8-10 weeks old mice were tail vein injected with a mixture of lipofectamine™ 2000 and miR-26a mimics or non-specific negative control mimics at the indicated time points as we previously described. Mice underwent nocturnal running on wheels in a single cage over a period of nine days. The quadriceps muscles were harvested for confocal immunofluorescent staining for Abs specific for SMAD1(Cell Signaling), CD31(DIA-310; Dianova, Inc), Ki67(RM-9106-S; ThermoScientific, Inc), and DAPI (H21492; Invitrogen, Inc).

Left ventricular function by echocardiography
Echocardiography was performed on conscious mice using a 28 MHz linear array transducer connected to a digital ultrasound console (Vevo2100 Visualsonics, Toronto, ON). All echocardiograms were performed at baseline (1 day before initial surgery), 1 or 7 days following surgery. For measurements of LV function and geometry, M-mode images were recorded from parasternal short axis images at the mid-papillary level. Fractional shortening, ejection fraction, and LV dimensions were measured from M-mode images. LV mass was calculated from parasternal long axis tracings using a Modified Simpson’s formula.

Zebrafish studies
Wild-type and flk:EGFP Tg (Flk1:EGFP) zebrafish embryos were maintained using standard methods. Embryos were staged according to morphological criteria (somite number) or by hours post-fertilization. For miR-26a overexpression studies, mimics were suspended in sterile water to a concentration of 1nM and diluted to 0.01 nM with 1×Danieau’s solution [58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO₄, 0.6 mM Ca(NO₃)₂, 0.5 mM Hepes, pH 7.6]. The mimics were injected at the single-cell stage in a volume of 1-2 nl. An equal amount of scrambled non-specific mimic was used as a negative control. For SMAD1 overexpression studies, 1nl of the 100 ng/µl in vitro transcribed capped mRNA stock was used.

Circulating miR-26a levels in patients with acute coronary syndromes
Patient plasma samples (21 healthy controls and 14 individuals with acute coronary syndrome) were collected as part of a prospectively enrolled cohort of patients that underwent cardiac catheterization in accordance with the Institutional Review Board-approved protocol at Brigham and Women’s Hospital. Written informed consent was obtained from all participants or their appropriate surrogates. Plasma was isolated from whole blood. Control patients were defined as without clinically significant coronary atherosclerosis (<20% stenosis in any epicardial coronary artery determined by angiography) and had no elevation of cardiac biomarkers. Patients with acute coronary syndromes (ACS) were defined as acute atherothrombotic coronary artery occlusion resulting in either an NSTEMI (with >70% occlusion of an epicardial artery) or an STEMI
(complete occlusion of an epicardial coronary artery determined by angiography) with elevation of cardiac biomarkers. Anonymized plasma samples were generated from blood collected in EDTA-containing tubes at the time of the procedure and stored at −80°C. Plasma was isolated from whole blood at 1500g for 15 minutes at room temperature. Total RNA was isolated from plasma by using total RNA purification kit from Norgen Biotek Corporation and reverse transcription and real time qPCR was performed as described in the Section of “Real-time qPCR”.
REFERENCES (for Detailed Methods)

