Abnormal Propagation of Calcium Waves and Ultrastructural Remodeling in Recessive Catecholaminergic Polymorphic Ventricular Tachycardia

Nian Liu¹, Marco Denegri², Wen Dun⁵, Simona Boncompagni⁴, Francesco Lodola², Feliciano Protasi⁴, Carlo Napolitano¹,², Penelope A. Boyden⁵, Silvia G Priori¹,²,³

¹Cardiovascular Genetics Program, The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, USA; ²Molecular Cardiology, IRCCS Fondazione Salvatore Maugeri, Pavia, Italy; ³Department of Molecular Medicine, University of Pavia, Pavia, Italy; ⁴CeSI - Center for Research on Ageing & DNI - Department of Neuroscience and Imaging, G. d'Annunzio University, Chieti, Italy; ⁵Department of Pharmacology, Columbia College of Physicians and Surgeons, New York, USA.

P.A.B. and S.G.P. contributed equally to this study.

Running title: Functional and Structural Abnormalities in CPVT

Subject codes:
[130] Animal models of human disease
[132] Arrhythmias-basic studies
[136] Calcium cycling/excitation-contraction coupling
[143] Gene regulation
[152] Ion channels/membrane transport

Address correspondence to:
Dr. Silvia G Priori
Director, Cardiovascular Genetics Program
Leon H. Charney Division of Cardiology
New York University School of Medicine
Smilow Research Building, Rm 701
522 First Avenue
New York, NY, 10016
Tel: 212.263.9100
Fax: 212.263.9115
silvia.priori@nyumc.org

This manuscript was sent to Gordon Tomaselli, Consulting Editor, for review by expert referees, editorial decision, and final disposition.

In April 2013, the average time from submission to first decision for all original research papers submitted to Circulation Research was 13.5 days.
ABSTRACT

Rationale: The recessive form of catecholaminergic polymorphic ventricular tachycardia (CPVT) is caused by mutations in the cardiac calsequestrin gene (CASQ2): this variant of CPVT is less well characterized than the autosomal dominant form caused by mutations in the RyR2 gene.

Objectives: We characterized intracellular Ca\(^{2+}\) homeostasis, electrophysiological properties and the ultrastructural features of the Ca\(^{2+}\) release units (CRUs) in the homozygous R33Q knock-in mouse model.

Methods and Results: We studied isolated R33Q and wild-type (WT) ventricular myocytes and observed properties not previously identified in a CPVT model. As compared to WT cells, R33Q myocytes: 1) show spontaneous Ca\(^{2+}\) waves unable to propagate as cell-wide waves; 2) show smaller Ca\(^{2+}\) sparks with shortened coupling intervals suggesting a reduced refractoriness of Ca\(^{2+}\) release events; 3) have a reduction of the area of membrane contact and the of junctions between jSR and T-tubules (couplons) and of jSR volume; 4) have a propensity to develop phase 2-4 afterdepolarizations that can elicit triggered beats 5) Viral gene transfer with WT CASQ2 is able to normalize structural abnormalities and restore cell-wide calcium wave propagation.

Conclusion: Our data show that homozygous CASQ2-R33Q myocytes develop spontaneous Ca\(^{2+}\) release events with a broad range of intervals coupled to preceding beats leading to the formation of early and delayed afterdepolarizations. They also display a major disruption of the CRU architecture that leads to fragmentation of spontaneous Ca\(^{2+}\) waves. We propose that these two substrates in R33Q myocytes synergize to provide a new arrhythmogenic mechanism for CPVT.

Keywords:
Calsequestrin, genetics, arrhythmias, electrophysiology, calcium regulation, function recovery, gene transfer

Nonstandard Abbreviation and Acronyms:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASQ2</td>
<td>cardiac calsequestrin</td>
</tr>
<tr>
<td>CICR</td>
<td>Ca(^{2+})-induced Ca(^{2+}) release</td>
</tr>
<tr>
<td>CPVT</td>
<td>catecholaminergic polymorphic ventricular tachycardia</td>
</tr>
<tr>
<td>CRUs</td>
<td>Ca(^{2+}) release units</td>
</tr>
<tr>
<td>DADs</td>
<td>delayed afterdepolarizations</td>
</tr>
<tr>
<td>DHPRs</td>
<td>dihydropyridine receptors</td>
</tr>
<tr>
<td>EADs</td>
<td>early afterdepolarizations</td>
</tr>
<tr>
<td>EM</td>
<td>electron Microscopy</td>
</tr>
<tr>
<td>Iti</td>
<td>transient inward current</td>
</tr>
<tr>
<td>jSR</td>
<td>junctional sarcoplasmic reticulum</td>
</tr>
<tr>
<td>NCX</td>
<td>Na(^{+})/Ca(^{2+}) exchanger</td>
</tr>
<tr>
<td>RyR2</td>
<td>ryanodine receptor 2</td>
</tr>
<tr>
<td>SCaEs</td>
<td>spontaneous Ca(^{2+}) release events</td>
</tr>
<tr>
<td>SR</td>
<td>sarcoplasmic reticulum</td>
</tr>
<tr>
<td>TA</td>
<td>triggered activity</td>
</tr>
<tr>
<td>VT</td>
<td>ventricular tachycardia</td>
</tr>
<tr>
<td>CASQ2-AAV9</td>
<td>Adeno-associated Viral construct containing CASQ2 DNA</td>
</tr>
</tbody>
</table>
INTRODUCTION

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease characterized by stress- and/or emotion-induced life-threatening arrhythmias. Mutations in the cardiac ryanodine receptor (RyR2) and calsequestrin (CASQ2) genes have been associated with the autosomal dominant and the autosomal recessive forms of CPVT. Knock-in mouse models that carry gain of function RyR2 mutations exhibit phenotypes similar to the clinical manifestations observed in CPVT patients, including the development of bidirectional/polymorphic VT upon exposure to catecholamines. Investigations of knock-in models of dominant CPVT have demonstrated that abnormal Ca²⁺ release from mutant RyR2 induces cell-wide Ca²⁺ waves, delayed afterdepolarizations (DADs) and triggered activity (TA), all of which are arrhythmogenic.

Recently attention has turned to the study of the recessive form of CPVT that is caused by homozygous mutations in the CASQ2 gene. Most experimental studies on recessive CPVT have been performed using CASQ2 knock-out mice, whereas only few knock-in mouse carriers of human CASQ2 mutations have been characterized. As a consequence, the pathophysiology of arrhythmias generated by CASQ2 missense mutations remains only partially characterized.

Here we investigate Ca²⁺ homeostasis/dynamics, cellular electrophysiology and ultrastructure of the Ca²⁺ release units (CRUs) in the knock-in mouse model of recessive CPVT carrier of the homozygous R33Q CASQ2 missense mutation that presents with severe adrenergically induced bidirectional and polymorphic ventricular arrhythmias. Our data identify a unique profile that differs from that previously reported in CPVT mouse models. Specifically we observe that spontaneous Ca²⁺ release events (SCaEs) in intact R33Q-myocytes are characterized by 1) the development of fragmented wavelets that often are unable to generate cell-wide waves, 2) the simultaneous occurrence of early and delayed afterdepolarizations and 3) oscillations of the resting membrane potential. This abnormal behavior is accompanied by profound ultrastructural remodeling of the CRUs. We propose that the abnormal architecture of CRUs in the presence of a high likelihood of SCaEs due to the loss of CASQ2 creates an electrically unstable arrhythmogenic background that, so far, is unique to this CPVT model.

