Focal Energy Deprivation Underlies Arrhythmia Susceptibility in Mice with Calcium-Sensitized Myofilaments

Sabine Huke¹, Raghav Venkataraman², Michela Faggioni¹, Sirish Bennuri¹, Hyun S. Hwang¹, Franz Baudenbacher² and Björn C. Knollmann¹

¹Vanderbilt University, Division of Clinical Pharmacology, Nashville, TN, USA and; ²Vanderbilt University, Biomedical Engineering and Physics, Nashville, TN, USA.

Running title: Rapid Focal Connexin43 De-Phosphorylation

Subject codes:
[132] Arrhythmias—basic studies
[136] Calcium cycling/excitation-contraction cycling
[130] Animal models of human disease
[140] Energy metabolism
[145] Genetically altered mice

Address correspondence to:
Dr. Sabine Huke
Vanderbilt University School of Medicine
Medicine- Division of Clinical Pharmacology
Medical Research Building IV, Rm. 1265
2215B Garland Ave
Nashville, TN 37232-0575
Tel: (615) 343-2214
Fax: (615) 343-2325
sabine.huke@vanderbilt.edu

In February 2013, the average time from submission to first decision for all original research papers submitted to Circulation Research was 11.98 days
ABSTRACT

Rationale: The Ca^{2+} sensitivity of the myofilaments is increased in hypertrophic cardiomyopathy (HCM) and other heart diseases and may contribute to a higher risk for sudden cardiac death (SCD). Ca^{2+} sensitization increases susceptibility to reentrant ventricular tachycardia in animal models, but the underlying mechanism is unknown.

Objective: To investigate how myofilament Ca^{2+} sensitization creates reentrant arrhythmia susceptibility.

Methods and Results: Using HCM mouse models (troponinT (TNT)-I79N) and a Ca^{2+} sensitizing drug (EMD57033), here we identify focal energy deprivation as a direct consequence of myofilament Ca^{2+} sensitization. To detect ATP depletion and thus energy deprivation we measured accumulation of dephosphorylated Connexin 43 (Cx43) isoform P0 as well as AMP kinase activation by Western blotting and immunostaining. No differences were detected between groups at baseline, but regional accumulation of Cx43-P0 occurred within minutes in all Ca^{2+} sensitized hearts, in vivo after Isoproterenol challenge and in isolated hearts after rapid pacing. Lucifer yellow dye spread demonstrated reduced gap junctional coupling in areas with Cx43-P0 accumulation. Optical mapping revealed that selectively the transverse conduction velocity (CV_T) was slowed and anisotropy increased. Myofilament Ca^{2+} de-sensitization with blebbistatin prevented focal energy deprivation, CV_T slowing and the reentrant ventricular arrhythmias.

Conclusions: Myofilament Ca^{2+} sensitization rapidly leads to focal energy deprivation and reduced intercellular coupling during conditions that raise arrhythmia susceptibility. This is a novel pro-arrhythmic mechanism that can increase arrhythmia susceptibility in structurally normal hearts within minutes and may therefore contribute to SCD in diseases with increased myofilament Ca^{2+} sensitivity.

Keywords: Myofilament Ca^{2+} sensitivity, ventricular arrhythmias, sudden cardiac death, Connexin43 (Cx43), familial hypertrophic cardiomyopathy, conduction velocity dispersion

Nonstandard Abbreviations:
AMPK AMP-dependent kinase
α-tub Alpha-tubulin
BLEB (-)-Blebbistatin
CV Conduction velocity
CV_L longitudinal CV
CV_T transverse CV
Cx43 Connexin 43
Cx43-P0 lower phosphorylated and fast migrating isoform of Cx43
EMD EMD57033
HCM hypertrophic cardiomyopathy
ICD Implantable cardioverter-defibrillator
Iso Isoproterenol
LV left ventricle
LY Lucifer yellow
NTG Non-transgenic
pAMPK phosphorylated (=activated) AMPK at threonine 172
PVC Premature ventricular contraction
SCD Sudden cardiac death
TMR Tetramethylrhodamine dextran
TnT Troponin T
VEH vehicle (drug solvent)
VT Ventricular tachycardia

DOI: 10.1161/CIRCRESAHA.113.301055
INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease with a prevalence of about one in 500. In most cases the underlying molecular defect is an autosomal dominant mutation in a sarcomeric protein (“disease of the sarcomere”). Mutation carriers have an increased risk for ventricular arrhythmia and sudden cardiac death (SCD), but how sarcomeric mutations predispose to ventricular arrhythmias and SCD remains unclear.

With few exceptions, proteins with HCM mutations integrate together with wild-type protein into the sarcomere thereby altering the force producing process. Through an as yet unidentified pathway this initiates progressive structural changes that typically involve hypertrophy, focal and interstitial fibrosis and myofibrillar disarray, but with very large individual variability. The structural remodeling likely creates an anatomical substrate and contributes to the increase in arrhythmia susceptibility in HCM. However, SCD risk assessment on the basis of structural features alone is inaccurate and current algorithms to classify individual patients are unreliable. Hence, additional factors likely contribute to arrhythmia risk and there is need to investigate the molecular events that cause SCD.

Considerable effort has been invested into identifying a common sarcomere property conferred by HCM mutations which would explain the similar downstream effects of the many different HCM mutations. A frequent finding among HCM mutations is increased myofilament Ca\(^{2+}\) sensitivity, which is also observed in acquired conditions associated with arrhythmias. Myofilament Ca\(^{2+}\) sensitization has several immediate downstream effects and impacts Ca\(^{2+}\) homeostasis (by affecting cytosolic Ca\(^{2+}\) buffering), mechanics (positive inotropic, negative lusitropic) and energy demand (proportional increase in myosin ATPase activity), as reviewed in. We have previously demonstrated that myofilament Ca\(^{2+}\) sensitization is proarrhythmic, in part by using transgenic mouse models that express human TroponinT (TnT) HCM mutations. The degree of Ca\(^{2+}\) sensitization correlated with the risk for ventricular reentrant-type arrhythmias, e.g. the highest arrhythmia risk was found in mice with the most sensitized myofilaments (TnT-I79N). Ca\(^{2+}\) sensitized hearts exhibited an increased dispersion of conduction velocity (CV, i.e. regional CV slowing), which is a highly proarrhythmic state, but was not the result of structural remodeling in the TnT mutant hearts. Accordingly, treating control mice with the Ca\(^{2+}\) sensitizer drug EMD57033 (EMD) increased CV dispersion and induced arrhythmias, whereas a compound with Ca\(^{2+}\) desensitizing properties, blebbistatin (BLEB), prevented CV dispersion and arrhythmia induction during rapid pacing. Thus, increasing myofilament Ca\(^{2+}\) sensitivity raises arrhythmia risk and lowering Ca\(^{2+}\) sensitivity to control level prevents the occurrence of arrhythmias. How myofilament Ca\(^{2+}\) sensitization causes increased CV dispersion and arrhythmias is not understood and the objective of this study was to investigate the underlying pathway.

Here, we utilized the TnT-I79N mouse model, EMD and BLEB to determine the link between myofilament Ca\(^{2+}\) sensitivity and arrhythmias. We identify regional energy deprivation as a direct consequence of myofilament Ca\(^{2+}\) sensitization. Subsequent focal gap junctional uncoupling likely contributes to regional CV slowing forming the substrate that can support reentry. This mechanism generates arrhythmia susceptibility in structurally normal hearts within a short period of time and can cause lethal arrhythmias.

