Circulating p53-Responsive microRNAs are Predictive Indicators of Heart Failure after Acute Myocardial Infarction

Sen Matsumoto1,2, Yasuhiko Sakata1,3,5, Daisaku Nakatani1, Shinichiro Suna1, Masaya Usami1, Masahiko Hara1, Tetsuhisa Kitamura1, Toshimitsu Hamasaki4, Shinsuke Nanto1,3, Yukio Kawahara2, Issei Komuro1,6

1Department of Cardiovascular Medicine; 2Laboratory of RNA Function; 3Department of Advanced Cardiovascular Therapeutics, and; 4Department of Biomedical Statistics, Graduate School of Medicine, Osaka University, Osaka, Japan; 5Department of Evidenced-Based Cardiovascular Medicine, Graduate School of Medicine, Tohoku University, Miyagi, Japan; 6Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

S.M. and Y.S. contributed equally to this study.

Running title: Circulating microRNAs Predict Heart Failure

Subject codes:
[4] Acute myocardial infarction
[142] Gene expression

Address correspondence to:
Dr. Yukio Kawahara
Laboratory of RNA Function
Graduate School of Medicine
Osaka University
2-2 Yamada-oka
Suita, Osaka 565-0871
Japan
Tel: +81 6 6879 3827
Fax: +81 6 6879 3828
ykawahara@rna.med.osaka-u.ac.jp

Dr. Issei Komuro
Department of Cardiovascular Medicine
Graduate School of Medicine
Osaka University
2-2 Yamada-oka, Suita
Osaka 565-0871
Japan
Tel: +81 6 6879 3630
Fax: +81 6 6879 3639
komuro-tky@umin.ac.jp

This manuscript was sent to Mark Sussman, Consulting Editor, for review by expert referees, editorial decision, and final disposition.

In May 2013, the average time from submission to first decision for all original research papers submitted to Circulation Research was 15 days.

DOI: 10.1161/CIRCRESAHA.113.301209
ABSTRACT

Rationale: Despite a recent decline of in-hospital mortality due to acute myocardial infarction (AMI), the incidence of ischemic heart failure (HF) in post-AMI patients is increasing. Although various microRNAs have been proposed as diagnostic indicators for AMI, no microRNAs have been established as predictors of ischemic HF that develop after AMI.

Objective: We attempted to identify circulating microRNAs that can serve as reliable predictors of ischemic HF in post-AMI patients.

Methods and Results: Using sera collected a median of 18 days after AMI onset, we screened microRNAs in 21 patients who developed HF within one year after AMI, and in 65 matched controls free from subsequent cardiovascular events after discharge. Among the 377 examined microRNAs, the serum level of only miR-192 was significantly up-regulated in AMI patients who developed ischemic HF. As miR-192 is reported to be p53-responsive, the serum levels of two other p53-responsive microRNAs, miR-194 and miR-34a, were also investigated. Interestingly, both microRNAs were coordinately increased with miR-192, particularly in exosomes, suggesting that these microRNAs function as circulating regulators of HF development via the p53 pathway. Furthermore, miR-194 and miR-34a expression levels were significantly correlated with left ventricular end-diastolic dimension one year after AMI.

Conclusions: In the sera of post-AMI patients who developed HF within one year of AMI onset, the levels of three p53-responsive microRNAs were elevated by the early convalescent stage of AMI. Further investigations are warranted to confirm the usefulness of these circulating microRNAs for predicting the risk of developing ischemic HF after AMI.

Keywords:
microRNA, p53, exosome, acute myocardial infarction, heart failure

Nonstandard Abbreviations and Acronyms:
AMI acute myocardial infarction
CI confidence interval
HF heart failure
LVDd left ventricular end-diastolic dimension
LVEF left ventricular ejection fraction
INTRODUCTION

Although recent advances in the management of acute myocardial infarction (AMI), including primary percutaneous coronary intervention strategies and evidence-based therapies, have resulted in a substantial decline in mortality, the number of post-AMI patients who survive an AMI but develop ischemic HF is increasing worldwide. Therefore, the identification of biomarkers that can predict risk of HF development in post-AMI patients is needed for optimizing management and treatment strategies. To date, several types of biomarkers, such as N-terminal pro-brain natriuretic peptide and cardiac troponin T, have been shown to predict cardiovascular events after AMI; however, it remains inconclusive whether these biomarkers can predict future HF in post-AMI patients.

MicroRNAs are small endogenous non-coding RNAs that regulate gene expression post-transcriptionally. Recently, various cell types were found to release microRNAs in membrane-bound vesicles termed exosomes, which circulate stably in the bloodstream. Although the physiological significance of circulating microRNAs is not fully understood, they have attracted attention as potential diagnostic and prognostic biomarkers for various diseases, particularly cancer.

With respect to cardiovascular disease, a number of cardiac microRNAs, including miR-1, miR-133a, and miR-208a, have been detected in the serum in the acute phase of AMI and thus represent potentially useful diagnostic markers for AMI. However, these microRNAs are most likely released from necrotic heart tissue into the blood directly and are not encapsulated within exosomes, and therefore have short half-lives. For this reason, these cardiac microRNAs are unlikely to be predictive of future HF development in post-AMI patients.

The aim of the present study was to identify circulating microRNAs that can serve as predictors of HF development in patients who survive the acute stage of AMI.