METHODS

An expanded Methods section can be found in the online supplement.

Isolation of adult mice ventricular myocytes.
Ventricular myocytes were isolated using an established enzymatic digestion protocol and then used for Ca²⁺ measurement or for cellular electrophysiology.

Ca²⁺ measurements.
Isolated ventricular myocytes were incubated with 2.5μM Fluo-4 AM (Invitrogen Inc., Eugene, OR). Fluorescent signals were acquired using a 40X UVF objective (numerical aperture 1.0, Nikon), and single excitation wavelength microfluorimetry was performed using a PMT system (IonOptix Corp., Milton, MA). Cells were field-stimulated (voltage 25% above threshold). Spontaneous Ca²⁺ release events (SCaEs) were defined as non-stimulated increases in intracellular Ca²⁺ and were quantified during the 5 second unpaced interval following train pacing. SR Ca²⁺ load was measured as the amplitude of the 10 mmol/L caffeine-induced Ca²⁺ transient. Local spontaneous Ca²⁺ events were also measured by using 2D spinning disk (Nipkow) confocal microscopy and linescan microscopy (see online supplements). Permeabilized myocytes were obtained by incubating cells with 0.01% saponin for 1.5 min. Free [Ca²⁺]i was calculated by WINMAXC32 2.51. The dye was excited at 488 nm and emission was collected at >510 nm. Image analyses were performed with spark master in Imaging J software. The calcium...
measurements in permeabilized myocytes from mice infected with WT CASQ2 were performed using Rhod-2 in order to avoid imaging interference with the GFP tag of the CASQ2 construct. Rhod-2 was excited at 543 nm and emission was collected at >560 nm.

Electrophysiological recordings in isolated ventricular myocytes.
Transmembrane potentials were recorded in whole-cell mode using a multiClamp 700B amplifier (Axon Instruments). Myocytes were electrically stimulated by intracellular current injection through patch electrodes using depolarizing pulses. DADs were defined as phase 4 positive (depolarizing) deflections of the membrane potential. Early afterdepolarizations (EADs) were defined as positive (depolarizing) oscillations occurring during phase 2 or 3 of action potential. Triggered activity was defined as a non-stimulated action potential developing from a DAD or EAD. The liquid junction potential between pipette and bath solution was calculated with pCLAMP software and corrected after experiments.

Electron microscopy.
The hearts were fixed by retrograde aortic perfusion using 3.5% glutaraldehyde in 0.1 M NaCaCo buffer, pH 7.2. In each sample group (R33Q and WT) 3 hearts were fixed and analyzed.9,11. Small bundles of cells teased from the papillary muscles were then post-fixed in 2% OsO₄ in NaCaCo buffer for 2 hours and block-stained in saturated uranyl acetate. After dehydration, specimens were embedded in an epoxy resin (Epon 812). Ultrathin sections were cut using a Leica Ultracut R microtome (Leica Microsystem, Austria) with a Diatome diamond knife (Diatome Ltd. CH-2501 Biel, Switzerland) and double-stained with uranyl acetate and lead citrate. Sections were viewed in a Morgagni Series 268D electron microscope (FEI Company, Brno, Czech Republic), equipped with Megaview III digital camera. The ultrastructural morphometry of CRUs was performed as detailed in the online supplement. jSR volume was calculated by the well-established stereology point counting technique12 in electron micrographs taken at 24,000 X, from cross-sections of papillary cardiomyocytes. In each fiber 2 or 3 pictures were taken in internal areas of the fibers, excluding the nuclei regions. The images were then covered with an orthogonal arrays of dots (spacing =0.17 μm). The ratio of the number of dots falling over the jSR to the total number of dots covering the entire micrograph was used to calculate the percentage of fiber volume occupied by jSR in WT, R33Q.

Viral construct and in vivo infection procedure.
The AAV-9 vector containing the cDNA of the murine CASQ2 gene, under the control of the cytomegalovirus promoter and followed by the green fluorescent protein (eGFP) as reporter gene was produced, purified and titered as previously described.11 Infection of CASQ2R33Q/R33Q mice with AAV9 viral particles (100 μl) was performed by intraperitoneal injection on postnatal day 3 (P3). After 6 months, animals were euthanized by cervical dislocation. Cells were made for study and tissues prepared as above.

Data analysis.
Data were expressed as mean±SEM, unless otherwise specified. A Student t-test or a Mann-Whitney rank sum test was used to determine statistical significance between two groups. One-way ANOVA with Tukey test for post hoc subgroup analyses was used for multiple comparisons. Chi-square and Fisher’s exact test were used as appropriate. Differences with p ≤ 0.05 were considered statistically significant.

RESULTS

Characteristics of electrically evoked Ca²⁺ transients in R33Q myocytes.

We first characterized paced macroscopic Ca²⁺ transients in WT and R33Q myocytes isolated from the hearts of age-matched mice. Figure 1A shows Ca²⁺ transients of ventricular myocytes paced at 1 Hz in the presence of 30 nmol/L isoproterenol (Iso). As expected, the development of SCaEs (asterisks) in
R33Q CASQ2 cells was influenced by the pacing frequency (Figure 1B, right). In the absence of Iso at 5Hz pacing, 50% of R33Q myocytes showed SCaEs (p<0.01 vs 1Hz) whereas in the presence of Iso 30 nmol/L at 1Hz, 90% of R33Q cells presented SCaEs. Interestingly, SCaEs in R33Q myocytes were tightly coupled to the paced beats often during the diastolic intervals between paced beats (Figure 1A, R33Q cells 1-2). Notably, SCaEs occurring during diastolic intervals were not seen in cells dispersed from our autosomal dominant CPVT mouse hearts (RyR2R4496C+/−) (Figure 1A).

Characteristics of Ca2+ transients.

During 0.2 Hz pacing, the amplitudes of global Ca2+ transients in R33Q myocytes were significantly reduced as compared to that of WT myocytes (p<0.05, Online Figure 1A,B), while in the presence of 30 nmol/L Iso, this difference was not significant (Online Figure 1B). The average time to peak of SCaEs was identical in R33Q compared with WT myocytes in the absence or presence of Iso (Online Figure 1C). The Ca2+ transient decay was significantly slower in R33Q cells compared to WT either in the absence or presence of Iso (p<0.05, Online Figure 1D). Some may suggest a reduced SERCA function in R33Q cells which would be consistent with recent observations in CASQ2 knock-out and CASQ2 D307H myocytes. Unexpectedly, the SR Ca2+ content measured as caffeine induced Ca2+ transient was similar in WT and R33Q myocytes in the absence of Iso, but upon exposure to 30 nmol/L Iso it significantly increased in both cell groups yet the increase was less pronounced in R33Q cells (p<0.05, Online Figure 1E). We hypothesized that this effect may reflect greater spontaneous Ca2+ release activity in R33Q myocytes vs WT in the presence of Iso. Finally, we compared the exponential time constant of Ca2+ decay of caffeine-induced Ca2+ transients to evaluate the NCX and observed no significant difference between WT and R33Q myocytes (Online Figure 1F).

