Diastolic Spontaneous Calcium Release from the Sarcoplasmic Reticulum Increases Beat-to-Beat Variability of Repolarization in Canine Ventricular Myocytes after β-Adrenergic Stimulation

Daniel M. Johnson1, Jordi Heijman1,2, Elizabeth F. Bode3, David J. Greensmith3, Henk van der Linde4, Najah Abi-Gerges5, David A. Eisner3, Andrew W. Trafford1, and Paul G.A. Volders1

1 Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre; Maastricht, The Netherlands, 2 Department of Knowledge Engineering, Maastricht University; Maastricht, The Netherlands, 3 Unit of Cardiac Physiology, University of Manchester, Manchester, UK, 4 Center of Excellence for Cardiovascular Safety Research & Mechanistic Pharmacology, Janssen Research & Development, Beerse, Belgium, and 5 Department of Safety Pharmacology, Safety Assessment UK, AstraZeneca R&D, Alderley Park, UK.

D.M.J. and J.H. contributed equally to this work.

Running title: Spontaneous Ca2+ Release and Repolarization

Subject codes:
[132] Arrhythmias-basic studies
[136] Calcium cycling/excitation-contraction coupling
[152] Ion channels/membrane transport
[157] Quantitative modeling

Address correspondence to:
Dr. Paul G.A. Volders
Department of Cardiology
Cardiovascular Research Institute Maastricht
Maastricht University Medical Centre
P.O. Box 5800
6202 AZ Maastricht
The Netherlands
Tel: +31 43 3875094
Fax: +31 43 3875104
p.volders@maastrichtuniversity.nl

In October 2012, the average time from submission to first decision for all original research papers submitted to Circulation Research was 12.5 days

DOI: 10.1161/CIRCRESAHA.112.275735
ABSTRACT

Rationale: Spontaneous Ca\(^{2+}\) release from the sarcoplasmic reticulum (SCR) can cause delayed afterdepolarizations (DADs) and triggered activity, contributing to arrhythmogenesis during \(\beta\)-adrenergic stimulation. Excessive beat-to-beat variability of repolarization duration (BVR) is a proarrhythmic marker. Previous research has shown that BVR is increased during intense \(\beta\)-adrenergic stimulation leading to SCR.

Objective: We aimed to determine ionic mechanisms controlling BVR under these conditions.

Methods & Results: Membrane potentials and cell shortening or Ca\(^{2+}\) transients were recorded from isolated canine left-ventricular myocytes in the presence of isoproterenol. Action-potential (AP) durations following DADs were significantly prolonged. Addition of \(I_{Ks}\) blockade led to further AP prolongation after SCR and this strongly correlated with exaggerated BVR. Suppressing SCR via inhibition of ryanodine receptors, CaMKII inhibition, or by using Mg\(^{2+}\) or flecainide, eliminated DADs and decreased BVR independent of effects on AP duration. Computational analyses and voltage-clamp experiments measuring \(I_{CaL}\) with and without prior SCR indicated that \(I_{CaL}\) was increased during Ca\(^{2+}\)-induced Ca\(^{2+}\) release after SCR, and this contributes to AP prolongation. Prolongation of QT, \(T_{peak}-T_{end}\) intervals and left-ventricular monophasic AP duration of beats following aftercontractions occurred prior to torsades de pointes in an in-vivo dog model of drug-induced long-QT1 syndrome.

Conclusions: SCR contributes to increased BVR by interspersed prolongation of AP duration, which is exacerbated during \(I_{Ks}\) blockade. Attenuation of Ca\(^{2+}\)-induced Ca\(^{2+}\) release by SCR underlies AP prolongation via increased \(I_{CaL}\). These data provide novel insights into arrhythmogenic mechanisms during \(\beta\)-adrenergic stimulation besides triggered activity and illustrate the importance of \(I_{Ks}\) function in preventing excessive BVR.