METHODS

A detailed description of all procedures and information about mouse models and drugs can be found in the online data supplement (supplemental material at http://circres.ahajournals.org).
RESULTS

Arrhythmias in TnT-I79N mice in vivo are associated with altered cardiac gap junctions.

To investigate the mechanism responsible for the ventricular arrhythmias in the TnT-I79N HCM mouse model, we utilized a previously established catecholamine challenge protocol (Isoproterenol, (Iso), 1.5 mg/kg). TnT-I79N mice frequently exhibited ventricular ectopy (56%) and/or ventricular tachycardia (VT, 25%), while only one mouse expressing wild-type TnT (TnT-WT) had one single premature ventricular contraction (PVC, Fig. 1B, p<0.006 by Fisher exact test). The heart rate increase was the same in both groups (from 464±11 to 620±6 in TnT-WT compared to 457±12 to 624±16 beats/min in TnT-I79N). ECG analysis revealed a progressive prolongation of QRS duration in TnT-I79N mice following Iso injection (Fig. 1C). A longer QRS duration reflects a delay in whole heart activation, which may be a consequence of the slower regional conduction previously reported.

Gap junction channels are important for conduction properties, they lower membrane resistance by directly connecting the cytoplasm of neighboring cells and thus facilitate electrical propagation. Thus, we investigated the gap junction forming protein expressed in ventricle, Connexin 43 (Cx43), in hearts collected after Iso injection and found a lower expression (72±6%; Fig. 1E; for baseline expression, see Fig. 3C,D). Cx43 has several phosphorylation sites and at least three different phosphorylation states of Cx43 are separated by SDS Polyacrylamid-gелеlectrophoresis (marked as P2, P1, P0, in Fig. 1D). P0 is less phosphorylated than P2 and often referred to as “dephosphorylated” Cx43. The ratio between the Cx43 isoforms P0/P2 was increased following Iso treatment (Fig. 1F), indicating that in addition to the overall Cx43 decrease, altered phosphorylation may be associated with changes in gap junctional function.

Rapid pacing induces VT, prolongs QRS duration and increases anisotropy ratio in TnT-I79N hearts.

To further dissect the mechanism responsible for the QRS prolongation and ventricular arrhythmias, we used a rapid pacing protocol in isolated hearts that led to VT in over 50% of TnT-I79N, but not in TnT-WT hearts (Supplemental Fig. IA+B). Fig. IC shows an example for VT induced during rapid pacing in an isolated TnT-I79N heart. Similar to our findings in vivo after Iso, rapid pacing of isolated hearts caused progressive QRS prolongation in TnT-I79N hearts but not in TnT-WT (Fig. 2A). QRS prolongation was prevented by the Ca$^{2+}$ desensitizer BLEB, which at 3 μM reduces myofilament Ca$^{2+}$ sensitivity of TnT-I79N hearts to that of non-transgenic control hearts. We next performed optical mapping and measured the CV along the fiber (longitudinal (CV$_L$), fast) and across the fiber (transverse (CV$_T$), slow) as illustrated in Fig. 2B. CV$_L$ in TnT-I79N was similar to control (Figure 2C), consistent with previous observations that the average CV is not altered. However, CV$_T$ was reduced by >20% in TnT-I79N mice compared to TnT-WT (Figure 2C), which resulted in an increased anisotropy ratio (CV$_L$/CV$_T$). CV$_T$ slowing and increased anisotropy was prevented by pretreatment with BLEB (Figure 2D).

Since the anisotropy ratio and in particular CV$_T$ are strongly influenced by the number, activity and spatial arrangement of gap junctions, we next investigated gap junction properties in detail at the biochemical level.

Rapid changes in Cx43 abundance, solubility and isoform distribution in TnT-I79N hearts.

Gap junctions are formed by connexins; Cx43 is the only connexin isoforms expressed in adult ventricular myocardium is Cx43. The junctional (=insoluble) Cx43 is found at the cell surface forming gap junction channels at the intercalated disc, while the non-junctional (=soluble) Cx43 is intracellular. Cardiac tissue was fractionated into three fractions (the insoluble fraction was divided into a “low spin”
and “high spin” fraction) to measure the relative distribution between junctional (light and dark grey) and non-junctional Cx43 (white) as illustrated in Fig. 3A. The pellet is discarded after each processing step and the supernatant analyzed via Western blot. Alpha-tubulin (α-tub) is completely soluble and illustrates equal loading of all fractions. The distribution of junctional:non-junctional Cx43 before pacing was approximately 50:50 (Fig. 3B) and not significantly different between TnT-WT and TnT-I79N mice. After pacing (see Supplemental Fig. 1A for protocol), the control groups (NTG and WT) tended to have increased junctional Cx43, while TnT-I79N tended to have decreased junctional Cx43 (Fig. 3B), although neither result was significantly different from baseline. However, there was a difference between NTG control and TnT-I79N after pacing since they changed into opposite directions. This effect was not observed in the presence of BLEB. Increased solubility of Cx43 has been described in end-stage human ischemic cardiomyopathy and was detected here also after global ischemia (Fig. 3B).

Next, the total expression levels of Cx43 were analyzed in the “low spin” supernatant while loading equal amounts of total protein as shown in Fig. 3C. Cx43 protein levels were the same before pacing (baseline) in both groups, but pacing caused a reduction in Cx43 in the TnT-I79N (94.8±12.2 before pacing and 69.2±5.1 after pacing; Fig. 3D), while Cx43 levels were not affected by pacing in TnT-WT (100±4.8 before pacing and 97.8±15.4 after pacing). BLEB prevented the pacing induced decrease in Cx43 in the TnT-I79N (Fig. 3D).

We also analyzed the Cx43 isoform distribution as in Fig. 1. No difference was observed before pacing, but pacing induced distinct changes in the Cx43-isoform distribution in TnT-I79N: A significant decrease in P2 isoform in TnT-I79N compared to baseline (61.5±5.1 vs 93.7±12.9, respectively), but no change in P1 and a moderate increase in P0 with pacing (136.8±9.3 vs 106.5±10.5, N numbers as in columns). Together, this caused an increase in the P0/P2 ratio in TnT-I79N after pacing that was prevented by BLEB (Fig. 3E) Pacing does not induce changes in TnT-WT and earlier experiments with a slightly different pacing protocol showed no effect of BLEB on Cx43 expression and isoform distribution in TnT-WT (data not shown).

Taken together, at baseline no differences in Cx43 solubility, amount and isoform distribution exist between groups. After rapid pacing, the solubility of Cx43 increases in TnT-I79N and isoform P2 is specifically lost, which is the phospho-isoform considered to be part of the functional gap junctional plaque. These results indicate a decrease in Cx43 at the intercalated disc induced by rapid pacing similar to what we observed following Iso treatment in our in vivo model (Fig. 1D-F).

Focal accumulation of Cx43-P0 in TnT-I79N during rapid pacing.