Ca2+ sparks in WT and R33Q ventricular myocytes.

We characterized the properties of non-propagating Ca2+ sparks in WT and R33Q permeabilized myocytes (50 nmol/L [Ca2+]i). Ca2+ sparks developing in R33Q myocytes occurred with higher frequency than in WT cells; they had smaller amplitude (R33Q 0.33±0.01 ΔF/F0 vs WT 0.78±0.02 ΔF/F0; p<0.01), were narrower, and presented with a slower decay than WT counterparts (Figure 2A and Table 1). We calculated mass of sparks and showed that it is significantly reduced in R33Q myocytes as compared to WT cells (Table 1). Figure 2A illustrates representative Ca2+ spark recordings and linear profiles in WT and R33Q cells. Of note, Ca2+ sparks presented with various amplitudes and morphologies at the same site (“hot spot site”) (Figure 2A, R33Q cell 1). We also noticed clusters of long lasting spontaneous Ca2+ sparks (Figure 2A, R33Q cell 3, R33Q cell 4, line a). We quantified the spark-to-spark coupling intervals within these spots as an “indicator” of the refractoriness of SR Ca2+ release. Figure 2B shows that the histogram of spark-to-spark coupling intervals is shifted to the left in R33Q myocytes (500 paired sparks, mean: 0.82±0.03 s, p<0.001 vs WT) as compared to WT myocytes (272 paired sparks, mean: 1.57±0.07 s). 71.8% of spark coupling intervals in R33Q myocytes were less than 1s. Evidence of a reduced spark-to-spark coupling interval may be the consequence of a reduced refractoriness of SR Ca2+ release that is known to occur when CASQ2 levels are diminished.

Ca2+ waves in R33Q ventricular myocytes.

We compared the characteristics of Iso-induced spontaneous Ca2+ release in intact WT and R33Q myocytes using high-resolution linescan confocal microscopy. When WT myocytes (n=7) were exposed to Iso (100 nmol/L) we observed the development of spontaneous Ca2+ releases that propagated as well-organized, cell-wide waves that spread rapidly throughout the cell (Figure 3A). The propagation velocity of waves in WT myocytes was uniform and averaged 127±7 μm/s (n=7). This behavior was at variance with that observed in CASQ2 mutant cells. In R33Q myocytes multiple SCaEs failed to generate cell-wide propagating waves (n=12) (Figure 3A, R33Q Cell 1 and Cell 2) and rather they broke down into small-localized Ca2+ release events before terminating. Propagation velocity was non-uniform and significantly

DOI: 10.1161/CIRCRESAHA.113.301783
slower than that of WT (51±8 μm/s; n=8; p<0.01). This observation was confirmed in saponin-permeabilized myocytes (Figure 3B). Once again only WT myocytes developed spontaneous cell-wide Ca\(^{2+}\) waves (Figure 3B) while R33Q cells presented with chaotic, fragmented waves and wavelets (Figure 3B). We confirmed the presence of spontaneous Ca\(^{2+}\) release events (occurring between field–stimulated events) in the linescan experiments (Figure 3A, R33Q Cell 1 and Cell 2). The occurrence of the early, multiple spontaneous Ca\(^{2+}\) re-release events slowed the global Ca\(^{2+}\) transient decay as shown in the Online Figure II.

To further characterize Ca\(^{2+}\) dynamics in R33Q cells, we investigated spatial and temporal characteristics of local SCaEs in intact myocytes using 2D confocal microscopy. In the presence of Iso, SCaEs were infrequently seen in WT myocytes; but whenever they occurred, they rapidly propagated throughout the cell to form an organized cell-wide wave (Online Figure IIIA, WT). Local SCaEs followed each other from site to site during this propagation (Figure IIIB, WT). In contrast, SCaEs were of multiple origins in R33Q myocytes (Online Figure IIIA, R33Q Cell 1 and 2), they spread slowly and/or failed to propagate within the entire cell (Online Figure IIIB, R33Q Cell1). Waves broke down into several wavelets (fragmented waves) before stopping (Online Figure IIIB, R33Q cell 2). Notably global SCaEs profiles differ between WT and R33Q cells (compare global SCaEs (black lines) in Online Figure III Plots in panel B).

We tested different hypotheses to unveil the cause of fragmentation of the spontaneous Ca\(^{2+}\) waves. We initially speculated that depletion of SR Ca\(^{2+}\) in the adjacent region of spontaneous release could impair propagation. To test this hypothesis we assessed whether spontaneous Ca\(^{2+}\) release occurred predominantly at the site in which failure to propagate occurred. But we were unable to establish a link between the site of spontaneous Ca\(^{2+}\) release and the region of fragmentation of waves and therefore we dismissed this hypothesis. Next we assessed whether impaired propagation of waves occurred in proximity of anatomical “obstacles” such as mitochondria: unfortunately we were unable to find a relationship between the site of breakdown of Ca\(^{2+}\) waves and the presence of cellular structures. Thus we dismissed this hypothesis.

We therefore went on to investigate whether fragmentation of spontaneous calcium waves in R33Q myocytes was due to structural and ultrastructural abnormalities.

Structural and ultrastructural features of R33Q myocytes.

Initially di-4- ANEPPS staining was used to determine the distance between T tubules in cells from WT and R33Q mice and we observed that the average spatial distance between T tubules in WT and in R33Q myocytes was identical (1.83±0.01 μm in WT and 1.83±0.01 μm in R33Q; Online Figure IV. Subsequently we investigated whether ultrastructural abnormalities were present and if they could justify the occurrence of aborted Ca\(^{2+}\) waves.

Previous electron microscopy (EM) observations\(^{8}\) have shown that the width of the jSR terminal cisternae is on average increased in R33Q myocytes. This enlargement is likely caused by lack of the typical chain-like electron dense polymer inside the junctional SR representing CASQ2 since it has been proposed that association of CASQ2 to triadin and junctin holds the jSR lumen narrow.\(^{16}\) Here we extend our morphometric analyses and quantify the CRUs frequency and length of contacts between jSR and T-tubules (i.e. length of couplons) in tissues from WT and R33Q mice. We will refer to each of the structures depicted in Fig. 4A-F as a CRU, whereas when jSR forms multiple contacts with the T-tubule, as in Fig. 4 E and F, we will consider those contacts different couplons. In WT (Figure 4 A-C), the jSR (labeled in yellow in Figure 4) is flat and forms usually long couplons with the T-tubule (labeled in green in Figure 4. In R33Q cells, on the other hand, we found heterogeneity in the length of couplons, which appeared fragmented (Figure 4D and 4F). As shown in Online Figure V the distribution of the length of
coupions is shifted to the left in R33Q cells. Specifically, 50% of jSR/T-tubule coupions are equal or shorter than 100 nm in R33Q whereas in WT 83% of coupions are longer than 100 nm (median length of coupions was 193.5 nm in WT vs 100.3 nm in R33Q; p< 0.01). We classified as “fragmented” those CRUs formed by one T-tubule associated to 3 or more SR terminal cisternae (as in Figure 4F): this quantitative analysis indicates that in WT cardiac cells only 9% of coupions contained 3 or more SR terminal cisternae, whereas in R33Q 28% of CRUs appears fragmented.