Keywords: Action potentials; arrhythmia; calcium; adrenergic receptors; beta; sarcoplasmic reticulum
Non-standard Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Action potential</td>
</tr>
<tr>
<td>APD</td>
<td>Action-potential duration</td>
</tr>
<tr>
<td>βAR</td>
<td>β-adrenergic receptor</td>
</tr>
<tr>
<td>BVR</td>
<td>Beat-to-beat variability of repolarization duration</td>
</tr>
<tr>
<td>cAMP</td>
<td>3′-5′ cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CaT</td>
<td>Ca$^{2+}$ transient</td>
</tr>
<tr>
<td>CDI</td>
<td>Ca$^{2+}$-dependent inactivation</td>
</tr>
<tr>
<td>CICR</td>
<td>Ca$^{2+}$-induced Ca$^{2+}$ release</td>
</tr>
<tr>
<td>CL</td>
<td>Cycle length</td>
</tr>
<tr>
<td>DAD</td>
<td>Delayed afterdepolarization</td>
</tr>
<tr>
<td>EAD</td>
<td>Early afterdepolarization</td>
</tr>
<tr>
<td>I$_{CICa}$</td>
<td>Ca$^{2+}$-activated Cl$^{-}$ current</td>
</tr>
<tr>
<td>I$_{CaL}$</td>
<td>L-type Ca$^{2+}$ current</td>
</tr>
<tr>
<td>I$_{Kr}$</td>
<td>Rapidly-activating delayed-rectifier K$^{+}$ current</td>
</tr>
<tr>
<td>I$_{Ks}$</td>
<td>Slowly-activating delayed-rectifier K$^{+}$ current</td>
</tr>
<tr>
<td>ISO</td>
<td>Isoproterenol</td>
</tr>
<tr>
<td>LQT1</td>
<td>Long-QT syndrome type 1</td>
</tr>
<tr>
<td>LV MAP</td>
<td>Left-ventricular monophasic action potential</td>
</tr>
<tr>
<td>LVP</td>
<td>Left-ventricular pressure</td>
</tr>
<tr>
<td>NCX</td>
<td>Na$^{+}$-Ca$^{2+}$ exchanger</td>
</tr>
<tr>
<td>RyR</td>
<td>Ryanodine receptor</td>
</tr>
<tr>
<td>SR</td>
<td>Sarcoplasmic reticulum</td>
</tr>
<tr>
<td>SCR</td>
<td>Spontaneous Ca$^{2+}$ release from the SR</td>
</tr>
<tr>
<td>TA</td>
<td>Triggered activity</td>
</tr>
<tr>
<td>Tdp</td>
<td>Torsades de pointes</td>
</tr>
<tr>
<td>VT</td>
<td>Ventricular tachycardia</td>
</tr>
</tbody>
</table>
INTRODUCTION

Enhanced cellular Ca\(^{2+}\) load, for example during β-adrenergic receptor (βAR) stimulation, results in augmentation of Ca\(^{2+}\) release from the sarcoplasmic reticulum (SR), larger Ca\(^{2+}\) transients (CaT), and enhanced contractile force.\(^1\) Under certain conditions Ca\(^{2+}\) load is increased beyond a certain threshold, leading to spontaneous Ca\(^{2+}\) release (SCR) from the SR during diastole.\(^2\) In turn, this diastolic leak causes a transient inward current (I\(_t\)), causing delayed afterdepolarizations (DADs), mainly due to activation of the electrogenic Na\(^+-\)Ca\(^{2+}\) exchanger (NCX), with the Ca\(^{2+}\)-activated Cl\(^-\) current (I\(_{ClCa}\)) contributing in some species.\(^3, 4\) Previous work has shown that both DADs and early afterdepolarizations (EADs) may share a common mechanism, at least during βAR stimulation and Ca\(^{2+}\) overload, namely SCR-induced currents.\(^5\) Both types of afterdepolarizations have been incriminated in the formation of ventricular tachycardia (VT), via triggered activity (TA) and/or by increasing dispersion of repolarization.\(^6\)

Beat-to-beat variability of repolarization duration (BVR) occurs as an apparently random alteration in repolarization duration, and can be observed at all levels, from the action potential (AP) of the single cardiac myocyte to the QT interval on the body surface.\(^7-9\) Exaggerated BVR has been reported to be a more reliable indicator of arrhythmogenic risk than repolarization prolongation per se, at least in several experimental VT models\(^10-12\) and in selected human subjects.\(^8, 13\)