To determine the effect of rapid pacing on gap junction localization, frozen heart sections were obtained before and after pacing and immunostained with anti-Cx43 antibodies, specific for either total Cx43 or the Cx43-P0 isoform (Fig. 4A+B). Cx43-P0 isoform staining was barely detectable, but typically homogeneous before pacing (Fig. 4A) or after pacing in TnT-WT or TnT-I79N + BLEB (Fig. 4B top). In TnT-I79N, however, areas of intense staining for P0 isoform were observed after pacing (two examples Fig. 4B bottom). The distribution of Cx43-P0 was non-homogeneous, with small regions of varying shape, size and intensity (“patches”) where Cx43-P0 accumulated (characterized by high P0/Cx43 ratio (Fig. 4D, “red”/”green”). The “patches” were often found in endocardial regions, while accumulation in epicardial and mid-myocardial tissue appeared less frequent. Areas with Cx43-P0 accumulation had for the most part clear borders with abrupt transition to areas with low level of Cx43-P0 staining.

The quantitation of Cx43 expression levels by immunostaining (Fig. 4C, “green”) was consistent with the results predicted from the western blot experiments in Fig. 3. No significant difference between TnT-I79N and control hearts was observed before pacing (integrated Cx43 density 3094±640 vs. 3692±586 in TnT-WT vs TnT-I79N respectively), but after pacing the amount of total Cx43 was lower in
TnT-I79N than in TnT-WT hearts (3800±426 in TnT-WT vs. 2143±399 in TnT-I79N; Fig. 4B+C). This difference in the total Cx43 is the result of an opposite trend in TnT-I79N and TnT-WT: the TnT-WT tended to increase Cx43 at the intercalated disc (>20%↑), while the TnT-I79N reduced it during pacing (>40%↓). Importantly, BLEB prevented the pacing-induced changes in Cx43 expression and the formation of Cx43-P0 “patches” (Fig. 4B-D).

Focal accumulation of Cx43-P0 in TnT-I79N in vivo and in control hearts treated with EMD.

Next, we similarly investigated gap junctional organization in the mouse cardiac tissue frozen after Iso challenge in vivo (as for Fig. 1). Regions of Cx43-P0 accumulation were detected in TnT-I79N, but not in TnT-WT (Fig. 5A+C). Total Cx43 was decreased by around 50% (Fig. 5B; decreased to 51±9 %), consistent with the Western blot results and the data from isolated paced hearts. Thus, the reduction of junctional Cx43 and the non-homogeneous distribution of Cx43-P0 is also observed in vivo during physiological heart rates and within the same time frame.

To address the role of myofilament Ca$^{2+}$ sensitization for the arrhythmias and focal changes in Cx43, we studied hearts treated with the Ca$^{2+}$ sensitizing drug EMD (3 µM). Rapid pacing of EMD treated hearts induced VT and, as in TnT-I79N, VT first occurred after a time delay (see Supplemental Fig. IB). Analogous to the results in TnT-I79N hearts (Figure 4B), EMD caused focal accumulation of Cx43-P0 (“patches”, Fig. 5D, middle and right, see also Fig. 5F). In contrast, the decrease in Cx43 density at the intercalated disc was not observed in EMD treated hearts, indicating that this reduction is not a prerequisite for the development of arrhythmias (Figure 5E). These results indicate that myofilament Ca$^{2+}$ sensitization, via “patchy” Cx43-P0 accumulation, is likely the key molecular property that is responsible for the increased arrhythmia susceptibility.

We further characterized changes in CV induced by EMD treatment (Supplemental Fig. IV). Optical mapping revealed that the transverse CV decreased within minutes after perfusion with EMD (Supplemental Fig. IVA). This led to increased anisotropy which was prevented by the presence of BLEB (3 µM, Supplemental Fig. IVB). After longer perfusion with EMD we detected conduction abnormalities consistent with the formation of conduction blocks (example shown in Fig. IIIC). Similar to the TnT-I79N hearts, pacing according to the protocol in Supplemental Figure IA led to moderate QRS prolongation over time, while no prolongation was observed with vehicle (VEH) only (Supplemental Fig. IID).

Myocardial regions with Cx43-P0 accumulation are energetically compromised.

What causes the rapid focal Cx43 dephosphorylation detected as Cx43-P0 accumulation? The only other condition that has been described to induce very rapid changes in Cx43 is acute ischemia. Ischemia has several downstream effects, but an elegant study by Turner and colleagues demonstrated that the trigger for the Cx43 dephosphorylation during ischemia is the drop in cellular ATP levels. Thus, the Cx43 dephosphorylation observed here is possibly a marker for intracellular ATP depletion. To further confirm that low ATP levels are also the underlying mechanism for Cx43 dephosphorylation in this study, we measured AMP-kinase (AMPK) activation. We assessed cellular ATP levels by testing AMP-kinase (AMPK) activation: When [ATP] drops and subsequently [AMP] rises, AMP binds to AMPK-γ subunit and promotes phosphorylation of the α-subunit in the activation loop at threonine 172 (pAMPK).

Before pacing, Western blotting of whole heart homogenates detected no difference in αAMPK-T172 (pAMPK) phosphorylation and was similarly low in TnT-WT and TnT-I79N (Fig. 6A+B). Rapid pacing increased pAMPK to 225±47% in TnT-I79N and BLEB prevented the increase in pAMPK in TnT-I79N with pacing. TnT-I79N hearts exposed to 21 min of global no-flow ischemia served as a
positive control (Fig. 6B+C). Any differences in pAMPK signal were not caused by changes in αAMPK expression due to pacing or ischemia (data not shown).

After rapid pacing challenge, the tissue distribution of pAMPK was heterogeneous in TnT-I79N hearts, and the highest intensity was found in the regions where Cx43-P0 accumulated (Figure 6C, “green”). No regions with intense pAMPK staining were observed in TnT-WT, NTG or hearts treated with BLEB. No-flow ischemia also activated AMPK, but the distribution was largely homogeneous (Figure 6C, bottom right). These data indicate that the myocardium in the areas of Cx43-P0 accumulation is energetically compromised.

Assessment of gap junctional coupling using Lucifer yellow dye spread.

Next we assessed if the accumulation of Cx43-P0 is associated with altered gap junctional function using a modified scrape loading technique. Monitoring the passage of fluorescent dyes through gap junctions from one cell to another is a simple and rapid technique to assess intercellular communication. Lucifer yellow (LY) spreads from the site of injury through gap junctions to the neighboring cells, the faster it diffuses the more are cells interconnected. The LY spread distance through intact cardiomyocytes in the longitudinal direction was 364±34 µm and in the transverse direction 135±14 µm in TnT-WT after pacing (Fig. 7A-C+K). For TnT-I79N, sites were classified as Cx43-P0 accumulation negative or positive if Cx43-P0 accumulation was detected along at least two sides (Fig. 7A-K). Sites that could not be clearly classified were not included in the analysis. Consistent with the lower amount of Cx43 found in TnT-I79N compared to TnT-WT after pacing (reduced by about 43%), LY dye spread was reduced in TnT-I79N as well (Cx43-P0 accumulation negative): in the longitudinal direction was 182±18 µm and in the transverse direction 86±10 µm (both p≤0.05 vs TnT-WT). This is a 50% reduction in the longitudinal direction and about 36% reduction in the transverse direction compared to TnT-WT. Intercellular coupling was even further reduced in Cx43-P0 accumulation positive areas: the LY spread was 157±35 in the longitudinal direction (>12%; not significant vs Cx43-P0 negative) and, strikingly, only 34±4 µm in the transverse direction (>60%; p≤0.05 vs TnT-I79N Cx43-P0 negative). The gap junctional coupling in Cx43-P0 positive areas, when compared to TnT-WT, is reduced >56% in the longitudinal direction and >74% in the transverse direction. Thus, Cx43-P0 identifies areas where significant intercellular uncoupling has occurred.