Although the overall number of CRUs and coupions did not vary significantly between WT and R33Q myocytes (Table 2, columns A and B), the average length of individual coupion between jSR/T-tubule contacts was significantly shorter in R33Q myocytes than in WT myocytes (134 ± 81 nm vs. 213±128 nm, p<0.001; Table 2, column C). Assuming that a) each coupion has an approximately round shape and b) the EM sections cut a random chord of this circle (see Online Methods for more details), the average area of contacts between jSR and T-tubule is decreased by about 60% in R33Q myocytes (Table 2, column D). Since the contact between jSR and T-tubule contains RyR2, a reduction in the area of contacts would imply less RyR2 in each coupion and, therefore, it may, at least partially, account for impaired propagation of Ca2+ waves via Ca2+ induced Ca2+ release (CICR). Considering that the approximate size of RYR-feet is about 29x29nm, the estimated number of RyR2-feet that would fit in such an area is significantly decreased in R33Q cells (n=27 R33Q ; n=68 WT) (Table 2, column E).

In addition to the number of RyRs, mathematical modeling studies17 strongly support the idea that the jSR volume would be an important factor that could interfere/reduce the total amount of Ca2+ released by CRUs during EC coupling. We measured the relative fiber volume occupied by jSR in both WT and R33Q cells (Table 2, columns F), and verified that jSR volume is reduced by~30% (p<0.01) in R33Q vs. WT (0.33±0.03 vs 0.23±0.02 respectively). We propose that in R33Q cells small sparks act in synergy with the reduction in length of coupions and jSR volume to impair activation of adjacent CRUs reducing the ability of waves to propagate across the cells.18, 19

Rescue of structural abnormalities and impaired propagation of spontaneous Calcium waves.

To further establish the link between structural abnormalities and the fragmented propagation of spontaneous Ca2+ waves, we used an AAV9 vector to deliver WT CASQ2 in vivo to R33Q hearts and studied the myocytes. We previously demonstrated that this protocol is able to achieve CASQ2 infection in 50% of cardiac myocytes and significantly increase the levels of WT CASQ2.11 We also reported that after CASQ2-AAV9 infection, afterdepolarizations disappeared and arrhythmias were no longer observed after adrenergic stimulation. Here we investigated whether viral gene transfer of CASQ2 would be able to revert the impairment in Ca2+ waves propagation in saponin-permeabilized R33Q AAV9 -treated myocytes at various cytoplasmic [Ca2+]i. First we kept the cells in an internal solution containing 50 or 100 nmol/L free [Ca], (0.05 mM EGTA). Under these conditions, all WT myocytes generated periodic spontaneous Ca2+ cell-wide waves; increasing cytoplasmic [Ca2+]i enhanced the frequency of spontaneous Ca2+ waves. Under similar conditions, none of untreated R33Q myocytes exhibited regular spontaneous Ca2+ waves; all permeabilized R33Q myocytes presented with fragmented waves. On the contrary, all R33Q myocytes infected with CASQ2-AAV9 exhibited periodic spontaneous Ca2+ cell-wide waves; there were no significant differences in frequency of spontaneous Ca2+ waves between WT and R33Q myocytes infected with CASQ2-AAV9 (n=12-18 from 3 mice). (Figure 5A and 5B).

Interestingly the structural abnormalities present in the R33Q cells also disappeared after infection with CASQ2-AAV9 (Fig 4 panels GHI).
Afterdepolarizations in R33Q myocytes.

We recorded action potentials in WT and in R33Q myocytes in the presence of Iso and quantified the occurrence of afterdepolarizations and triggered activity (Online Table I). R33Q cells were more prone to the development of DADs, EADs and triggered activity as compared to WT cells (Figure 6 and Figure 7). Interestingly both types of afterpotentials occurred over the broad range of pacing frequencies only in R33Q cells (Figure 7).

EADs occurred at depolarized potentials (the take off potential recorded from 27 R33Q cardiac cells showed a mean value of -42.8±1.8 mV) leading to prolongation and distortion of the shape of action potential (Figure 7). Afterdepolarizations also occurred during the diastolic phase in between paced beats creating instability of the diastolic potential (Figure 7). Poincaré plots showed an increase of short-term variability in diastolic membrane potential and in duration of APD$_{90}$ in R33Q cells compared to WT cells (Figure 6A and 6B). The presence of small amplitude, non-triggering afterdepolarizations (see high magnification insets Fig. 7) is consistent with the presence of non-propagating Ca$^{2+}$ waves that induce sub-threshold voltage oscillations. The occurrence of irregular duration of APD$_{90}$ and the presence of heterogeneity in the diastolic membrane potential identifies a novel arrhythmogenic substrate in CPVT.

This was further confirmed by exposing R33Q myocytes that presented EADs and DADs to ryanodine (10 µmol/L). Ryanodine abolished EADs and DADs in all 6 cells (Online Figure VI). This suggests to us that the abnormal Ca$^{2+}$ releases underly these arrhythmogenic voltage changes.

DISCUSSION

The aim of the present study was to characterize the behavior of paced Ca$^{2+}$ transients and adrenergically mediated spontaneous Ca$^{2+}$ sparks and waves in myocytes derived from WT and CASQ2 R33Q knock-in mice. Unexpectedly, we observed that the behavior of SCaEs in R33Q myocytes is markedly different from that observed in myocytes derived from our RyR2R4496C+/− CPVT mouse model and from the data obtained in published models of recessive CPVT. R33Q myocytes showed an abnormally short coupling of spontaneous Ca$^{2+}$ release events to the previous paced activation and a remarkable fragmentation of the SCaEs. Cells isolated from the heart of RyR2R4496C+/− mice seldom develop SCaEs between paced beats and present with well organized Ca$^{2+}$ release events and that propagate quickly to form a typical cell-wide wave. In R33Q myocytes, the occurrence of short coupled SCaEs is mirrored by the abbreviated spark-to-spark coupling interval (Fig. 2B) that is suggestive of an acceleration in RyR2 recovery from refractoriness or faster refilling of the SR. Recent data have shown that the absence of CASQ2 accelerates RyR2 refractoriness that is predominantly determined by Ca$^{2+}$ refilling in jSR, a process that is influenced by CASQ2 Ca$^{2+}$ buffering capacity. In the online supplement ("Limitations") we highlight technical limitations in the resolution of spark activity that might affect the measurement of SR refractoriness.