Although BVR has been investigated in multiple studies, the mechanisms underlying this phenomenon at the single-cell level remain to be fully elucidated. Pharmacological interventions influencing ion channels that operate during the AP plateau can markedly alter BVR.\(^7, 14\) Despite the fact that inhibition of the slowly-activating delayed-rectifier K\(^+\) current (I\(_{Ks}\)) alone has minimal effects on both cellular AP duration (APD) and BVR,\(^14\) we have recently shown that during increased Ca\(^{2+}\) loading in myocytes subjected to blockade of I\(_{Ks}\) in combination with βAR stimulation, BVR is significantly enhanced, even before the occurrence of EADs and TA.\(^14\)

In the present study, we investigated the relationship between SCR and BVR using a combined experimental and computational approach in both canine ventricular myocytes and in-situ hearts subjected to βAR stimulation. We show that SCRs not only lead to I\(_t\) and DAD formation, but also to a prolonged duration of the following AP via increased L-type Ca\(^{2+}\) current (I\(_{CaL}\)), which in turn leads to increased BVR when analyzing multiple consecutive APs. Pharmacological interventions that inhibit SCR (either with reduced or preserved systolic contraction) prevent this SCR-associated AP prolongation and reduce BVR.

METHODS

This investigation conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). Animal handling was in accordance with the European Directive for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (86/609/EU). Full details of methods, solutions and interventions used are...
given in the online data supplement accompanying this article. A brief summary of the main aspects is given below.

Myocyte isolation and electrophysiology.
Canine left ventricular myocytes were isolated as previously described.\(^1\)\(^5\) Transmembrane APs were recorded at ~37 °C using high-resistance (30-60 MΩ) glass microelectrodes filled with 3 mol/L KCl. Myocyte contractions were recorded with a video edge motion detector.

Calcium measurement.
We used the perforated patch-clamp technique under current- or voltage-clamp control as previously described.\(^1\)\(^6\) Myocytes were stimulated to elicit APs (current clamp) or I_{CaL} (voltage clamp). Changes in intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_i\)) were measured using Fluo-3 or Fura-2 AM.\(^1\)\(^6\)

Computational analysis.
A recent model of the canine ventricular myocyte electrophysiology including βAR stimulation\(^1\)\(^7\) was extended with a method to induce diastolic SR Ca\(^{2+}\) release in one of two identical Ca\(^{2+}\) domains in a controlled fashion (Online Figures I-II). Simulations were performed in single cells as well as a one-dimensional homogeneous strand or two-dimensional tissue of electrically-coupled cells to determine the effects of diastolic Ca\(^{2+}\) release in the presence of electrotonic coupling.

In-vivo dog model of drug-induced Long-QT1 Syndrome.
Torsades de Pointes (TdP) arrhythmias were induced in an in-vivo dog model of long-QT1 (LQT1) syndrome, as previously described.\(^1\)\(^1\) ECG, left ventricular pressure (LVP) and left ventricular monophasic action potentials (LV MAPs) were recorded throughout the experiments and analyzed offline.

Data analysis and statistical comparisons.
APD was quantified at 90% repolarization. BVR was quantified as variability of APD using the formula Σ(|APD\(_i+1\) - APD\(_i\)|)/[nbeats×\(\sqrt{2}\)] for 30 consecutive APs in the absence of TA.\(^1\)\(^0\) DADs were detected with a semi-automated method using a custom software script (see online data supplement). Where applicable, data were reported as mean±standard error of the mean (SEM) of \(n\) experiments, and significance tested with either a t-test or 1-way ANOVA. Differences were considered statistically significant if \(P<0.05\).

RESULTS

DADs prolong subsequent APs and increase BVR.

Under baseline conditions, a small beat-to-beat APD variability was observed (Figure 1A, left panel). βAR stimulation with isoproterenol (ISO) shortened APD and enhanced contraction (Figure 1A; middle panel). In the majority of cells, 100 nmol/L ISO caused DADs during pacing at 1000 ms CL. APs following a DAD were prolonged, leading to increased BVR due to interspersed occurrence of normal and prolonged APs (Figure 1A; middle panel). Pharmacological inhibition of I_{Ks} by HMR1556 (500 nmol/L) in the presence of ISO further prolonged APD and increased BVR (Figure 1A; right panel). In separate experiments, Ca\(^{2+}\) transients were recorded together with APs after HMR1556 and ISO. HMR1556 alone
did not increase the Ca\(^{2+}\)-transient amplitude nor lead to any SCR events. The combination of HMR1556 and ISO, however, led to large increases in Ca\(^{2+}\) amplitude and SCR, as expected.\(^{18}\) APs following SCR were prolonged and had a reduced systolic Ca\(^{2+}\)-transient amplitude compared to those where no diastolic release preceded the AP, indicating reduced SR Ca\(^{2+}\) load at the start of the AP (Figure 1B), consistent with the reduced cell shortening following an aftercontraction (Figure 1A).