DISCUSSION

This study investigates the underlying mechanisms for the increased occurrence of reentrant arrhythmias in myofilament Ca\(^{2+}\) sensitized hearts. Here we show that myofilament Ca\(^{2+}\) sensitization predisposes to the generation of focal energy deprivation during stress. Myocytes in the affected regions display signs of metabolic stress, as evidenced by AMP kinase activation and Cx43-P0 accumulation. To test the dependence of “patchy” Cx43-P0 accumulation on myofilament Ca\(^{2+}\) sensitization, we used different models and protocols: Ca\(^{2+}\) sensitized mutant hearts show this phenomenon in isolated perfused hearts as well as in vivo, it can be induced by Ca\(^{2+}\) sensitizing drugs in controls and is prevented by Ca\(^{2+}\) de-sensitization. Thus, the formation of “patchy” regions with ischemia-like changes during high heart rates appears to be a direct downstream effect of increased myofilament Ca\(^{2+}\) sensitization. We further demonstrate that gap junctional coupling is reduced in areas with Cx43-P0 accumulation to a sufficient degree to affect CV (see below). The heterogeneous Cx43-P0 accumulation may lead to heterogeneous CV slowing (increased dispersion of CV), which constitutes a highly proarrhythmic state predisposing to conduction block and reentry. These new results are in agreement with our previous report that increased CV dispersion is induced by rapid pacing in Ca\(^{2+}\) sensitized hearts. The induction of focal energy deprivation that rapidly decreases gap junctional coupling in Ca\(^{2+}\) sensitized hearts is a novel pro-
arrhythmic mechanism that can generate arrhythmia susceptibility in structurally normal hearts within minutes.

Critical role of focal Cx43 dephosphorylation for arrhythmias?

We find a strong association between focal Cx43-P0 accumulation and arrhythmias: The focal Cx43-P0 accumulation is found under all conditions with raised arrhythmia susceptibility, but we did not detect Cx43-P0 accumulation in any conditions without increased arrhythmia susceptibility. In TnT-I79N mice, we find in addition to focal Cx43-P0 accumulation also a decline in Cx43 levels and both may contribute to arrhythmia generation. On the other hand, in EMD treated hearts we only observed focal Cx43-P0 accumulation, not an overall Cx43 decrease (Fig. 5E), but the same type and time of onset for the arrhythmias (Supplemental Fig. IB), indicating the Cx43-P0 accumulation is potentially critical.

How is intercellular coupling affected by Cx43-P0 accumulation? We know that the accumulation of Cx43-P0 is accompanied by gap junction closure e.g. in ischemia. Studies by Lampe and colleagues indicate that unphosphorylated S365 is likely the critical feature for Cx43-P0 specific antibody binding. Phosphorylation at S365 is lost during hypoxia and this dephosphorylation is at the same time a prerequisite for PKC-dependent phosphorylation at S368, which reduces gap junctional conductivity. Here we also directly demonstrate that in areas with Cx43-P0 accumulation the gap junctional coupling is reduced as measured by LY dye spread. It appears that Cx43-P0 is an excellent marker for cellular uncoupling, if the exact molecular change that generates it is responsible for it or not.

Can the patchy gap junctional uncoupling affect conduction velocity? The number of gap junction channels is typically much larger than needed for excitation propagation. This is consistent with our finding that the CV_L (this study) or average CV is unaltered. Studies using mice with 50% decrease in gap junctions show either no effect on CV or a reduction of approximately 25%. A loss of 90% of gap junctions leads to an approximately 50% decrease in CV. The reduction in dye spread in this study in the areas with Cx43-P0 accumulation was 56% (longitudinal) and 74% (transverse), which is a range where effects on CV can be expected. Gap junctional uncoupling preferentially affects conduction in the transverse direction. It is quite possible that the patchy gap junctional uncoupling may importantly contribute to the decrease in CV_L during pacing demonstrated in this study.

A role of focal gap junction changes for reentrant arrhythmias? In general, regional gap junctional uncoupling can produce or unmask preexisting heterogeneities in cellular refractoriness and/or CV that can contribute to slow conduction and reentry. Similar changes in gap junctions occur in hypoxia or ischemia and their role for arrhythmogenesis has been reviewed elsewhere. The arrhythmia susceptibility may arise from the increased anisotropy, predisposing to unidirectional conduction block and reentry, even though the exact mechanism is debated. Another possible mechanism is that the abrupt excitation spread from poorly coupled into well coupled tissue may facilitate conduction block via a source-sink mismatch and assist in the generation of reentry.

ATP depletion as cause for Cx43 dephosphorylation.

The rapid regional changes in Cx43 phosphorylation in myofilament Ca²⁺ sensitized hearts and the simultaneous AMPK activation are a striking result of this study. It is well established that ATP depletion is a mechanism that can cause rapid Cx43 dephosphorylation: Metabolic inhibition is frequently utilized experimentally to induce Cx43 dephosphorylation and it reduces gap junctional communication in cortical astrocytes. Beardslee et al provided the first evidence for Cx43-P0 accumulation in the intact perfused heart during global ischemia. The most direct evidence that ATP depletion is the upstream requirement for Cx43 dephosphorylation was later provided by Turner et al. They dissected the individual contributions of hypoxia, extracellular factors (acidosis, build-up of metabolites), glucose and
ATP depletion to dephosphorylation of Cx43. They found that Cx43 dephosphorylation closely mirrored fluctuations in cellular ATP levels, requiring >50% of basal ATP levels to maintain Cx43 phosphorylation state. How ATP levels mediate the effect on Cx43 phosphorylation has not been solved. Turner et al. however also provide evidence that pharmacological activation of AMPK does not lead to Cx43 dephosphorylation. This demonstrates that that these two events are not linked and that they are independent indicators of ATP depletion. AMPK phosphorylation primarily relies on AMP binding to cause a conformational change that then promotes increased phosphorylation of T172, but other pathways have been demonstrated. Recent evidence suggests that AMPK activity can be regulated receptor-dependent and dissociated from the energy charge of the cell, e.g. by hormones like adiponectin or oestrogen.53, 54 It is unclear though how such mechanisms would play a role in our study. Thus, the focal accumulation of Cx43-P0 and corresponding elevated levels of pAMPK found in this study both indicate that intracellular [ATP] levels are decreased.

Why is Cx43 dephosphorylation focal?