To understand the cause for fragmentation of SCaEs we tested different hypotheses and ruled out several. We then hypothesized that the impaired propagation of Ca$^{2+}$ waves could be related to a disarray of the couplons and performed morphological studies to test this hypothesis. EM evaluation in our model revealed smaller jSR contact length (Table 2, column C) that is predicted to fit a smaller array of RyR2s (Table 2, column E). We measured the relative fiber volume occupied by the jSR and verified that this is reduced in R33Q myocytes. The combined effect of these structural changes is expected to cause a reduction in the amount of Ca$^{2+}$ released during CICR and therefore is in agreement with our measured Ca$^{2+}$ spark properties in the R33Q myocytes. Since the propagation of spontaneous Ca$^{2+}$ waves relies on RyR2 activation by neighboring RyR2 via CICR, we suggest that the smaller amount of local SR Ca$^{2+}$...
release (a combination of smaller RyR2 arrays and reduced jSR volume), evidenced by the smaller spark mass in R33Q cells (Table 1), would simply not be able to raise local \([\text{Ca}^{2+}]_i\) at the next CRU to the level required for its activation. As such, this would reduce greatly the safety factor for wave propagation via CICR in R33Q cells. Our EM study revealed the heterogeneity in the length of couplons in R33Q myocytes, suggesting that in R33Q myocytes there are only 40% of couplons with lengths similar to those observed in WT (Online Figure V). Thus, heterogeneity of couplons may account for the heterogeneity observed in R33Q wave propagation: in fact some waves do not propagate while others travel small distances at a reduced propagation velocity before stopping.

The evidence that exogenous administration of cDNA of wild type CASQ2 by systemic AAV injection to the R33Q mice is able to rescue the ultrastructural abnormality as well as restore normal calcium wave propagation in the R33Q mutant, strongly suggests that remodeled CRUs in R33Q myocytes are likely determinants of the fragmented \(\text{Ca}^{2+}\) waves.

Overall our data show that the consequences of R33Q are multiple and their interplay creates a complex substrate. For example the reduction of CASQ2 protein that occurs in the presence of the R33Q mutant, impairs the \(\text{Ca}^{2+}\) buffering capacity of R33Q myocytes and causes rapid \(\text{Ca}^{2+}\) diffusion in SR. This behavior hampers the accumulation of \(\text{Ca}^{2+}\) in the luminal side of RyR2 \(29, 30\), thus, altering the luminal \(\text{Ca}^{2+}\) dependent component of propagation of spontaneous \(\text{Ca}^{2+}\) waves.

Interestingly we observed slower global \(\text{Ca}^{2+}\) transient decay in R33Q myocytes compared to WT. The reasons for the delayed \(\text{Ca}^{2+}\) reuptake can be attributed to 1) the reduced \(\text{Ca}^{2+}\)-buffering capacity in SR of R33Q myocytes. The re-uptake rate is limited by intra-SR free \([\text{Ca}^{2+}]_i\) by back-inhibition on the \(\text{Ca}^{2+}\) pump as previously described in CASQ1 knock-out myocytes.\(31, 32\) 2) More recently Guo et al reported that spontaneous \(\text{Ca}^{2+}\) releases during twitch \([\text{Ca}^{2+}]_i\) decline slow global \([\text{Ca}^{2+}]_i\) decline.\(33\) We show that this also occurs in R33Q myocytes as evidenced by the early phase of \(\text{Ca}^{2+}\) re-releases observed during paced beats (Online Figure II). This is consistent with the shortened refractoriness of the RyR2 channel.

Arrhythmogenesis in R33Q hearts.

The characterization of the electrophysiological properties of the R33Q myocytes revealed that the electrical substrate of R33Q cells is rather unique and differs from that previously reported in other CPVT models. We show (Figure 1) that during exposure to Iso, R33Q cardiac cells present spontaneous \(\text{Ca}^{2+}\) release events with variable coupling intervals to the preceding paced beat that promote development of afterpotentials. These occur not only during phase 4 of the action potential (DADs) but also during phase 2 or 3 of the action potential (EADs). Furthermore both types of afterdepolarizations are promptly abolished with exposure to ryanodine and as such they are caused by SR calcium release (Online Figure VI). Action potential recordings in R33Q myocytes suggest that the chaotic occurrence of afterpotentials at various coupling intervals perturbs the stability of the action potential and of the diastolic membrane potential (Figures 6 and 7). Both characteristics are likely to increase the propensity for development of sustained arrhythmic events and provide a novel substrate for arrhythmias in CPVT.\(34\)

CONCLUSIONS

We demonstrated that arrhythmogenesis in CASQ2 R33Q mice is the consequence of a cascade of events that generate a complex arrhythmogenic substrate.

The two pivotal determinants of electrical instability in R33Q myocytes are the changes in CRU architecture (reduction of couplon length and jSR volume) and the accelerated \(\text{Ca}^{2+}\) re-releases from the SR. The former reduces \(\text{Ca}^{2+}\) spark mass forcing less \([\text{Ca}^{2+}]_i\), increase at neighboring CRUs during CICR,
leading to impaired propagation of Ca²⁺ waves and thus development of sub-threshold voltage oscillations that destabilize diastolic membrane potential. The latter suggests the loss of CASQ2 presents with reduced refractoriness of RyR2, promoting the occurrences of multiple short coupled re-releases and thus the development of afterdepolarizations with variable coupling intervals immediately after peak transient. This then leads to the heterogeneity of action potential duration and possible occurrence of EADs. This setting is entirely different and more complex than the one present in mice models of the dominant form of CPVT and it may account for the higher lethality of CASQ2-related CPVT.¹,³⁰

SOURCES OF FUNDING
This work was supported by Telethon grants Nos. GGP11141 and GGP06007 (to SGP) GGP08153 (to FP), CARIPOLO pr.2008.2275, by Fondation Leducq Award to the Alliance for Calmodulin Kinase Signaling in Heart Disease (08CVD01; to SGP), by FondazioneVeronesi Award on inherited arrhythmogenic diseases (to SGP) and by NIH HL 066140 (to PAB).

DISCLOSURES
None.

REFERENCES

DOI: 10.1161/CIRCRESAHA.113.301783

DOI: 10.1161/CIRCRESAHA.113.301783

Table 1. Characterization of Ca\(^{2+}\) sparks in permeabilized myocytes ([Ca\(^{2+}\)]\(_i\) 50 nmol/L)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>WT (n=1302)</th>
<th>R33Q (n=1491)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark frequency (/100μM/s)</td>
<td>16.9±0.8</td>
<td>19.2±0.9*</td>
</tr>
<tr>
<td>Amplitude (ΔF/F0)</td>
<td>0.78±0.02</td>
<td>0.34±0.01*</td>
</tr>
<tr>
<td>FWHM (μm)</td>
<td>2.0±0.02</td>
<td>1.59±0.01*</td>
</tr>
<tr>
<td>FDHM (ms)</td>
<td>19.6±0.2</td>
<td>26.9±0.4*</td>
</tr>
<tr>
<td>Tau (ms)</td>
<td>17.2±0.28</td>
<td>30.0±0.86*</td>
</tr>
<tr>
<td>Spark mass((ΔF/F0)μM)</td>
<td>1.80±0.05</td>
<td>0.61±0.01*</td>
</tr>
</tbody>
</table>

Data were collected from permeabilized WT myocytes (N=23 cells from 3 mice) and R33Q myocytes (N=28 cells from 3 mice). n= number of sparks. FWHM: spark full width at half maximum amplitude, FDHM: spark duration at half maximum amplitude, Tau: exponential time constant of the spark decay. Spark mass was calculated as amplitude×1.206×FWHM. *p<0.01 vs. WT (Mann-Whitney rank sum test).