METHODS

We retrospectively analyzed the records of patients registered in the Osaka Acute Coronary Insufficiency Study, which has been described elsewhere. The study protocol was approved by the ethics committee of each participating hospital, and written informed consent was provided by each patient at the time of registration. Based on the results of an initial screening (Online Table I), we performed a second screening to examine the microRNA profiles of an increased number of matched patients (HF group, n = 21; control group, n = 65) (Online Table II). Detailed methods are described in the Online Supplemental Material. Results were analyzed by the Mann-Whitney U test or Student’s t test. Correlations were tested using Pearson’s correlation coefficient. Statistical significance was set as P<0.05 (*) or P<0.01 (**) or P<0.001 (**).
RESULTS

To identify microRNAs with altered expression in accordance with HF development after the convalescent stage of AMI, we initially compared the expression level of individual microRNAs in sera collected a median of 18 days after AMI onset using a high-throughput array between HF and control groups (n=7, respectively). Among 377 microRNAs, the expression levels of 14 microRNAs were found to significantly differ between the two groups when U6 snRNA, miR-766, or let-7d was used as an internal control (Online Table I). The serum levels of the 14 microRNAs were further examined in a second screening. Two of the microRNAs, miR-485-3p and miR-518d-3p, were below the limit of detection of the assay. However, the expression level of miR-192 was significantly up-regulated in the HF group, whereas those of the remaining 11 microRNAs were comparable between the two groups (Figure 1A and Online Figure I).

Because miR-192 is reported to be p53 responsive, the levels of two p53-responsive microRNAs, miR-194 and miR-34a, were also measured. As anticipated, the serum levels of miR-194 and miR-34a were also up-regulated in the AMI patients who developed ischemic HF (Figure 1B). Furthermore, the miR-192, miR-194, and miR-34a expression levels were significantly correlated with one another, suggesting that the three microRNAs were coordinately up-regulated in a single cascade, such as the p53 signaling pathway. In particular, a high correlation (r=0.86) was detected between miR-194 and miR-34a (Online Figure II). We also examined the serum levels of miR-208 and miR-499, which are candidate markers for severe myocardial damage and necrosis, but neither microRNA was detected in the serum of either the HF or control groups.

To investigate whether miR-192, miR-194, and miR-34a were released into the serum within exosomes or had directly leaked from necrotic heart tissue, we separated collected serum into exosome and supernatant fractions. Western blot analysis against CD63, an exosome marker protein, confirmed the purity of the two fractions (Figure 2A). The levels of the three microRNAs were then quantified in each fraction, demonstrating that all three microRNAs were highly enriched in the exosome fraction (Figure 2B). We further compared the expression levels of these microRNAs in each fraction between the HF and control groups. Although no significant differences were detected in the supernatant fraction, the expression levels of miR-192 and miR-194 in the exosome fraction of the HF group were significantly higher than those of the control group (Figure 2C). A similar tendency was also observed for miR-34a, suggesting that the three microRNAs were mainly released into the serum within exosomes. Using cultured myoblasts derived from embryonic rat heart, we confirmed that both intracellular and extracellular levels of miR-192, miR-194, and miR-34a were increased following p53 activation, and that knockdown of these three microRNA increased cell viability, whereas transfer of extracellular microRNAs via the culture media decreased cell viability of myoblasts (Figure 3 and Online Figure III).
Finally, we analyzed whether the serum levels of the three p53-responsive microRNAs were correlated with left ventricular diastolic dimension (LVDd), a clinical parameter of cardiac remodeling. The expression levels of miR-194 and miR-34a, but not miR-192, were positively correlated with LVDd, which was measured for 58 patients by echocardiography approximately one year (median 402 days) after the onset of AMI (miR-194; r = 0.33, P=0.01, miR-34a; r = 0.38, P=0.003, miR-192; r = 0.09, P=0.52, n = 58) (Figure 4). Furthermore, the serum levels of miR-194 (r=-0.28, P=0.03) and miR-34a (r=-0.27, P=0.04), but not miR-192 (r=-0.21, P=0.10), were correlated with left ventricular ejection fraction (LVEF) measured approximately one year after AMI onset. These correlations were not altered after consideration of the history of HF-related medications as a potential confounding factor (Online Table III). This finding suggested that the serum levels of these p53-responsive microRNAs could predict left ventricular remodeling after the convalescent stage of AMI.

DISCUSSION

In this study, we demonstrated that serum levels of the microRNAs, miR-192, miR-194, and miR-34a are up-regulated as early as a median of 18 days after AMI onset in patients who survived AMI but developed HF within one year. Furthermore, circulating miR-194 and miR-34a levels in the convalescent stage of AMI were associated with LVDd. Thus, these p53-responsive microRNAs may be useful for stratifying the risk of future ischemic HF events and cardiac remodeling in post-AMI patients.