The focal nature of Cx43 dephosphorylation and AMPK activation indicates that in some areas “demand” exceeded “supply”, but we have not yet elucidated the origins of this mismatch. On one hand, the deficit may lie on the “supply” side and may be due to insufficient perfusion volume, while on the other hand the deficit may result from increased “demand” due to pathologically high energetic requirements of Ca2+ sensitized cardiac muscle. The positive inotropic effect conferred by myofilament Ca2+ sensitization will increase myosin ATPase activity and thereby proportionally increase energy demand.14, 55 Increased heart rates can be expected to further raise energy demand. Moreover, increased “tension cost” (higher energetic cost of force production) has been described for HCM sarcomeric mutations, including TnT mutations.56 It is, however, known that the racemic mixture EMD53998 (50% EMD57033) has no effect on tension cost and actually lowers tension cost in the presence of inorganic phosphate.57 How myofilament Ca2+ sensitivity may impact “supply” is less clear, but the negative lusitropic effect and increased extramural compression may have negative effects on perfusion. In the heart, in contrast to all other organs, coronary flow is slower during phases of contraction than during diastole and thus prolonging the duration of contraction would naturally impinge on coronary flow. Coronary perfusion also greatly relies on pressure waves and the largest is a “suction” wave generated by relaxation of the left ventricle, a critical driver of diastolic coronary blood flow.58 How these effects alone or in combination lead to energy deprivation in some regions and not others requires further studies, but the exact regional balance between raised demand and compromised supply may result in the observed phenotype. It is an intriguing feature of HCM that although the genetic mutation is expressed throughout the ventricle, fibrosis is often patchy and the hypertrophy asymmetrical or even focal.59, 60

Relevance for human disease.

There are important implications of this novel mechanism that extends beyond HCM patients and concerns all patients with increased myofilament Ca2+ sensitivity. For example, it is well documented that myofilament Ca2+ sensitivity increases in patients after myocardial infarction.61, 62 More mechanistic insights may also benefit HCM patients by improving risk stratification for arrhythmias, which is currently challenging and unreliable. Arrhythmia risk greatly varies between individual HCM mutation carriers, even between individuals with the same mutation and from the same family. The identification of new risk factors and how different risk factors may act synergistically to produce arrhythmias is clearly needed. Along the same lines, pharmacological strategies to prevent sudden death in HCM patients have not been very successful 63, 64 and comprehensive understanding about the underlying mechanisms may lead to the development of much needed new treatments.

This molecular mechanism will also inform our efforts to develop new positive inotropic drugs for the treatment of heart failure. One new compound that was recently tested in phase 2 clinical trials is
omecamtiv mecarbil, a myosin activator that prolongs systolic ejection time and increases stroke volume. The mechanism is promising, increasing the number of cross-bridges and enhancing contraction without effect on the contraction rate and myocardial oxygen consumption. However, at high serum concentrations ischemic episodes were triggered in a few healthy patients, potentially due to the shortening of the diastolic interval. More studies are needed.

Conclusions.

In this study we present evidence that myofilament Ca\(^{2+}\) sensitization can cause focal energy deprivation during stress. This pathway can be activated within minutes and may explain the occurrence of SCD in young HCM patients even before significant structural remodeling occurs. This strongly suggests that lowering myofilament Ca\(^{2+}\) sensitivity to control level may be a promising new strategy to prevent ventricular arrhythmias and SCD. The mouse model and tools used in this study present the unique opportunity to investigate in the future the underlying cause for the regional energy deficit, i.e. the contribution of “supply” and “demand” and test possible treatments.

Interestingly, the two properties that have been both independently proposed to constitute the critical impairment conferred by HCM sarcomeric mutations are A) increased myofilament Ca\(^{2+}\) sensitivity and B) increased energy cost of force production. As we demonstrate in this study, the pathological effect of increased myofilament Ca\(^{2+}\) sensitivity is linked to focal energy deprivation and this may at least in part unify both theories.

ACKNOWLEDGEMENT

Experiments were performed in part through the use of the VUMC Cell Imaging Shared Resource (supported by NIH grants CA68485, DK20593, DK58404, HD15052, DK59637 and EY08126). We are grateful to Melissa Ryan and Sung In Kim for expert technical assistance.

SOURCES OF FUNDING

This work was supported in part by the American Heart Association Scientist Development Grant 10SDG2640109 (to SH) and an Established Investigator Award 0840071N (to BCK) as well as by the US NIH grants HL88635 (to BCK) and HL71670 (to BCK and FJB).

DISCLOSURES

None.

REFERENCES

DOI: 10.1161/CIRCRESAHA.113.301055

FIGURE LEGENDS

Fig. 1: Isoproterenol (Iso) injection in vivo induces ventricular arrhythmias, slowed ventricular depolarization and is associated with reduced expression of the gap junction protein Cx43 in TnT-I79N mice. (A) Representative examples for a premature ventricular contraction (PVC) and ventricular tachycardia (VT). Summary data are presented in (B), n=16 each. (C) QRS duration was prolonged within a few minutes after Iso injection in TnT-I79N, but not TnT-WT mice. (D) Typical Western blot pattern for anti-Cx43 (isoforms P2, P1, P0 indicated) after Iso treatment, (E) Total expression of Cx43 and (F) P0/P2 isoform ratio analyzed by Western blot. N numbers are indicated in columns and are the same for (E) and (F). * p≤0.05 vs WT

Fig. 2: Isolated TnT-I79N hearts exhibit QRS prolongation and slower transverse conduction velocity (CVT). (A) QRS duration determined from volume conducted ECG recordings during brief pacing interruptions (pacing protocol as shown in Supplemental Fig. I); n = 6-19. QRS prolongation was observed in TnT-I79N, but not in TnT-WT and was prevented by blebbistatin (BLEB 3 µM, n=3-18). (C) Longitudinal (fast, CVL) and CVT (slow) conduction velocity and (D) anisotropy ratio in control (WT/NTG) and I79N determined as illustrated in (B). No difference was observed between TnT-WT and NTG mice and data were pooled. N numbers are indicated in columns and are the same for (C) and (D). * p≤0.05; (A) * p≤0.05 vs WT, # p≤0.05 vs I79N

Fig. 3: Rapid pacing induces changes in connexin43 (Cx43) protein expression, solubility and isoform distribution in TnT-I79N isolated hearts (pacing protocol see Supplemental Fig. IA). (B) Fractions of soluble (non-junctional) and insoluble (junctional) Cx43 in NTG, WT and I79N. N numbers are indicated in columns. A representative Western blot is shown (A, α-tubulin (α-tub)). The same sample volume was loaded before centrifugation (total), after 500×g centrifugation (low spin) and after 14000×g centrifugation (soluble). (C) A representative Western blot (all samples from same blot, but intermediate lanes were deleted) of WT and I79N samples before and after pacing. The different Cx43 isoforms are indicated (P2, P1, P0). (D) Summary data for Cx43 expression and (E) Summary data for the ratio of P0/P2 isoform for WT and I79N before and after pacing and I79N after pacing in the presence of BLEB (3 µM). * p≤0.05

Fig. 4: Regional accumulation of dephosphorylated Cx43 isoform P0 in TnT-I79N after pacing. This is not observed in TnT-WT, in TnT-I79N before pacing and is prevented by BLEB. Anti-Cx43 (green) and anti-Cx43-P0 (red) staining of 179N heart sections before (A) and after pacing (B, two examples are shown for 179N after pacing). The scale bar length is 100 µm. (C) Summary data for integrated density (mean intensity x area (pixel)) of Cx43 (N numbers are indicated in columns and are the same for both graphs). See Supplemental Fig. III for examples of anti-Cx43 staining (green) only for all groups. (D) Summary data for the average ratio of Cx43/Cx43-P0 in all groups (C) * p≤0.05