Table 2 Ultrastructural morphometry of CRUs

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C *</th>
<th>D *</th>
<th>E *</th>
<th>F *</th>
<th>jSR volume/Total vol (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. CRUs/20 m(^2)</td>
<td>2.2±1.5</td>
<td>2.42±1.74</td>
<td>213±128</td>
<td>0.057</td>
<td>68</td>
<td>0.33±0.03</td>
<td></td>
</tr>
<tr>
<td>(67)</td>
<td>(67)</td>
<td>(115)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of couplons/20 m(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average couplon length (nm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated couplon area (m(^2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated No. of RYR- feet/couplon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R33Q</td>
<td>2.1±1.5</td>
<td>2.65±1.72</td>
<td>134±81</td>
<td>0.023</td>
<td>27</td>
<td>0.23±0.02</td>
<td></td>
</tr>
<tr>
<td>(77)</td>
<td>(77)</td>
<td>(122)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All data were collected from 3 hearts of R33Qand 3 hearts of WT mice and expressed as mean ± one standard deviation. In parenthesis are the number of cardiac cells analyzed (columns A, B and F) and number of couplons analyzed (column C). *p<0.001 vs. WT.
FIGURE LEGENDS

Figure 1. A, Spontaneous Ca\(^{2+}\) release events (SCaEs) elicited by field stimulation (1 Hz) in WT, RyR2\(^{R4496C+/-}\) and R33Q myocytes incubated with Iso (30 nmol/L). Only R33Q myocytes presented frequent SCaEs (asterisks) and showed an early phase of spontaneous Ca\(^{2+}\) release; after pacing cessation, often multiple Ca\(^{2+}\) oscillations occurred. B, Relative occurrence of SCaEs in WT and R33Q myocytes incubated with increasing concentrations of Iso (5, 10, 20, 30 nmol/L) upon cessation of 1~5 Hz stimulation (n=12-18 cells for each group). * p<0.01 with respect to Iso treated cells at the same pacing frequency; # p<0.01 with No Iso cells at 1Hz pacing.

Figure 2. A, Representative confocal line-scan images of Ca\(^{2+}\) spark in permeabilized WT and R33Q myocytes ([Ca\(^{2+}\)]\(_i\) 50 nmol/L, EGTA 0.5 mmol/L). R33Q myocyte showed variable spontaneous Ca\(^{2+}\) sparks. Cell 1: “hot spot”, repetitive Ca\(^{2+}\) sparks with small amplitude. Cell 2: low amplitude sparks with slow rise and decay. Cell 3: repetitive, long lasting sparks. Cell 4: long-lasting spark (a) and spark triggering additional spark in immediate vicinity (b, *). B, Histogram of spark-to-spark coupling interval, the histogram of spark-to-spark coupling interval in R33Q myocytes (n=10 cells) was shifted to left compared with that observed in WT (n=10 cells) myocytes. Coupling intervals of spark events measured as shown by black line. They are by no means measured at the level of a single micron.

Figure 3. A, Representative confocal line-scan images show SCaEs in WT and R33Q cells in the presence of Iso. Black arrows indicated field stimulations. SCaEs in WT myocytes were usually due to a cell-wide wave that was initiated at one site. SCaEs in R33Q cells varied; often fragmented spontaneous Ca\(^{2+}\) waves occurred and slowly propagated (Cell 1 and Cell 2), wavelets and/or Ca\(^{2+}\) sparks occurred before Ca\(^{2+}\) transients resume the diastolic level. B, Representative confocal line-scan images show spontaneous Ca\(^{2+}\) events in permeabilized WT and R33Q myocytes (EGTA 0.05 mmol/L). Under this condition, WT myocytes exhibited regular spontaneous Ca\(^{2+}\) cell-wide waves, increasing [Ca\(^{2+}\)]\(_i\) increased the frequency of spontaneous Ca\(^{2+}\) cell-wide waves; on the contrary, R33Q cells did not show cell-wide waves but rather presented with chaotic and fragmented events and wavelets.

Figure 4. Ultrastructural analysis of junctional sarcoplasmic reticulum (jSR). Electron micrographs from thin sections of age-matched wild type (CASQ2 WT/WT), homozygous R33Q mutant mice (CASQ2 R33Q/R33Q), and CASQ2-R33Q mice infected with AAV-CASQ2 (AAV-R33Q). A-C, In WT cells the jSR (yellow) forms junctions (also called "couplons") with the T-tubule (TT, green), which are usually fairly extended. D-F, in R33Q cells, jSR/T-tubule junctions can appear fairly normal in length (D), but others jSR appear smaller (E) or fragmented (F). G-I Effects of AVV mediated infection of R33Q hearts with WT CASQ2: G In WT myocytes, the jSR present a narrow and flat profile surrounding the TT, with CASQ2 visible as chain-like electron-dense polymers, whereas in R33Q mutant myocytes (H) the jSR is fragmented enlarged and empty. CASQ2 re-expression by viral infection (I) rescues the chain-like polymer and restores the jSR narrow profile in AAV R33Q cells (n = 3 mice per group).

Figure 5. A and B, Representative confocal line-scan images show spontaneous Ca\(^{2+}\) events in permeabilized R33Q, WT and CASQ2-AAV9 cells in the presence of [Ca\(^{2+}\)]\(_i\) 50 and 100 nmol/L. R33Q cells did not show cell-wide waves but presented with chaotic, fragmented events and wavelets. WT and CASQ2-AAV9 myocytes exhibited regular spontaneous Ca\(^{2+}\) cell-wide waves, increasing [Ca\(^{2+}\)]\(_i\) increased the frequency of Ca\(^{2+}\) cell-wide waves. C, There was no significant difference in Ca\(^{2+}\) wave frequency of WT and CASQ2-AAV9 myocytes. n=12-18 cells in each group.

Figure 6. A, Left panels showed action potentials recordings in the presence of Iso (30 nmol/L) at 5 Hz pacing. Arrows indicated the last pacing. WT cell showed no DADs; R33Q cell 1 exhibited typical triggered activities and R33Q cell 2 presented membrane voltage oscillation after cease of field pacing.

DOI: 10.1161/CIRCRESAHA.113.301783
stimulation. Middle and right panels showed Poincaré plots of APD_{90} and resting potential of right cells, respectively (the last 10 sequential action potential). Resting potential was corrected by liquid junction potential. B. Short-term variability for APD_{90} and resting potential is larger in R33Q cells than in WT cells (*, p<0.01 vs WT, n=12-15 cells for each group).

Figure 7. Action potentials recordings in a R33Q in the presence of Iso (30 nmol/L) at 1-3 Hz pacing. Resting potential was corrected by liquid junction potential. EADs occurred at lower pacing frequency; diverse patterns of action potential were shown in all pacing frequencies; lower panels show the enlarged membrane oscillations occurring between stimulated beats.
Novelty and Significance

What Is Known?

- Homozygous mutations in the cardiac calsequestrin gene (CASQ2) cause recessive catecholaminergic ventricular tachycardia (CPVT) and predispose to cardiac arrest.

- Transgenic mice carriers of CASQ2 mutations show spontaneous calcium release events in response to adrenergic stimulation that generate delayed after depolarization leading to life-threatening ventricular arrhythmias.