As the expression levels of the three identified microRNAs were well correlated with each other, it is conceivable that their expression was coordinately up-regulated in a single cascade. One of the most likely candidates for an inducer of this coordinated expression is the tumor suppressor p53, because all three microRNAs are reported to be induced by the direct binding of p53 to the promoter regions of the corresponding genes\(^8,9\). In particular, it was recently demonstrated that miR-34a is induced in a p53-dependent manner, and that cardiomyocyte apoptosis can be suppressed through the blockade of miR-34a processing in a mouse model of AMI\(^11\). Indeed, we confirmed that these three microRNAs are induced by p53 activation in cultured myoblasts and are subsequently released from cells. Furthermore, transfer of these extracellular microRNAs accelerated cell death. Taken together with our recent finding that p53 accumulation in the myocardium in response to pressure overload or after MI plays an essential role in HF progression in mice\(^12,13\), our present results suggest that activation of p53 and the increased expression of the p53-responsive microRNAs miR-192, miR-194, and miR-34a are likely involved in the pathogenesis of HF after AMI. However, it remains undetermined whether circulating p53-responsive microRNAs were derived from infarct or ischemic heart tissues.
Interestingly, circulating miR-208b and miR-499, which are both reported to reflect severe myocardial damage or necrosis, were not detected in the serum of either in HF or control patients in the present study. Thus, detection of p53-responsive microRNAs may have reflected ongoing myocardial damage associated with development of future HF, which was qualitatively different from necrosis.

It was recently reported that miR-34 family members are up-regulated in the heart in response to stress, including AMI, and that systemic injection of miR-34 antimiR significantly attenuated cardiac remodeling and dysfunction in a mouse AMI model. Accordingly, modification of the p53 pathway using microRNA-based technologies may be a novel therapeutic approach to prevent ischemic HF in post-AMI patients, particularly for those with increased levels of circulating p53-responsive microRNAs.

In conclusion, we identified three p53-responsive microRNAs that were up-regulated in the serum of post-AMI patients who developed HF within one year of AMI onset. Further investigations with the increased number of samples and/or in other cohorts are required to confirm the present findings and future clinical applications of miR-192, miR-194 and miR-34a as predictive indicators of HF.

ACKNOWLEDGEMENTS
We thank all of the collaborators, research nurses, and coordinators who participated in the OACIS.

SOURCES OF FUNDING
This research was supported by a grant-in-aid for University and Society Collaboration (#22590827, #13390280) from the Japanese Ministry of Education, Culture, Sports, Science and Technology (to Y.S.) and grants from the Suzuken Memorial Foundation (to Y.S. and S.N.), Cell Science Research Foundation, and Astellas Foundation for Research on Metabolic Disorders (to Y.K.).

DISCLOSURES
None.

REFERENCES
3. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT, Jr., Carter BS, Krivtsov AM, Breakefield XO. Glioblastoma microvesicles transport RNA and...

DOI: 10.1161/CIRCRESAHA.113.301209

FIGURE LEGENDS

Figure 1. Up-regulation of three specific microRNAs in sera of the heart failure (HF) group. The expression levels of miR-192 (A), miR-194, and miR-34a (B) in sera of the HF (black bars, n=21) and control groups (white bars, n=65) are displayed after normalization to U6 snRNA. Similar results were obtained when miR-766 or let-7d was used as an internal control.

Figure 2. Circulating miR-34a, miR-192, and miR-194 are highly enriched in serum exosomes. A, Western blot analysis against CD63 in the exosome (Exo) and supernatant fractions (Sup) of the serum. B, Expression levels of miR-192, miR-194, and miR-34a in the serum exosome fraction (black bars, n = 4) and supernatant fraction (white bars, n = 4) are displayed after normalization to U6 snRNA. C, Expression levels of miR-192, miR-194, and miR-34a in the serum exosome fraction (Exo) and supernatant fraction (Sup) obtained from the HF group (gray bars, n = 4) and control group (white bar, n = 4) are shown.

Figure 3. p53-responsive microRNAs were up-regulated following p53 activation and influenced cell viability. Treatment of rat H9c2 cells with doxorubicin (Dox) increased p53 protein level (A), followed by an increase of caspase 3/7 activity (B) and a decrease of cell viability (C). Along with p53 activation, intracellular (D), and subsequently extracellular (E), levels of miRNA-192, miRNA-194, and miRNA-34a were up-regulated. Dox treatment after knockdown of all three microRNAs, but not individual microRNA, in H9c2 cells increased cell viability not in 24 hours, but in 36 hours (F), whereas co-culture with media containing three p53-responsive microRNAs decreased cell viability in the presence of Dox (G) (n= 3-5 for each experiment).

Figure 4. Circulating levels of miR-194 and miR-34a are correlated with LVDd measured approximately one year after AMI onset. Each dot represents the serum expression levels of miR-192 (left panel), miR-194 (middle panel) and miR-34a (right panel) relative to U6 snRNA (-ΔCt) and LVDd that was measured approximately one year after the onset of AMI. Values for the HF group are indicated by blue dots (N=12) and those of the control group are indicated by red dots (N=46).
Novelty and Significance

What Is Known?

- A number of patients survive acute myocardial infarction (AMI), but develop chronic ischemic heart failure (HF).

- MicroRNAs are non-coding small RNAs that are released from various cell types and circulate in the bloodstream.

- Accumulation of p53, a multifunctional protein, after AMI plays an essential role in HF development in mice.

What New Information Does This Article Contribute?

- Serum levels of three p53-responsive microRNAs, miR-192, miR-194, and miR-34a, are higher in the early convalescent stage of AMI (median 18 days after onset) in patients who develop HF within one year.

- Serum levels of miR-194 and miR-34a correlate with left ventricular diastolic dimension (LVDd), a clinical parameter of cardiac remodeling, measured one year after AMI.

- Cultured myoblasts exposed to miR-192, miR-194, and miR-34a released from other cells have decreased viability.