APD prolongation following a DAD was significantly more pronounced in the presence of ISO + HMR1556 compared to ISO alone at all CLs (e.g., 41±6 ms vs. 15±4 ms at CL = 1000 ms, \(P<0.05\), Figure 2A) and this coincided with a significant increase in BVR (17±2 ms vs. 7±1 ms; \(P<0.05\), Figure 2B). As such, HMR1556 was added in all subsequent experiments in the presence of ISO to maximize effects on APD, essentially creating a cellular model of drug-induced LQT1 syndrome.\(^{14}\) DADs showed typical rate-dependent properties, including increased amplitude and decreased AP-DAD coupling interval at shorter pacing CL, consistent with previous results.\(^{19}\) IKs blockade did not alter rate-dependent DAD properties (Online Figure III).

To determine whether DAD-like membrane-potential changes alone (i.e., without underlying alterations in intracellular Ca\(^{2+}\)) influenced the subsequent AP, current was injected to induce small alterations in the resting membrane potential (25-mV amplitude, 150-ms duration; Figure 2C top panel). There was no significant difference between APDs in the absence or presence of these diastolic pulses (Figure 2D), independent of the timing of the pulse (not shown). In contrast, when these cells were stimulated with HMR1556 + ISO, DADs occurred and subsequent APD was significantly prolonged (Figure 2C bottom panel), indicating that alterations in the subsequent APD were influenced by DAD-related events other than membrane-potential alterations per se.

Coupling between the occurrence of DADs and EADs during β-Adrenergic stimulation and IKs blockade.

In addition to DADs, EADs were observed. EADs occurred predominantly at 500-ms CL and exclusively in the presence of HMR1556 + ISO. We observed early aftercontractions preceding EAD upstrokes by 21±5 ms (Figure 3A,C and 5), consistent with the observations by Zhao et al. in rabbit ventricular myocytes challenged with ISO and the \(I_{CaL}\) agonist Bay K 8644,\(^{20}\) suggesting a role of SCR for EAD formation under these specific conditions.\(^{5}\) We quantified the occurrence of DADs in the beats preceding an EAD and found that DADs were significantly more likely to occur in the 2 beats directly preceding an EAD (53% and 95% of APs) compared to average DAD occurrence for all beats (34%; Figure 3A bottom panel). Figure 3B shows the responses during ISO alone.

Blockade of (spontaneous) SR Ca\(^{2+}\) release reduces BVR.

We sought to further investigate how eliminating SCR would affect APD and BVR. Blockade of the ryanodine receptor (RyR) with ryanodine eliminated DADs and led to a drastic reduction in BVR, despite leading to an increased APD (Figure 4A,B). APD prolongation under these conditions was not associated with any arrhythmogenic events. A drastic reduction in systolic contraction was also seen, as expected, indicating that blockade of RyRs was achieved effectively.

DOI: 10.1161/CIRCRESAHA.112.275735 6
Tetracaine reduces the open probability (P_o) of RyR leading to a decrease in the frequency of SCR in unstimulated rat ventricular myocytes and the abolishment of ISO-induced SCR in voltage-clamped rat ventricular myocytes. Similar to ryanodine, tetracaine led to an elimination of DADs in our experiments, and a reduction in BVR at all CLs. However, unlike ryanodine, cell shortening remained largely unaltered, indicating that systolic Ca^{2+} release was largely intact (Figure 4C,D).

To determine the effects of increasing the P_o of RyRs, as opposed to decreasing it, we used low concentrations of caffeine (maximally 500 µmol/L). Under these conditions the percentage of APs showing DADs was increased at all CLs. Interestingly, this led to a significant decrease in BVR compared to HMR1556 and ISO alone, since DADs occurred before every AP (Figure 5, right-most grey bars).