- These mice also have decreased levels of calsequestrin and sister proteins triadin and junctin, and dilatation of the junctional sarcoplasmic reticulum.

What New Information Does This Article Contribute?

- Arrhythmogenesis associated with homozygous CASQ2 mice is more complex than previously thought.

- Transgenic mice carriers of the homozygous R33Q CASQ2 mutation show disruption of the calcium release apparatus, fragmentation of junctional sarcoplasmic reticulum (jSR) and reduction of jSR volume.

- These ultrastructural abnormalities impair the propagation of spontaneous calcium waves. The reduced volume of jSR leads to smaller calcium sparks with a short coupling interval, suggesting abnormally reduced refractoriness of the ryanodine receptor.

- At variance with current understanding the arrhythmogenic mechanisms in CASQ2-R33Q include both delayed- and early- afterdepolarizations.

Until now the ultrastructural abnormalities observed in CASQ2 deficient mice where not associated with functional abnormalities. In this study we demonstrate that the presence of an abnormal architecture of the jSR leads to smaller calcium sparks tightly coupled to each other, suggesting that RyR2 refractoriness might also be impaired possibly as a consequence of reduced levels of CASQ2. Spontaneous calcium release events were also profoundly altered in R33Q myocytes: they were of multiple origins, spread slowly and/or failed to propagate within the entire cell. Often these waves broke down into fragmented waves before stopping. These abnormal spontaneous calcium release events generated early and delayed afterdepolarizations as well as small amplitude, non-trigering afterdepolarizations that are the electrical counterpart of non-propagating Ca^{2+} waves that induce sub-threshold voltage oscillations. By reintroducing calsequestrin via viral gene therapy, we were able to revert structural abnormalities and to prevent arrhythmogenesis. Overall the findings of this study redefine recessives CPVT as a disease caused by structural disruption of jSR architecture caused by lack of calsequestrin, suggesting that recessive CPVT can be considered an ultrastructural cardiomyopathy. Gene therapy to restore levels of calsequestrin may be a therapeutic approach for patients with recessive CPVT.
Figure 1
Figure 2
Figure 3
Abnormal Propagation of Calcium Waves and Ultrastructural Remodeling in Recessive Catecholaminergic Polymorphic Ventricular Tachycardia
Nian Liu, Marco Denegri, Wen Dun, Simona Boncompagni, Francesco Lodola, Feliciano Protasi, Carlo Napolitano, Penelope Boyden and Silvia G. Priori

Circ Res. published online May 14, 2013;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2013/05/14/CIRCRESAHA.113.301783

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2013/05/14/CIRCRESAHA.113.301783.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/
Abnormal propagation of calcium waves and ultrastructural remodeling in recessive
catecholaminergic polymorphic ventricular tachycardia

Methods

Isolation of adult mice ventricular myocytes
Ventricular myocytes were isolated using an established enzymatic digestion protocol1. Within 6 hours
after isolation, laminin-coated dishes containing isolated ventricular myocytes were mounted on the stage
of an inverted microscope. The myocytes were bathed with the solution containing (mmol/L): 140 NaCl,
4 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES and 5 glucose, pH adjusted to 7.4 with NaOH.

Ca2+ measurements
Isolated ventricular myocytes were incubated with 2.5 μM Fluo-4 AM (Invitrogen Inc., Eugene, OR) for
10 minutes at room temperature and washed twice with Tyrode’s solution, then equilibrated in fresh
Tyrodes solution containing 250 μM probenecid for 20 min to allow deesterification of the dye before
recording. Fluorescent signals were acquired using a 40X UVF objective (numerical aperture 1.0, Nikon),
and single excitation wavelength microfluorimetry was performed using a PMT system (IonOptix Corp.,
Milton, MA). Cells were field-stimulated (voltage 25% above threshold) to achieve steady-state at least
20 beats. Spontaneous Ca2+ release events (SCaEs) were defined as unstimulated increases in intracellular
Ca2+ and were quantified during the 5 second unpaced interval following the train pacing. SR Ca2+ load
was measured as the amplitude of the 10 mmol/L caffeine-induced Ca2+ transient.

In a set of experiment, spatial and temporal characteristics of local spontaneous Ca2+ events were
measured by using 2D spinning disk (Nipkow) confocal microscopy. The intensity of the Ca2+-related
fluorescence was captured from the illumination field and light intensity was collected using a fast
charge-coupled device camera (ORCA-ER C4742-95, Hamamatsu Photonics KK, Japan). The system was
attached to the video port of an inverted microscope equipped with 60× oil objective lens.

Conduction velocity of Ca2+ waves was calculated as the distance traveled in a certain amount of time. In
WT myocytes, Ca2+ wave propagated at nearly a constant velocity. Ca2+ wave propagation velocity in
R33Q myocytes was non uniform, so in R33Q myocytes, we chose Ca2+ waves propagation more than 25
µm for analysis and calculated the velocity of the initial 15 µm wave propagation.

For Ca2+ spark measurement, line-scan mode in confocal microscopy (Leica SP5) was used (400Hz) with
a ×64 oil-immersion objective. Spontaneous Ca2+ sparks intact myocytes were obtained in quiescent cells.
We also investigated the Ca2+ handling in permeabilized myocytes. Cardiac myocytes were
permeabilized by incubating with 0.01% saponin for 1.5 min and placed in a solution containing (in
mmol/L): 120 potassium aspartate, 3 MgATP, 10 phosphocreatine, 5 U/ml creatine phosphokinase, 10
reduced glutathione, 0.5 or 0.05 EGTA, 1 free [Mg2+], 4% dextran (relative molecular mass: 40 000), 0.05
K4Fluo-4 and 10 Hepes. Free [Ca2+]i was calculated by WINMAXC32 2.51. The dye was excited at 488
nm and emission was collected at >510 nm. Image analyses were performed with spark master in Imaging
J software2. Spark mass was calculated as amplitude × 1.206 × FWHM.3

Electrophysiological recordings in isolated ventricular myocytes
Transmembrane potentials were recorded in whole-cell mode using a multiClamp 700B amplifier (Axon
Instruments). The pipette solutions contained (in mmol/L): 120 potassium aspartate, 20 KCl, 1 MgCl2, 4
Na2ATP, 0.1 GTP, 10 HEPES, 10 glucose, pH 7.2, with NaOH. All signals were low-pass filtered at 5
kHz (Digidata 1440A, Axon Instruments) and analyzed using pCLAMP version 10.2 software (Axon
Instruments). Only quiescent, Ca2+-tolerant, rod-shaped cells with clear cross striations were used for
electrophysiological recordings. Myocytes were electrically stimulated by intracellular current injection.
through patch electrodes using depolarizing pulses. To induce afterdepolarizations and triggered activity we superfused the cells with Isoproterenol (30 nmol/L) for 10 minutes. Myocytes were electrically stimulated with pacing protocols at 1-3 Hz. To evaluate whether we could abolish afterdepolarizations with Ryanodine, we added the drug to the perfusion solution at the concentration of 10 µmol/L. Delayed afterdepolarizations (DADs) were defined as phase 4 positive (depolarizing) deflections of the membrane potential. Early afterdepolarizations (EADs) were defined as positive (depolarizing) oscillations occurring during phase 2 or 3 of action potential. Triggered activity was defined as an unstimulated action potential developing from a DAD or EAD. The liquid junction potential between pipette and bath solution was calculated with pCLAMP software and corrected after experiments.