Although measurements of circulating microRNAs have been reported to be useful for the diagnosis of AMI and HF, it is not clear whether mRNA levels are reliable predictors of ischemic HF that develops after AMI. We found that three p53-responsive microRNAs are up-regulated during the early convalescent stage of AMI in the sera of patients who developed HF within one year after discharge. Moreover, serum levels of these microRNAs were positively correlated with LVDd one year after AMI. These findings suggest that circulating p53-responsive microRNAs may be clinically useful as predictive indicators of HF in post-AMI patients.
Figure 1
Figure 3

A

B

C

D

E

F

G
Circulating p53-Responsive microRNAs are Predictive Indicators of Heart Failure after Acute Myocardial Infarction
Sen Matsumoto, Yasuhiko Sakata, Daisaku Nakatani, Shinichiro Suna, Masaya Usami, Masahiko Hara, Tetsuhisa Kitamura, Toshimitsu Hamasaki, Shinsuke Nanto, Yukio Kawahara and Issei Komuro

Circ Res. published online June 6, 2013;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2013/06/06/CIRCRESAHA.113.301209

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2013/06/06/CIRCRESAHA.113.301209.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Supplemental Material

Detailed Methods

OACIS registry
The Osaka Acute Coronary Insufficiency Study (OACIS) is a prospective, multicenter observational study designed to collect and analyze demographic, procedural, and outcome data and blood samples in patients with acute myocardial infarction (AMI) at 25 collaborating hospitals in Osaka, Japan, as previously described1-3. Briefly, in accordance with the guideline of each participating hospital, research cardiologists and specialized research nurses or coordinators recorded data on sociodemographic variables, medical histories, therapeutic procedures, and clinical events during hospitalization, as well as follow-up clinical data at 3 and 12 months after the occurrence of AMI and annually thereafter. Information was obtained from hospital medical records and by direct interviews with patients, their family members, and their treating physicians. The study protocol was approved by the ethics committee of each participating hospital, and written informed consent was provided by each patient at the time of registration for blood sampling and analysis.

Patients
Among 8,603 patients with AMI who were registered in OACIS between 1998 and 2009, we first selected 4160 consecutive patients who fulfilled the following criteria: 1) survival discharge, and 2) written informed consent for serum analysis was obtained at the time of registration. Among the 4160 patients, 218 were hospitalized for HF during a median of 1069 days after survival discharge. In the first screening phase, we randomly selected 7 patients who developed HF within one year after discharge (HF group) and an additional 7 patients who did not experience any cardiovascular events throughout a 2-year follow-up period (control group), using propensity score-based matching of age, sex, diabetes mellitus, hypertension, dyslipidemia, smoking, previous MI, Killip class >II at AMI onset, infarction size, reperfusion therapy rates, and medication at the time of serum collection to adjust for potential baseline differences between the two groups. In the second screening, we increased the number of patients (HF group; n = 21, control group; n = 65) and again matched the backgrounds of each group (Online Table II) to validate the results obtained in the first screening.

Serum collection
Fasting blood samples were collected into serum separator tubes in the convalescent phase of AMI (median; 18 days after AMI onset) and were then incubated at 4°C for 4 h. After centrifugation at 4,000 rpm for 15 min, aliquots of serum were transferred to new tubes and stored at -80°C until use.
Exosome isolation

Serum exosomes were isolated using ExoQuick Exosome Precipitation Solution (System Biosciences, Mountain View, CA) according to the manufacturer’s protocol with a minor modification. Briefly, 250 µl of serum was centrifuged at 5,700 rpm for 15 min at 4°C to remove cell debris, and the resulting supernatant was then transferred to new sterile tubes, to which 63 µl of ExoQuick Exosome Precipitation Solution was added. After overnight incubation at 4°C, the tubes were centrifuged at 4,000 rpm for 30 min at 4°C to obtain the exosome-containing pellet, which was then resuspended in 25 µl phosphate buffered saline (exosome fraction). Half of the supernatant fraction (~150 µl) and the exosome fraction were stored at -20°C until use.

When exosomes were extracted from culture media, we treated culture media with RNase cocktail (Life Technologies Co., Carlsbad, CA) at a final concentration of 5 U/mL RNase A and 200 U/mL RNase T1, then incubated them at 37°C for 30 min. Then, 500 µl of culture media was centrifuged at 5,700 rpm for 15 min at 4°C to remove cell debris, and the resulting supernatant was then transferred to new sterile tubes, to which 500 µl of ExoQuick Exosome Precipitation Solution was added. After overnight incubation at 4°C, the tubes were centrifuged at 4,000 rpm for 30 min at 4°C to obtain the exosome-containing pellet, which was then resuspended in 25 µl phosphate buffered saline (exosome fraction) as previously described4.

RNA isolation

Total RNA in the serum was isolated using a mirVana PARIS kit (Life Technologies Co.) according to the manufacturer’s protocol. Briefly, 1 ml of the serum was thawed on ice and lysed with an equal volume of 2x Denaturing Solution for 5 min. After an equal volume of acid phenol chloroform was added, the sample tube was centrifuged at 12,000 rpm for 5 min at 4°C. The aqueous phase was carefully transferred to a new tube, and 1.25 volumes of 100% ethanol were then added. The sample was then passed through a mirVana PARIS column followed by washing three times with 75% ethanol, and total RNA was then eluted in 100 µl of preheated (95°C) nuclease-free water and stored at -80°C until use.