Several studies have shown that Ca^{2+}/CaMKII is an important signaling molecule affecting Ca^{2+}-induced Ca^{2+} release (CICR) and that its inhibition can be antiarrhythmic. Curran et al. demonstrated that SR Ca^{2+} leak during βAR stimulation is mediated by CaMKII. In our experiments, inhibition of calmodulin using W7 reduced DAD incidence in all cells (from 44% to 8% at 1000 ms CL, P<0.05) and completely abolished them in 3/7 cells. The decrease in DAD occurrence was paralleled by a decrease in BVR. Average APD was unaltered by W7, and systolic contractions remained intact. Application of the CaMKII inhibitor KN93 led to similar results (Figure 5, black bars).

Mg^{2+} has been shown to suppress both EADs and DADs in different models and is used clinically as a first-line agent against TdP. Increasing extracellular [Mg^{2+}] from 1 mmol/L to 5 mmol/L abolished DADs induced after HMR1556 and ISO in 4/7 cells. In the remaining 3 cells, DAD incidence was significantly reduced. A concomitant reduction in BVR was seen. APDs were not significantly altered, and although systolic contractions were slightly reduced compared to beats that did not show SCR events before Mg^{2+}, they remained stable, suggesting that the SR content remained constant (not shown). Similar results (albeit with reduced APD) were obtained with the class-IC antiarrhythmic agent flecainide (Figure 5, striped bars), which has been shown to be effective in preventing catecholaminergic polymorphic VT due to its effects on RyR and Na^{+} channels.

Increases in [Ca^{2+}]_o can reinstate SCR only when (residual) RyR function is available.

We hypothesized that increases in [Ca^{2+}]_o after interventions that reduced DAD occurrence would lead to recurrence of SCR, DADs and increase BVR. Therefore, we raised the [Ca^{2+}]_o from 1.8 mmol/L to 3.6 mmol/L after application of ryanodine, tetracaine, or W7. This led to a reinduction of DADs after tetracaine or W7, and a significant decrease of APD (Online Figure IV A-C). However, raising [Ca^{2+}]_o after ryanodine did not lead to DADs, nor did it alter BVR, indicating that RyR function is required for SCR and without this BVR cannot be altered. Interestingly, BVR was not significantly reincreased after W7 and high [Ca^{2+}]_o, whereas after tetracaine and high [Ca^{2+}]_o, it was, despite DADs being reinstated under both conditions (Online Figure IV B,C). In the presence of W7, APs following SCR were no longer prolonged (Online Figure IV C, inset). These data suggest that calmodulin inhibition has a direct effect on the coupling between SCR and APD, possibly via I_{CaL}.

DOI: 10.1161/CIRCRESAHA.112.275735 7
Reduced Ca$^{2+}$-dependent inactivation of I_{CaL} underlies APD prolongation after SCR.

We employed a computational model of the canine ventricular myocyte17 to further investigate the ionic basis of the coupling between SCR and APD prolongation. After pacing to steady state, a partial release of SR Ca$^{2+}$ was induced during diastole. After this release, APD was prolonged, consistent with experimental observations (Figure 6A; 1000-ms CL in the presence of ISO). The prolonged APD was associated with a decreased CaT, an increase in the sustained component of I_{CaL} and increased I_{Ks}. The increase in I_{Ks} was due to the increased plateau potential resulting from the larger I_{CaL} and counteracted the repolarization delay. As such, APD prolongation was significantly larger when I_{Ks} was inhibited (Figure 6B). An increase in plateau V_m was also observed in experimental recordings (maximum amplitude of plateau was 114±1 mV without prior DAD and 118±1 mV following DADs at 1000 ms CL in the presence of HMR1556 + ISO, $P<0.05$).