Fig. 5: Regional accumulation of Cx43-P0 observed in I79N after Iso injection in vivo and after treatment of isolated control hearts with the Ca²⁺ sensitizer EMD57033 (EMD, 3 µM). (A) Anti-Cx43 (green) and anti-Cx43-P0 (red) staining of 179N heart sections before (A) and after treatment of isolated hearts with the Ca²⁺ sensitizer EMD57033 (EMD, 3 µM). (B) Summary data for integrated density (mean intensity x area (pixel)) of Cx43 and (C) ratio of Cx43-P0/Cx43. (D) Examples of immunostained tissue from isolated NTG hearts treated with VEH or EMD after rapid pacing. (E+F) Summary data for EMD experiments (for pacing protocol see Supplemental Fig. IA). The scale bar length is 100 µm in all images. * p≤0.05 vs WT

Fig. 6: Activated AMP-kinase (pAMPK) in areas with dephosphorylated Cx43-P0 accumulation. (A+B) Western blot analysis of αAMP-K expression and phosphorylation at threonine 172 (=activation). Representative western blots (A, white line indicates where intermediate lanes were deleted) and summary data (B)). 21 min of global ischemia was included as a positive control. (C) Representative
examples showing activated pAMPK –T172 (“green”) in the same regions where Cx43-P0 accumulation (“red”) is observed (TnT-I79N, bottom first and second and NTG+EMD, top forth). Cx43-P0 is more uniformly observed after global ischemia (bottom forth). The scale bar indicates 100 µm. * p≤0.05 as indicated.

Fig. 7: Reduced gap junctional coupling assessed by modified scrape loading. (A,D,G) Representative confocal images of Lucifer yellow (LY, yellow) spread after needle puncture in TnT hearts after pacing. (B,E,H) Corresponding images of non-gap junction permeable Tetramethylrhodamine dextran (TMR, green) that was simultaneously injected. (C, F, J) Composite image of LY, TMR and Cx43-P0 (red). The scale bar length is 100 µm. (K) Summary data of LY spread analysis from 15 sites in TnT-WT (3 hearts) and 17 sites in TnT-I79N hearts (4 hearts). For TnT-I79N only sites were analyzed that were clearly classified as Cx43-P0 negative (I79N P0 neg, n=9) or showed clear Cx43-P0 accumulation along at least two sides (I79N P0 pos, n=8). Dye spread was analyzed along the fiber (longitudinal) or across the fiber (transverse). * p≤0.05 vs. as indicated.
Novelty and Significance

What Is Known?

- Increased affinity of myofilaments to Ca\(^{2+}\) is frequently found in inherited and acquired diseases associated with ventricular arrhythmias and sudden cardiac death.

- Myofilament Ca\(^{2+}\) sensitization has been shown to cause regional slowing of conduction velocity (CV) and reentrant arrhythmias during stress.

- Gap junctions are intercellular channels important to electrically synchronize cells and to facilitate impulse propagation.

- Phosphorylation of Connexin 43 (Cx43), the major gap junction protein in cardiac ventricle, regulates intercellular coupling and is sensitive to metabolic changes.

What New Information Does This Article Contribute?

- Hearts with increased myofilament Ca\(^{2+}\) sensitivity develop areas of energy deprivation during stress within minutes.

- In energy deprived regions, intercellular uncoupling is reduced to a degree that likely affects impulse propagation and may contribute to conduction slowing across the fiber.

- Decreasing myofilament Ca\(^{2+}\) sensitivity using the contractile uncoupler blebbistatin prevented the focal energy deprivation, propagation slowing and arrhythmias.

Increased sensitivity of the myofilaments to Ca\(^{2+}\) has been linked to increased arrhythmia susceptibility and may contribute to sudden cardiac death. The present study aimed to determine how myofilament Ca\(^{2+}\) sensitization generates a myocardial substrate that promotes reentry arrhythmias. We Ca\(^{2+}\) sensitized myofilaments in mice either by expressing a mutant cardiac troponinT or treatment with a Ca\(^{2+}\) sensitizing drug, EMD57033, and in reverse de-sensitized myofilaments using blebbistatin. When hearts were stressed, reentry arrhythmias were observed after a few minutes delay. By measuring Cx43 and AMPK phosphorylation sensitive to cellular ATP levels, we identified myocardial regions of energy deprivation that developed within minutes only in Ca\(^{2+}\) sensitized hearts. In the same regions intercellular coupling via gap junctions is reduced to a degree that is likely to slow excitation spread. This can be predicted to lead to CV heterogeneity, consistent with previously observed regional CV slowing, a very proarrhythmic state. These results provide new mechanistic insights into the genesis of arrhythmias that could facilitate the development of targeted new treatments to prevent arrhythmias.
Fig. 1

A ECG
\[\downarrow \text{PVC} \]
\[\downarrow \text{VT start} \]
\[100 \text{ ms} \]

B Arrhythmias

\[\frac{\% \text{ occurrence}}{\text{WT} \quad \text{I79N}} \]
\[\text{WT} \quad \text{I79N} \]

C QRS prolongation

\[\text{QRS duration (ms)} \]
\[0 \quad 2 \quad 5 \quad 10 \quad 15 \]

D Western blot

\[\text{After Iso} \quad \text{Connexin 43} \]

E After Iso

\[\text{Cx43 expression in \%} \]
\[7 \quad 6 \quad * \]

F After Iso

\[\text{ratio P0/P2 Cx43 isoform} \]
\[0.32 \quad 0.24 \quad * \]
Fig. 2

A) QRS prolongation

B) Optical mapping

C) Optical mapping

D) Ratio fast/slow CV

WT/NTG WT/NTG+BLEB I79N I79N+BLEB
Fig. 3

A

B

C

D

E

For Circulation Research Peer Review. Do not distribute. Destroy after use.

by guest on September 23, 2017 http://circres.ahajournals.org/ Downloaded from
Fig. 4 Immunostaining

A Before pacing B After pacing

WT WT WT+BLEB

I79N I79N I79N

I79N+BLEB

C before pacing after pacing *

D ratio P0/Cx43 (mean x area) *

WT WT+BLEB I79N I79N+BLEB
Fig. 5

After Iso injection in vivo

A

WT
I79N
I79N

B

Cx43 (mean x area)

C

ratio PI/Cx43 (mean x area)

WT
I79N

After pacing

D

VEH
EMD
EMD

E

F

Cx43 (mean x area)

ratio PI/Cx43 (mean x area)

VEH
EMD

*
Fig. 6

A

![Western blot images showing AMP-K and AMP-K -T172 expression with and without pacing for WT, I79N, I79N + BLEB, I79N + Ischemia, NTG, and EMD.]

B

![Bar graph showing AMP-Kα expression and T172 phosphorylation before and after pacing.](#)

C

Immunostaining after pacing

- **WT**
- **WT + BLEB**
- **NTG**
- **NTG + EMD**

- **I79N**
- **I79N + BLEB**
- **Ischemia**
Fig. 7

After pacing

A WT
B
C
D I79N P0 neg
E
F
G I79N P0 pos
H
I

LY
TMR
LY, TMR, Cx43-P0

K

LYspread (um)

longitudinal transverse

WT
I79N P0 negative
I79N P0 positive

*
Focal Energy Deprivation Underlies Arrhythmia Susceptibility in Mice with Calcium-Sensitized Myofilaments
Sabine S. Huke, Raghav Venkataraman, Michela Faggioni, Sirish C Bennuri, Hyun Seok Hwang, Franz Josef Baudenbacher and Bjorn C. Knollmann

Circ Res. published online March 26, 2013; Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2013/03/26/CIRCRESAHA.113.301055

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2013/03/26/CIRCRESAHA.113.301055.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

Mouse models and Drugs

All animal procedures were approved by the Animal Care and Use Committee of Vanderbilt University and conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996).