Total RNAs in the serum exosome and supernatant fractions were extracted using ISOGEN II (Nippon Gene Co., Tokyo, Japan) according to the manufacturer’s instructions. Briefly, the supernatant (~150 µl) and exosome solution (25 µl) were diluted to 400 µl with nuclease-free water and then lysed with 1 ml of ISOGEN II at room temperature for 15 min. After centrifugation at 12,000 rpm for 15 min at 4°C, 1 ml of the supernatant was transferred to a new tube and mixed with 1 ml isopropanol and 7.5 µg/ml glycogen. After incubation on ice for 30 min, the sample tubes were centrifuged at 12,000 rpm for 15 min at 4°C, and then washed twice with 500 µl 75% ethanol. Finally, the isolated RNAs from
the exosome and supernatant fractions were dissolved in 25 µl and 12.5 µl of RNase free water, respectively, and stored at -80°C until use. When total RNAs were extracted from cell culture media using ISOGEN II, a total of 2.5 fmol of synthetic C. elegans microRNA-39 (Qiagen, Hilden, Germany) was added to media as an external standard as previously described.4

Reverse transcription (RT) and preamplification

RT and preamplification steps were performed using a TaqMan MicroRNA RT kit, Megaplex RT Primers, and Megaplex PreAmp Primers (Life Technologies Co.) according to the manufacturer’s protocols. Briefly, 3 µl of total RNA was mixed with 0.80 µl 10x Megaplex RT primers, 0.20 µl 100 mM dNTPs, 0.80 µl 10x RT buffer, 0.90 µl 25 mM MgCl2, 2 U RNase Inhibitor, 75 U MultiScribe Reverse Transcriptase, and 0.20 µl nuclease-free water, and then reverse transcribed using a C1000 Thermal Cycler (Bio-Rad Laboratories, Inc., Hercules, CA) and the following conditions: 40 cycles of 2 min at 16°C, 1 min at 42°C, and 1 s at 50°C, and for 5 min at 85°C. Subsequently, 2.5 µl of the RT product was mixed with 12.5 µl 2x TaqMan PreAmp Master Mix, 2.5 µl 10x Megaplex PreAmp primers, and 7.5 µl nuclease-free water, and was then preamplified for 10 min at 95°C, for 2 min at 55°C and for 2 min at 72°C, and 12 cycles for 15 s at 95°C and for 4 min at 60°C.

MicroRNA profiling

Expression of 377 microRNAs was screened using a TaqMan Human MicroRNA A Array (version 2.0; Life Technologies Co.). Briefly, 9.0 µl preamplified RT product was mixed with 441 µl nuclease-free water and 450 µl 2x TaqMan Universal Master Mix II no UNG. Quantitative PCR was performed for 10 min at 95°C, following by 40 cycles of 15 min at 95°C and 1 min at 60°C using a 7900HT Fast Real-Time PCR system (Life Technologies Co.). The threshold cycle (Ct) was defined as the fractional cycle number at which the fluorescence exceeded a given threshold, and the expression level of each microRNA was normalized to that of U6 snRNA, miR-766 or let-7d using the calculated mean Ct of each sample (ΔCt). The data were analyzed with SDS Relative Quantification Software (version 2.3) using the automatic settings. The relative quantification of microRNA was calculated by the equation of 2^-ΔCt, where ΔCt = mean Ct\textsubscript{target} - mean Ct\textsubscript{internal control}. All microRNAs were considered to be expressed when Ct values were less than 40.

Real-Time PCR

Real-time PCR was performed using the 7900HT Fast Real-Time PCR system. Briefly, 1.3 µl preamplified RT product was mixed with 7.7 µl nuclease-free water, 1.0 µl 20x TaqMan Assay and 10 µl 2x TaqMan Universal Master Mix II no UNG. We utilized U6 snRNA (or miR-766, let-7d when mentioned) as an internal standard and synthetic C. elegans microRNA-39 as an external standard for
RNAs extracted from cell culture media, respectively. Quantitative PCR was carried out in duplicate, as described above.

Protein extraction

Ten µl of the exosome fraction was mixed with 50 µl lysis buffer (20 mM Tris-HCl (pH 7.9), 25% Glycerol, 0.42 M NaCl, 1.5 mM MgCl₂, 0.2 mM ethylenediaminetetraacetic acid (EDTA), 0.5 mM dithiothreitol (DTT) and 0.5 mM phenylmethylsulfonyl fluoride (PMSF)). The sample was then subjected to four freeze-thaw cycles, followed by centrifugation at 15,000 rpm for 20 min at 4°C, and the resulting supernatant was then transferred to a new tube and stored at -80°C until use. Protein concentrations were determined using the Quick Start Bradford Protein Assay (Bio-Rad Laboratories, Inc.).

Antibodies

The primary antibodies used were as follows: mouse monoclonal anti-CD63 (BD Biosciences, San Diego, CA), rabbit polyclonal anti-p53 (Abcam) and mouse monoclonal anti-α-Tubulin (Sigma-Aldrich).