Online Figure I. Expression of miR-26a, miR-26b, and CTDSP2 in response to pro-angiogenic stimuli. Real-time qPCR was performed from RNA extracted from HUVECs treated in the presence or absence of TNF-α (10 ng/mL, 24 hrs) or VEGF-A (50 ng/mL, 6 hrs). TNF-α reduced miR-26a (A) and miR-26b (B) expression and VEGF reduced miR-26a (C) and CTDSP2 (D) expression. * P < 0.001 compared to Ctrl. All data represent means ± s.e.m.
Online Figure II. Expression of miR-26a after acute MI in the heart. Mice underwent acute myocardial infarction consisting of 45 minutes of ischemia and reperfusion of the left anterior descending artery (LAD). Heart tissues were harvested at 1, 6 and 24 hrs later for miR-26a expression by qPCR. P < 0.05 compared to Sham.
Online Figure III. Effect of miR-26a overexpression or inhibition on EC proliferation or apoptosis. HUVECs transfected with miR-26a mimic or inhibitor were cultured for 24 hrs and harvested for (A) cell proliferation by BrdU, * P < 0.05; or (B) caspase-3 or (C) Annexin V levels by FACS (n=3 experiments). NS, non-significant. All data represent means ± s.e.m.
Online Figure IV. Mir-26a targets SMAD1 and not cyclins D2 and E2 in ECs. (A) HUVECs were transfected with SMAD1-3’-UTR-MUT containing 2 mutated SMAD1 binding sites and stimulated with TNF-α for 24 hrs. Luciferase activity of the SMAD1-3’UTR-MUT normalized to β-gal is shown (n = 3 experiments). NS, non-significant. (B-C) Quantification of Western analyses of Id1, p21 and P27 (normalized to β-actin) from HUVECs transfected with (B) miR negative control (NSm) or miR-26a mimics (miR-26am) or (C) miR inhibitor negative control (NSi), or miR-26a inhibitor (miR-26ai) are shown above (n = 3 experiments). *P < 0.05 compared to NSm or NSi with 2 tailed t-test, #P < 0.05 compared to NSm or NSi with 1 tailed t-test. All data represent means ± s.e.m. (D) HUVECs were transfected with miR-26am in parallel with the non-specific (NSm) scrambled control. Protein expression in HUVECs was determined by Western blotting using antibodies to cyclin D2, cyclin E2, and β-actin (n = 3 experiments).
Online Figure V

Online Figure V. Overexpression of miR-26a in zebrafish embryos. Zebrafish Tg(flk:eGFP) embryos injected with miR-26a or scrambled control were harvested 48 hrs post-fertilization for RNA extraction and miR-26a overexpression was verified by RT-qPCR (n=10 embryos). * P < 0.01. Data represents mean ± s.e.m.
Online Figure VI. Delivery of LNA-miR-26a reduced miR-26a expression in vivo

(A) MiR-26a (blue) was detected in sham heart by in-situ hybridization. (B) Cardiac myocytes and non-myocytes were harvested from hearts (n=4-6) and miR-26a expression levels were detected by RT-qPCR. *P < 0.05. (C) After a single tail vein injection in mice of LNA-anti-miR-26a (MiR-26a) (24mg/kg) or scrambled non-specific control LNA-antimiRs (NSi) (n = 11-12 per group) on day 0, mice underwent acute myocardial infarction consisting of 45 minutes of ischemia and reperfusion of the left anterior descending artery (LAD) on day 1 followed by measurement of miR-26a expression by RT-qPCR in heart (left) and circulating plasma (right) and in cardiac myocytes and non-cardiac myocytes (D). *P < 0.05. (E) SMAD1 expression was examined by Western analysis in response to miR-26a inhibition from heart extracts where SMAD1 expression increased by 42% (n=3 mice/group). (F-H) Annexin V, C5B9, and SM-α-actin (SMA) staining was performed and quantified in the entire left ventricle on day 2. *P < 0.05. NS, non-significant. Scale bars, 50μm (F-H). All data represent means ± s.e.m.
Online Figure VII. Expression of inflammatory cytokines following miR-26a inhibiton in acute MI. Plasma samples were collected on day 2 from mice injected with NS or miR-26a inhibitors and underwent acute myocardial infarction (MI). Expression for ICAM-1 (A), VCAM-1 (B), TNF-α (C) and E-selectin (D) were measured by ELISA. NS, non-significant. All data represent means ± s.e.m.
Online Figure VIII. Effect of miR-26a inhibition on angiogenesis. After a single tail vein injection in mice of LNA-anti-miR-26a (MiR-26a) (24mg/kg) or scrambled non-specific control LNA-antimiRs (NS) (n = 3 per group) on day 0, mice underwent acute myocardial infarction consisting of 45 minutes of ischemia and reperfusion of the left anterior descending artery (LAD) on day 1. Angiogenesis was quantified by CD31 (A) or isolectin staining (B) in sections from the entire left ventricle on day 8. Scale bars, 100μm (A) and (B). NS, non-significant. All data represent mean ± s.e.m.
Online Figure IX. Overexpression of miR-26a in quadriceps muscles. (A) Representative immunofluorescent staining of CD31 (green) in the quadriceps muscles of exercised mice. The number of cells staining for CD31 were quantified in sedentary and exercised mice. * P < 0.05. (B) Expression of miR-26a in response to the systemic delivery of non-specific scrambled control or miR-26a mimics (1 nmole) was verified by RT-qPCR analysis in the quadriceps muscle on day 9. * P < 0.05. Scale bar, 100μm. (C) Representative immunofluorescent staining of CD31 (green) and isolectin (red) in the quadriceps muscles of exercised mice. Scale bar, 20μm.
Online Table I