The generation of all transgenic mouse lines expressing human troponin T (TnT-WT (line 3)) or mutant TnT (TnT-I79N (line 8)) has been described previously. A total of 232 age-matched mice (9-14 weeks old) of both genders were used for experiments. All lines had been backcrossed for >10 generations into B6SJLF1/J strain and were bred in-house while continuing to use female B6SJLF1/J breeder mice obtained from Jackson laboratories (stock# 100012).

Non-transgenic littermates (NTG) were used for experiments with EMD57033 (3 mmol/L stock solution in DMSO; a generous gift of MERCK KGaA, Darmstadt, Germany). Phosphodiesterase inhibition, often a problem with myofilament Ca\(^{2+}\) sensitizing compounds, is not observed at the concentration of 3 \(\mu\)mol/L used here. (-)-Blebbistatin (BLEB) was purchased from Sigma, kept as 30 mmol/L stock solution in DMSO and protected from light. BLEB is an inhibitor of the actin-myosin interaction without any effects on action potential duration. Effects of the TnT-I79N mutation, EMD and BLEB on myofilament Ca\(^{2+}\) sensitivity were published previously.

Isolated Heart Perfusion / Volume conducted ECG

Hearts were excised after mice were deeply anesthetized with 1.2% Avertin (30 ml/kg) or 3-5% Isoflurane in 100% O\(_2\) and the aorta was cannulated for retrograde perfusion at a constant pressure of 70 mm Hg as described. The tyrode solution used for perfusion contained in mmol/L: NaCl 139, KCl 4, NaHCO\(_3\) 14, NaH\(_2\)PO\(_4\) 1.2, MgCl\(_2\) 1, CaCl\(_2\) 1.5, Glucose 10, S-propanolol 0.0002. Tyrode solution was filtered before use and oxygenated with carbogen (95% O\(_2\)/5% CO\(_2\)) to achieve pH 7.4. Hearts were lowered into a warm bath and volume conducted
ECGs recorded using two silver/silver chloride wire electrodes and a ground lead. ECG was recorded using a custom built pre-amplifier and amplifiers connected to a PowerLab station (ADI instruments) and LabChart5 software. Unless described otherwise, a two-prong platinum pacing wire was inserted near the apex into the left ventricle and hearts paced according to the protocol shown in Fig. I. Pacing was applied via an isolated stimulator connected to a PowerLab (AD instruments) and controlled by LabChart5 software. Stimulus duration was 2.5 ms and current was set to 30% above threshold. When applicable, EMD or 0.1% DMSO was added fresh to the perfusion buffer via a syringe pump either to the bubble trap reservoir or heating coil directly above the heart.

Surface ECG
Mice were anesthetized with 1.2% Avertin (30 ml/kg, 2,2,2-tribromoethanol/ tertiary amyl alcohol) and placed in prone position on a warm surface essentially as previously published. 24-gauge electrodes were inserted subcutaneously into all four forelimbs and connected to ECG leads. ECG (lead I and II) was recorded using amplifiers connected to a PowerLab station (AD instruments) and LabChart5 software. After a stable baseline was obtained, isoproterenol (Isuprel, 1.5 mg/kg) was injected i.p. and the ECG recordings continued for 12 min. Afterwards the animal was briefly subjected to 3% Isoflurane in 100% oxygen via nose-cone until loss of foot reflex, the heart harvested and rapidly processed.

ECG Analysis
The entire protocol was evaluated for the presence of ventricular arrhythmias from digitally stored files by the same investigator blinded to the treatment and/or genotype. Heart rate and QRS interval duration were determined by averaging 3 consecutive beats during sinus rhythm (in isolated paced hearts during short pacing breaks when pacing frequency was switched or pacing briefly stopped). Since mice do not show a flat ST-segment like humans to determine the
QRS duration, the S-peak was used. Traces were then examined for the presence of premature ventricular contractions (PVC) and ventricular tachycardia (VT; 3+ consecutive beats). Manual analysis and semi-automatic analysis using a built-in algorithm of LabChart7 software were compared and results closely matched.

Optical mapping

Hearts were stained with di-4-ANEPPS (Invitrogen, 0.5 mg/ml in DMSO) slowly injected through a port into the bubble trap above the perfusion cannula and fluorescence was excited by a diode-pumped, solid-state laser (Verdi, Coherent, CA) at a wavelength of 532 nm delivered to the heart via optical fibers. The left ventricle was stimulated in the center of the field of view with a platinum pacing electrode (0.1-1 mA, 2 ms duration, 10 Hz). To prevent tissue damage at the contact site, stimulation via this electrode was limited to 3 min. Images were recorded with a high-speed CCD camera (14-bit, 80x80 pixels, 1000 fps, RedShirt Imaging) equipped with a 52 mm standard lens and the emitted light passed through a high pass filter. The imaging area was adjusted and typically about 12×12 mm. Custom developed “C”-based software was used to control data acquisition, stimulus timing and laser illumination as described. Fast (longitudinal) and slow (lateral) CVs were identified by plotting local CVs against orientation. Local CVs were calculated after applying a Gaussian 3x3 spatial filter and 3 ms moving average temporal filter. Isochronal maps were computed by a custom Matlab-based program and activation times plotted versus distance from the center for each angle, plotted and the two fast and slow CVs averaged. No assumptions about the fiber orientation were necessary. Motion artifacts did not play a significant role, because the activation is fast and precedes contraction.

Sample Fractionation/Homogenization

Heart samples for protein analysis had been flash frozen and stored at -80°C. Samples were fractionated following a modified protocol according to Smyth et al. Each heart was pulverized
in a metal mortar cooled in liquid N\textsubscript{2} (Bessman tissue pulverizer) and transferred into a 2 ml Dounce homogenizer flask. Each sample was homogenized with the same number of strokes in 15 vol of homogenization buffer containing in mmol/L: Tris 50, Triton-X 100 1%, sodium fluoride 10, sodium-ortho-vanadate 5, sodium pyrophosphate 1, β-glycerophosphate 10, pH 7.5 with protease inhibitors (Sigma, P8340) added fresh before use. Afterwards homogenates were agitated for 2 hrs at 4°C. SDS was added to a small aliquot to a final concentration of 1% and samples flash frozen (= total). The remaining sample was centrifuged at 500×g for 10 min at 4°C and an aliquot of the supernatant supplemented with SDS and flash frozen (= low spin). The remaining supernatant was transferred into a new tube and centrifuged at 7000×g for 20 min at 4°C. One last aliquot was supplemented with SDS and flash frozen (= soluble). Protein concentration was determined according to Lowry.