Western blot analysis

Twenty µg of proteins extracted from the exosome and supernatant fractions were mixed with sodium dodecyl sulfate (SDS) sample buffer (58 mM Tris-Cl (pH 6.8), 2% SDS, 5% glycerol, 0.002% bromophenol blue, and 100 mM DTT) and denatured by boiling for 5 min at 95°C. The proteins were separated by 10% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) at 200 V for 30 min in running buffer (0.1% SDS, 25 mM Tris, and 192 mM glycine) and transferred to polyvinylidene fluoride (PVDF) membranes at 100 V for 90 min in transfer buffer (25 mM Tris, 192 mM glycine, and 15% methanol). The membrane was blocked with 0.25% nonfat dry milk in phosphate buffered saline containing 0.1% Tween 20 (PBST), and then incubated with primary antibodies for 10 min at room temperature using SNAP i.d. (Millipore, Billerica, MA). After incubating the membranes for 10 min at room temperature with secondary antibodies, if necessary, followed by three washes with PBST, antigen-antibody complexes were visualized by chemiluminescence using ECL-Plus (GE Healthcare UK Ltd., Buckinghamshire, England).

Cell culture

The myoblast cell line H9c2, derived from embryonic rat heart⁵, were obtained from American Type Culture Collection, Manassas, VA. H9c2 and HEK293 cell lines were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 1% non-essential amino acids
solution (Life Technologies Co.), 100 IU/mL penicillin, 100 µg/mL streptomycin and 250 ng/mL amphotericin B (Life Technologies Co.). Cells were grown at 37°C in a 5% CO₂ humidified incubator. For p53 activation, 1.0 µM of doxorubicin (Sigma-Aldrich) was added to culture media after 48h of serum removal as previously described.

Knockdown of microRNAs in cardiac myoblasts

The Anti-miR miRNA Inhibitors for miR-192, miR-194 and miR-34a were obtained from Life Technologies Co. Transfection of Anti-miR miRNA Inhibitors was performed in a 96 well plate with Lipofectamine RNAiMAX (Life Technologies Co.). In brief, 3.6 pmol of Anti-miR miRNA Inhibitor was mixed with 0.2 µl of Lipofectamine RNAiMAX in 10 µl of Opti-MEM medium (Life Technologies Co.) and then the mixture was added to each well. After 48 hours, 1.0 µM of doxorubicin was added to induce p53-responsive microRNAs by p53 activation.

Establishment of stable HEK293-derived stable cell lines that over-expressed microRNAs

To generate expression constructs for pri-miR-192, pri-miR-194 and pri-miR-34a tagged with ZsGreen1, a fragment of human chromosomal DNA encompassing the region transcribed to yield each pri-miRNA was amplified using human genomic DNA (Novagen, Darmstadt, Germany) as a template and then inserted into the pmR-ZsGreen1 vector (Clontech, Mountain View, CA) as previously described. The resultant clone and a selectable marker for puromycin resistance (Linear Puromycin Marker; Clontech) were co-transfected into HEK293 cells. Transfected cells were grown in the presence of 1.0 µg/ml puromycin (Sigma-Aldrich), and individual clones that expressed ZsGreen1 were isolated and analyzed for each microRNA expression by real-time PCR.

Cell viability and caspase activity assays

Cell viability and caspase 3/7 activity were analyzed with CellTiter-Fluor Cell Viability Assay and Caspase-Glo 3/7 Assay kits (Promega) according to the manufacturer’s instruction. In brief, 20 µl of CellTiter-Fluor Reagent was added to cells, and then incubated for 30 minutes at 37°C by orbital shaking. For caspase activity assay, an equal volume of Caspase-Glo 3/7 Reagent was further added to each well, and then incubated for 30 minutes at room temperature. Cell viability was assessed by using a fluorometer (400 nm/505 nm; SH-9000Lab, CORONA ELECTRIC Co.), and Caspase-3/7 activity was assessed by a luminometer (SH-9000Lab, CORONA ELECTRIC Co.).

Co-culture experiments

Co-culture experiments were performed as previously described using well inserts for 24-well plates with a 0.4 µm pore sized filter (Thin Cert™) (Greiner, Frickenhausen, Germany). H9c2 cells were
seeded into the lower well and cultured for 24 hours prior to the co-culture experiments. Then, either HEK293 or HEK293-derived stable cell lines that over-expressed microRNAs were seeded into the upper well. After incubation for 24 hours, 0.01 µM of doxorubicin was added to activate p53.

Statistical analysis

Variables are displayed as the mean ± standard deviation (SD) and qualitative data are presented as percentages. Patient characteristics were assessed using the Student’s *t* test, and chi-square test. Results were analyzed by the Mann-Whitney *U* test or Student’s *t* test. Correlations were tested using Pearson’s correlation coefficient, and *r* values are presented as Pearson product-moment correlation coefficients. All P values are two-sided and statistical significance was set as *P*<0.05 (*), *P*<0.01 (**), or *P*<0.001 (**`). All statistical analyses were performed using SPSS version 11.0 (SPSS Japan, Inc., Tokyo, Japan).
Online Figures and Figure Legends

Online Figure I. Comparison of the serum expression of 11 out of 14 microRNAs selected in the first screening between the heart failure and control groups. Expression levels of 11 microRNAs in sera of the HF group (black bars, n=21) and control group (white bars, n=65) are displayed as the mean ± SEM after normalization to U6 snRNA, which was used as an internal control. No significant differences in expression were observed between the two groups.
Online Figure II. Correlation among microRNAs with elevated serum levels. Each dot represents the serum expression level of miR-192, miR-194, or miR-34a relative to U6 snRNA (-ΔCt). miR-194 vs. miR-192 (left panel), miR-34a vs. miR-192 (middle panel) and miR-34a vs miR-194 (right panel) (n = 58).