The Poincaré analysis plots each value against the previous value and the orthogonal distance from these points to the diagonal is a measure of short-term variability. The mean orthogonal distance from the diagonal to the points on the Poincaré plot of diastolic membrane potential and APD90 were used as a measure of beat-to-beat variability or short term variability. The mean orthogonal distance was calculated according to the formula: short term variability = \(\frac{\sum |D_{n+1} - D_n|}{N_{tot} \times (2)^{1/2}} \), where \(D \) represents diastolic membrane potential or APD\(_{90}\). Poincaré analysis was performed on a subset of cells subjected to the last 10 stimulated beats.

Electron microscopy

The hearts were fixed by retrograde aortic perfusion. Small bundles of cells teased from the papillary muscles were then post-fixed in 2% OsO\(_4\) in NaCaCo buffer for 2 hr and block-stained in saturated uranyl acetate. After dehydration, specimens were embedded in an epoxy resin (Epon 812). Ultrathin sections were cut in a Leica Ultracut R microtome (Leica Microsystem, Austria) using a Diatome diamond knife (Diatome Ltd. CH-2501 Biel, Switzerland) and double-stained with uranyl acetate and lead citrate. The ultrastructural morphometry of CRUs were measured with Photoshop (Adobe Systems).

jSR volume calculation

The jSR volume was calculated by the well-established stereology point counting technique\(^4\) in electron micrographs taken at 24,000 X, from cross-sections of papillary cardiomyocytes. In each fiber 2 or 3 pictures were taken in internal areas of the fibers, excluding the nuclei regions. The images were covered with an orthogonal arrays of dots at a spacing of 0.17 µm. The ratio of the dots’ number falling over the jSR to the total number of dots covering the whole micrograph was used to calculate the percentage of fiber volume occupied by jSR.

Data Analysis

Data were expressed as mean±SEM. A Student t-test or a Mann-Whitney rank sum test was used to determine statistical significance between 2 groups. We used a 1-way ANOVA for multiple comparisons and Turkey post-hoc analysis between groups was used for pairwise comparison in ANOVA. Chi-square and Fisher’s exact test were used as appropriate for non-parametric data. Differences with \(p \leq 0.05 \) were considered statistically significant.

LIMITATIONS

In our measures of sparks using line scan microscopy, we sought higher spatial and time resolution than that of our 2D microscopy studies. However, we were unable to discern activity at a submicron level to evaluate repetitive spark activity at the SAME junctional site. Therefore, our measured “SR
refractoriness” may be shorter than observed. On the other hand our EM studies focussed on the dyadic structures of WT and R33Q and "rescued" R33Q cells. Here we have spatial resolution of the static substrate but at this time are unable to query the nature of nonjunctional RyRs.
Online Table I
Occurrence of DADs, EADs and triggered activity in WT and R33Q myocytes in the presence of Iso (30 nmol/L)

<table>
<thead>
<tr>
<th></th>
<th>WT (n=18)</th>
<th>R33Q (n=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DADs</td>
<td>33%</td>
<td>89%*</td>
</tr>
<tr>
<td>EADs</td>
<td>0%</td>
<td>32%*</td>
</tr>
<tr>
<td>Triggered activity</td>
<td>0%</td>
<td>47%*</td>
</tr>
</tbody>
</table>

* p<0.01, vs WT
Online Figure I

A, Original recordings of caffeine (10 mmol/L) induced Ca\(^{2+}\) transients in WT and R33Q cells after 0.2 Hz pacing. B, Average of Ca\(^{2+}\) transient amplitude (F/F\(_0\)) in WT and R33Q myocytes. R33Q cells showed reduced Ca\(^{2+}\) transient amplitude compared with WT. Iso abolished the differences in Ca\(^{2+}\) transient amplitude. C, Average of time to peak 90% of Ca\(^{2+}\) transient in WT and R33Q myocytes. D, Average of Ca\(^{2+}\) transient decay in WT and R33Q myocytes. R33Q myocytes showed slower Ca\(^{2+}\) transient decay compared with WT myocytes in the absence and the presence of Iso. E, Average of caffeine induced Ca\(^{2+}\) transient in WT and R33Q myocytes. R33Q cells showed reduced releasable Ca\(^{2+}\) compared with WT in the presence of Iso. F, Average of decay rate constant of caffeine induced Ca\(^{2+}\) transient showed identical sodium-calcium function in WT and R33Q myocytes. n=15-25 cells in each group.
Confocal line scan images of R33Q myocytes in the presence of Iso (30 nmol/L). All four cells showed early spontaneous Ca2+ releases (sparks or wavelets) which combined slow the global Ca2+ transient decay.
Online Figure III

A. 2D images from movies of one WT and two E33Q cells during spontaneous Ca^{2+} release and Ca^{2+} waves. Fluorescent changes at several sites in cell are shown in small black numbers and plotted in graphs in Panel B. Note changes during last Stimulated beat (S) are not shown in movie images. B three graphs depict the various phenotypes of Ca^{2+} releases in WT (top) and two R33Q cell (middle and bottom plots). WT plot shows sequential activation of sites during a typical cell wide wave. Global transient (measured as average of Ca^{2+} over the entire plane of cell) is represented by the black thick line superimposed. Note in this WT cell, the typical spontaneous Ca^{2+} event is a well-formed after-Ca^{2+} transient that would produce a well-formed DAD. In R33Q cell 1, various sized spontaneous Ca^{2+} events (at sites 2,3) are seen at differing times during the sequence. Also note at one site (1) no spontaneous Ca^{2+} events are seen. Notably the global Ca^{2+} transient for cell 1 is small and long lasting. These small Ca^{2+} events would be expected to form a long lasting cell depolarization. In R33Q cell 2, various sized, random Ca^{2+} release events are seen. Some of them developed small propagating waves while others failed to travel across the cell. As a result, the global transient is long lasting and has a small amplitude.
Online Figure IV

T tubule staining by di-4-ANEPPS in WT and R33Q myocytes. Distribution of the intervals between T tubules in WT myocytes (n=261, N=7 cells) and R33Q myocytes (n=242, N=5 cells). There was no difference of distance between T tubules in WT and R33Q myocytes. The average spatial distance between T tubules was 1.83±0.01 µm in WT myocytes, and 1.83±0.01 µm in R33Q myocytes (P>0.05).
Online Figure V

The bars represent the distribution of the length of couplons in R33Q cardiac cells and in WT cells. The white bars representing the distribution of length of couplons in R33Q myocytes are shifted to the left and approximately 50% of them are shorter than 100 nm as compared to the length of couplons in WT cells.
Online figure VI

Action potential recordings obtained from two different R33Q myocytes. Top: Early afterdepolarizations (EADs) and membrane voltage oscillations induced by administration of isoproterenol 30 nmol/L at 1 Hz pacing stimulus. Bottom: Both EADs and membrane voltage oscillations were completely abolished after administration of Ryanodine 10 µmol/L (n=6).
References