<table>
<thead>
<tr>
<th></th>
<th>NS(_i)</th>
<th>miR-26a(_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS %</td>
<td>17±1.2</td>
<td>22.26±1.7 *</td>
</tr>
<tr>
<td>FAC %</td>
<td>24.14±1.4</td>
<td>31.81±2.9 *</td>
</tr>
<tr>
<td>LVIDd %</td>
<td>4.38±0.07</td>
<td>4.30±0.17</td>
</tr>
<tr>
<td>LVIDs %</td>
<td>3.64±0.09</td>
<td>3.34±0.14</td>
</tr>
<tr>
<td>LVEF %</td>
<td>35.62±2.2</td>
<td>44.99±2.97 *</td>
</tr>
</tbody>
</table>

Online Table I. Inhibition of miR-26a improves left ventricular function 24 hours post acute MI. After a single tail vein injection in mice of LNA-anti-miR-26a (MiR-26a\(_i\)) (24mg/kg) or scrambled non-specific control LNA-antimiRs (NS\(_i\)) (n = 6-8 per group) on day 0, Mice underwent acute myocardial infarction consisting of 45 minutes of ischemia and reperfusion of the left anterior descending artery (LAD). Echocardiography was performed on day 2. *P < 0.05 compared to NS\(_i\). All data represent mean ± s.e.m.

Online Table II

<table>
<thead>
<tr>
<th></th>
<th>NS(_i)</th>
<th>miR-26a(_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS %</td>
<td>12.95±0.75</td>
<td>23.06±2.02 *</td>
</tr>
<tr>
<td>FAC %</td>
<td>22.51±1.64</td>
<td>36.94±2.97 #</td>
</tr>
<tr>
<td>LVIDd %</td>
<td>4.64±0.13</td>
<td>4.41±0.31</td>
</tr>
<tr>
<td>LVIDs %</td>
<td>4.04±0.15</td>
<td>3.52±0.16#</td>
</tr>
<tr>
<td>LVEF %</td>
<td>27.88±1.53</td>
<td>41.05±3.35 *</td>
</tr>
</tbody>
</table>

Online Table II. Inhibition of miR-26a improves left ventricular function 8 days post acute MI. After a single tail vein injection in mice of LNA-anti-miR-26a (MiR-26a\(_i\)) (24mg/kg) or scrambled non-specific control LNA-antimiRs (NS\(_i\)) (n = 6-8 per group) on day 0, Mice underwent acute myocardial infarction consisting of 45 minutes of ischemia and reperfusion of the left anterior descending artery (LAD). Echocardiography was performed on day 7. *P < 0.05 by 2 tailed t-test compared to NS\(_i\). #P < 0.05 by 1 tailed t-test compared to NS\(_i\). All data represent means ± s.e.m.