Online Figure III. Establishment of HEK293-derived stable cell lines that over-expressed p53-responsive microRNA. A, The relative expression levels of the indicated microRNAs in each cell line are displayed after normalization to U6 snRNA (n=3). B, The extracellular expression levels of the indicated microRNAs in culture media are displayed after normalization to synthetic C. elegans microRNA-39 (n=3).
Online Table I. Candidate microRNAs with Altered Levels in Sera of the Heart Failure Group.

<table>
<thead>
<tr>
<th>microRNA</th>
<th>Control</th>
<th>Heart Failure Group</th>
<th>Control Group</th>
<th>Alteration*</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Mean ΔCt, n = 7)</td>
<td>(Mean ΔCt, n = 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-125a-5p</td>
<td>let-7d</td>
<td>3.1640</td>
<td>-0.4510</td>
<td>Down</td>
<td>0.020</td>
</tr>
<tr>
<td>miR-15b</td>
<td>let-7d</td>
<td>-2.2600</td>
<td>0.4680</td>
<td>Up</td>
<td>0.025</td>
</tr>
<tr>
<td>miR-20a</td>
<td>let-7d</td>
<td>1.2865</td>
<td>6.3040</td>
<td>Up</td>
<td>0.015</td>
</tr>
<tr>
<td>miR-30b</td>
<td>let-7d</td>
<td>-3.2670</td>
<td>-0.1380</td>
<td>Up</td>
<td>0.022</td>
</tr>
<tr>
<td>miR-146a</td>
<td>miR-766</td>
<td>-0.2330</td>
<td>-1.4240</td>
<td>Down</td>
<td>0.035</td>
</tr>
<tr>
<td>miR-192</td>
<td>miR-766</td>
<td>4.0990</td>
<td>5.5555</td>
<td>Up</td>
<td>0.040</td>
</tr>
<tr>
<td>miR-19a</td>
<td>miR-766</td>
<td>1.5530</td>
<td>3.0280</td>
<td>Up</td>
<td>0.048</td>
</tr>
<tr>
<td>miR-200c</td>
<td>miR-766</td>
<td>5.4790</td>
<td>2.0940</td>
<td>Down</td>
<td>0.025</td>
</tr>
<tr>
<td>miR-345</td>
<td>miR-766</td>
<td>5.7100</td>
<td>2.9590</td>
<td>Down</td>
<td>0.034</td>
</tr>
<tr>
<td>miR-374b</td>
<td>miR-766</td>
<td>2.6970</td>
<td>-0.0785</td>
<td>Down</td>
<td>0.022</td>
</tr>
<tr>
<td>miR-485-3p</td>
<td>miR-766</td>
<td>5.2855</td>
<td>-0.3520</td>
<td>Down</td>
<td>0.034</td>
</tr>
<tr>
<td>miR-518d-3p</td>
<td>miR-766</td>
<td>6.9290</td>
<td>4.4440</td>
<td>Down</td>
<td>0.034</td>
</tr>
<tr>
<td>miR-125a-5p</td>
<td>U6 snRNA</td>
<td>5.9820</td>
<td>3.7270</td>
<td>Down</td>
<td>0.020</td>
</tr>
<tr>
<td>miR-215</td>
<td>U6 snRNA</td>
<td>4.4980</td>
<td>7.0930</td>
<td>Up</td>
<td>0.020</td>
</tr>
<tr>
<td>miR-532-5p</td>
<td>U6 snRNA</td>
<td>2.7960</td>
<td>6.5370</td>
<td>Up</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Alteration; Up-regulation (Up) or down-regulation (Down) of microRNA expression in the heart failure group.
Online Table II. Baseline Characteristics of Subjects Evaluated in the Second Screening.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Heart Failure Group (n=21)</th>
<th>Control Group (n=65)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years; mean±SD), N=86</td>
<td>69 ± 9</td>
<td>69 ± 10</td>
<td>0.794</td>
</tr>
<tr>
<td>Men (%), N=86</td>
<td>81.0</td>
<td>66.2</td>
<td>0.277</td>
</tr>
<tr>
<td>Body mass index (kg/m²; mean±SD), N=80</td>
<td>24.7 ± 3.5</td>
<td>23.8 ± 3.7</td>
<td>0.255</td>
</tr>
<tr>
<td>Diabetes mellitus (%), N=85</td>
<td>47.6</td>
<td>37.5</td>
<td>0.449</td>
</tr>
<tr>
<td>Hypertension (%), N=82</td>
<td>75.0</td>
<td>66.1</td>
<td>0.585</td>
</tr>
<tr>
<td>Dyslipidemia (%), N=83</td>
<td>57.1</td>
<td>48.4</td>
<td>0.615</td>
</tr>
<tr>
<td>Smoking (%), N=85</td>
<td>71.4</td>
<td>54.7</td>
<td>0.209</td>
</tr>
<tr>
<td>Previous MI (%), N=84</td>
<td>4.8</td>
<td>17.5</td>
<td>0.279</td>
</tr>
<tr>
<td>STEMI§ (%), N=85</td>
<td>85.7</td>
<td>85.9</td>
<td>1.000</td>
</tr>
<tr>
<td>Anterior MI (%), N=86</td>
<td>66.7</td>
<td>56.9</td>
<td>0.458</td>
</tr>
<tr>
<td>Killip class ≥ II on admission (%), N=84</td>
<td>33.3</td>
<td>30.2</td>
<td>0.791</td>
</tr>
<tr>
<td>Peak CK (IU/L; median (IQR)), N=82</td>
<td>3620</td>
<td>2210</td>
<td>0.224</td>
</tr>
<tr>
<td>Peak CK ≥ 3000 (IU/L) (%), N=82</td>
<td>52.4</td>
<td>36.1</td>
<td>0.207</td>
</tr>
<tr>
<td>Reperfusion therapy rates (%), N=86</td>
<td>90.5</td>
<td>93.8</td>
<td>0.631</td>
</tr>
<tr>
<td>Infarct-related artery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMT (%), N=82</td>
<td>5.3</td>
<td>7.9</td>
<td>1.000</td>
</tr>
<tr>
<td>LAD (%), N=82</td>
<td>68.4</td>
<td>47.6</td>
<td>0.125</td>
</tr>
<tr>
<td>LCX (%), N=82</td>
<td>10.5</td>
<td>12.7</td>
<td>1.000</td>
</tr>
<tr>
<td>RCA (%), N=82</td>
<td>10.5</td>
<td>27</td>
<td>0.215</td>
</tr>
<tr>
<td>Final TIMI III (%), N=75</td>
<td>88.9</td>
<td>93</td>
<td>0.626</td>
</tr>
<tr>
<td>Multivessel disease (%), N=83</td>
<td>60.0</td>
<td>36.5</td>
<td>0.074</td>
</tr>
<tr>
<td>TIMI risk score, N=71</td>
<td>6.89 ± 2.52</td>
<td>6.75 ± 2.96</td>
<td>0.864</td>
</tr>
<tr>
<td>eGFR at discharge (mL/min/1.73m²), N=78</td>
<td>61.7 ± 22.0</td>
<td>59.4 ± 25.9</td>
<td>0.739</td>
</tr>
<tr>
<td>GRACE risk score, N=51</td>
<td>124.2 ± 23.0</td>
<td>114.6 ± 29.2</td>
<td>0.288</td>
</tr>
<tr>
<td>hs-CRP at discharge (mg/dL; median (IQR)), N=80</td>
<td>0.560</td>
<td>0.375</td>
<td>0.804</td>
</tr>
<tr>
<td>hs-TnT at discharge (ng/mL; median)</td>
<td>0.045</td>
<td>0.039</td>
<td>0.293</td>
</tr>
<tr>
<td>Treatment</td>
<td>N=78</td>
<td>(IQR)</td>
<td>p-value</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Statin (%)</td>
<td>52.4</td>
<td>(0.025, 0.53)</td>
<td>0.016, 0.16</td>
</tr>
<tr>
<td>ACEI* or ARB* (%)</td>
<td>81.0</td>
<td>(0.016, 0.16)</td>
<td>0.404</td>
</tr>
<tr>
<td>β-blocker (%)</td>
<td>61.9</td>
<td>(0.016, 0.16)</td>
<td>0.619</td>
</tr>
<tr>
<td>Anti-platelet therapy (%)</td>
<td>100</td>
<td>(0.016, 0.16)</td>
<td>-</td>
</tr>
</tbody>
</table>