Western Blotting

SDS polyacrylamid gels according to Sambrook et al. 10 were made fresh before electrophoresis essentially as described before.11-13 Samples were diluted in homogenization buffer to achieve the same protein concentration, mixed with one volume of Laemmli sample buffer (BioRad 161-0737) containing 5% beta-mercaptoethanol and 40 mmol/L ditheiothreitol and heated to 55°C for 5 minutes. Proteins were transferred overnight to nitrocellulose (0.45 µm pore size, BioRad) and membranes incubated in 6% fat free dry milk in Tris-buffered saline containing 0.2% Tween20. The following antibodies were applied in Odyssey Blocking Buffer (LICOR Biosciences, NE): anti-Connexin43 (SIGMA, C6219 polyclonal rabbit), anti-alpha-tubulin (Abcam ab7291 mouse monoclonal), anti-AMP-kinase alpha (Cell Signaling 2603 (23A3) rabbit monoclonal) and anti-phospho Thr 172 AMP-kinase (Cell Signaling 2535 (40H9) rabbit monoclonal). Secondary fluorescent antibodies recognizing rabbit (IRDye 800 conjugated anti-rabbit IgG) or mouse IgG (IRDye 700DX conjugated anti-mouse IgG, both Rockland) were
detected with a LICOR Odyssey near-infrared scanner and signals were analyzed using Odyssey 3.0 software.

Immunohistochemistry

Heart tissue was embedded horizontally in OCT and flash frozen in liquid N$_2$ cooled 2-methylbutane. 10-16 µm thick frozen cross-sections (frontal, four chamber view) were fixed in 4% formaldehyde for 30 min and then washed in phosphate buffered solution (PBS) 3 times for 10 min. After pre-incubation in PBS containing 5% goat serum and 0.4 % Triton X-100, primary antibodies were incubated overnight at 4°C. In addition to the antibodies listed under “Western Blotting”, a mouse monoclonal anti-connexin 43 antibody specific for the P0 isoform was used (Invitrogen 13-8300). This Cx43-P0 antibody was directly labeled with AlexaFluor 488 using the APEX kit according to the manufacturer’s instructions (Invitrogen A10468) or purchased pre-labeled (Invitrogen, 13-8388). The secondary anti-rabbit antibody (Alexa Fluor 568 Goat Anti-Rabbit IgG, Invitrogen) was applied in PBS containing 0.4 % Triton X-100 for 1 hr at RT. Sections were mounted in ProLong Gold antifade reagent (Invitrogen) and cured for 24 hrs before coverslip edges were sealed with nail polish.

Imaging and Image Analysis

Two channel composite images of immunostained sections were acquired using a Zeiss LSM 510 inverted confocal scanning microscope (part of the VUMC Cell Imaging Shared Resource (supported by NIH grants CA68485, DK20593, DK58404, HD15052, DK59637 and EY08126)) by an investigator blinded to the treatment and genotype of the sample. Settings to acquire images were identical within sets of samples and only minor adjustments were made between sets. At least five images (0.45x0.45 mm) per section were acquired from all regions of the left ventricle (LV free wall, apex and septum) while avoiding areas containing large vessels and regions where the pacing wire was attached. Image sampling was stratified that if areas with
Cx43-P0 accumulation were found after visual inspection, these areas were included during image acquisition. This reduced the number of images necessary to document these regions (“patches”) and prevented false negative results. Quantitative analysis was performed using ImageJ 1.43 (NIH) using only raw images as illustrated in Fig. II. Background signal was negligible in buffer perfused hearts, but was subtracted from non-perfused hearts. Signal area and signal integrated density both normalized to the area covered by tissue were determined for Cx43 and Cx43-P0 for each image by “thresholding” and conversion into binary images.

Lucifer Yellow Dye transfer (modified scrape loading)

Gap junctional function was assessed essentially as described previously. Isolated perfused hearts were subjected to a standardized pacing protocol (Fig. IA) and then washed for 3 min with Ca\(^{2+}\)-free Dulbecco’s PBS. The left ventricle was punctured at multiple sites with a 27-gauge needle and a solution injected containing 0.5% Lucifer yellow DH (LY) and 0.3% Tetramethylrhodamine dextran (TMR, MW 10.000, both Invitrogen) in 120 mM LiCl. LY will diffuse through gap junctions, while TMR is not permeable. After 15 min, the left ventricle was fixed in 4% formaldehyde for 30 min, embedded in OCT and flash frozen in liquid N\(_2\) cooled 2-methylbutane. 18 µm sections were immunostained using Cx43-P0 specific antibody and analyzed using a Zeiss LSM 510 inverted confocal scanning microscope. For each needle puncture, three images were obtained detecting LY, TMR and Cx43-P0. Dye spread distance was analyzed using ImageJ, measuring the distance between the border of the TMR signal to the border of the LY signal. Four measurements per puncture were obtained, two for the maximal transverse spread and two for the maximal longitudinal spread on each side, which were then averaged.
Statistics

GraphPad Prism 5.0 (GraphPad Software Inc.) or tools from the website http://vassarstats.net/ were used for statistical analysis. Analysis was performed using unpaired two-tailed t-test with Welch’s correction, one-way ANOVA followed by Tukey’s multiple comparisons test, repeated measures ANOVA (mixed model) or Fisher exact probability test as appropriate. All values are mean ± SEM. P values of less than 0.05 were considered significant.
REFERENCES

Fig. I: Rapid pacing induces VT in Ca2+ sensitized isolated perfused hearts. (A) Experimental pacing protocol to generate samples for all biochemical assays. All isolated perfused hearts were processed (e.g. frozen) after 21 min of perfusion time. ECG was monitored during all experiments and traces analyzed for occurrence of VT. (B) The incidence of VT during pacing ("arrhythmia survival") of isolated hearts. VT was not observed in TnT-WT or NTG and there were also no arrhythmias in TnT-I79N hearts treated with BLEB, but in 63\% of TnT-I79N hearts and 52\% of EMD treated hearts. (C) Representative ECG trace of a TnT-I79N heart with VT. VT induction in this heart occurred during pacing at 18 Hz.
Fig. II: Quantitative analysis of confocal images. All images were recorded with a Zeiss 510 confocal scanning microscope and analyzed using ImageJ 1.43 (NIH). Each channel was converted into a binary image using the “threshold” function (fixed threshold for each experimental set). The integrated signal density per channel is then calculated from the number of pixel sand mean intensity per pixel determined using the histogram function and normalized to the area occupied by cells.
Fig. III: Effect of pacing on Cx43 (“green”). Shown is Cx43 staining only. Representative images for WT and I79N after 3 min of perfusion without pacing (top) and after pacing (bottom) including I79N treated with BLEB. Pacing protocol as shown in Fig. S1A. Summary data are shown in Fig. 3.
Fig. IV: Slowed lateral CV, QRS prolongation and arrhythmias in EMD treated control hearts. Longitudinal (fast) and transverse (slow) conduction velocity (A) and anisotropy ratio (B) in control (vehicle, VEH, 0.1% DMSO) and hearts treated with EMD. N numbers are indicated in columns. (C) Abnormal isochronal map observed after a few minutes of perfusion with EMD. (D) QRS prolongation observed in NTG hearts after perfusion with EMD. QRS duration was measured from sinus beats during short pacing breaks. EMD (3 µM) or vehicle (VEH, DMSO 0.1% final) were added after 5 min of equilibration (as indicated by arrow).