STEMI; ST-segment elevation MI. ACEI; angiotensin-converting enzyme inhibitor. ARB; angiotensin receptor blocker. SD; standard deviation. IQR; interquartile range.
Online Table III. Correlations of LVDd or LVEF and microRNA expression after consideration of medications.

<table>
<thead>
<tr>
<th>Treatment for adjustment</th>
<th>Pearson’s correlations</th>
<th>95%CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RASI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEF</td>
<td>miR-34a</td>
<td>-0.28</td>
<td>-0.51</td>
</tr>
<tr>
<td></td>
<td>miR-194</td>
<td>-0.27</td>
<td>-0.50</td>
</tr>
<tr>
<td></td>
<td>miR-192</td>
<td>-0.22</td>
<td>-0.45</td>
</tr>
<tr>
<td>LVDd</td>
<td>miR-34a</td>
<td>0.39</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>miR-194</td>
<td>0.33</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>miR-192</td>
<td>0.09</td>
<td>-0.17</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEF</td>
<td>miR-34a</td>
<td>-0.28</td>
<td>-0.51</td>
</tr>
<tr>
<td></td>
<td>miR-194</td>
<td>-0.27</td>
<td>-0.50</td>
</tr>
<tr>
<td></td>
<td>miR-192</td>
<td>-0.21</td>
<td>-0.44</td>
</tr>
<tr>
<td>LVDd</td>
<td>miR-34a</td>
<td>0.38</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>miR-194</td>
<td>0.33</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>miR-192</td>
<td>0.09</td>
<td>-0.18</td>
</tr>
<tr>
<td>Statins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEF</td>
<td>miR-34a</td>
<td>-0.26</td>
<td>-0.49</td>
</tr>
<tr>
<td></td>
<td>miR-194</td>
<td>-0.25</td>
<td>-0.48</td>
</tr>
<tr>
<td></td>
<td>miR-192</td>
<td>-0.21</td>
<td>-0.44</td>
</tr>
<tr>
<td>LVDd</td>
<td>miR-34a</td>
<td>0.36</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>miR-194</td>
<td>0.30</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>miR-192</td>
<td>0.07</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

CI; Confidential Interval. RASI; Angiotensin-converting enzyme inhibitor (ACEI) or Angiotensin receptor blocker (ARB). LVDd; left ventricular end-diastolic dimension. LVEF; left ventricular ejection fraction.
Supplemental References