Several currents underlying the ventricular AP are modified by intracellular Ca$^{2+}$. To determine the relative contribution of each component, we used the model to selectively inhibit each current for one final beat at steady state following either a normal diastole or SCR. Inhibition of the main currents activated by SCR in the dog (I_{NaCa} and I_{ClCa}3, 29) only had a minor impact on the APD differences in the presence and absence of SCR (Figure 6C). In contrast, inhibition of I_{CaL} or RyR was able to significantly reduce DAD-provoked APD prolongation. More specifically, when only Ca$^{2+}$-dependent inactivation (CDI) of I_{CaL} was inhibited, APD after SCR was no longer prolonged compared to APD without prior SCR (Figure 6C). Further investigation showed any differences in APD in these conditions were due to ‘priming’ of CDI due to a transition of L-type Ca$^{2+}$ channels to the Ca$^{2+}$-dependent tier of the Markov model induced by the Ca$^{2+}$ that was released during the SCR, prior to activation of inhibition.

Combined, our data implicate reduced SR Ca$^{2+}$-release-dependent inactivation of I_{CaL} as the mechanism underlying APD prolongation after SCR. This prediction was confirmed under voltage-clamp conditions in native canine ventricular myocytes when the extracellular solution was modified to isolate I_{CaL} (Figure 7). During a voltage step to +10 mV from a holding potential of -80 mV a significant increase in the integral of I_{CaL} was observed after SCR: $\int I_{\text{CaL}} = 27.9\pm3.5$ nC vs 33.0±3.5 nC in the absence or presence of SCR, respectively ($P<0.05$).

Relation between aftercontractions, repolarization prolongation and dispersion, and arrhythmogenesis in the intact canine heart.

To evaluate whether the single-cell mechanisms described could affect arrhythmogenesis in-vivo, we employed a canine model of drug-induced LQT1. Application of a bolus of ISO during continuous HMR1556 infusion resulted in aftercontractions exclusively in the LVP signal prior to the development of ventricular premature beats and TdP (Figure 8A). In parallel with the occurrence of aftercontractions, we observed paradoxical QT prolongation during \(\beta\)-adrenergic heart-rate acceleration, resulting in a significant increase of the QT interval in the last sinus beats prior to the extrasystoles triggering TdP (Figure 8B). Similarly, LV MAP duration was significantly prolonged in these beats and a significant increase in T_{peak}-T_{end} interval was noted (Figure 8B), which could reflect an increased dispersion of repolarization. We focused on repolarization duration by comparing the beats preceding and following the first notable aftercontraction. QT, LV MAP and T_{peak}-T_{end} durations were significantly increased in the

DOI: 10.1161/CIRCRESAHA.112.275735 8
beat after the first aftercontraction, whereas the RR intervals were unchanged (Figure 8C). Furthermore, the $I_{\text{Ca,L}}$ inhibitor verapamil (0.4 mg/kg) prevented TdP induction by ISO during continuous HMR1556 infusion in 5/5 animals (Figure 8A), although some ventricular extrasystolic activity could still be observed (Online Figure VIII). Similar chronotropic responses were seen after ISO in the presence of verapamil but, in the absence of aftercontractions, QT, LV MAP and $T_{\text{peak}}-T_{\text{end}}$ prolongation were significantly smaller when compared to HMR1556 and ISO alone (Figure 8B). These data illustrate the role of Ca^{2+}-dependent regional repolarization prolongation for TdP induction in this model.

To further test the hypothesis that SCR at the single-myocyte level can contribute to the QT and $T_{\text{peak}}-T_{\text{end}}$ interval prolongation seen in-vivo, we performed computer simulations of both a homogeneous one-dimensional strand and a two-dimensional tissue of electrically-coupled myocytes. Consistent with our hypothesis, diastolic SR Ca^{2+} release increased repolarization duration and spatial dispersion of repolarization in both simulations (Figure 8D, Online Figures V-VI), and this effect was completely abolished by inhibition of $I_{\text{Ca,L}}$ CDI (Figure 8D, Online Figure VII).

DISCUSSION

In this study, we elucidated the relationship between SCR, AP prolongation and BVR in canine LV myocytes and provide arguments for its arrhythmogenic significance in the in-vivo beating heart. Our data indicate that under conditions of ISO-induced Ca^{2+} loading, SCR can occur over a wide range of pacing CLs and that APD following SCR is significantly prolonged. Reduced CICR-dependent inactivation of $I_{\text{Ca,L}}$ after SCR is involved in this AP prolongation. The increase in BVR was strongly dependent on the degree of APD prolongation after SCR. In anesthetized dogs subjected to similar conditions, we observed the occurrence of mounting aftercontractions in parallel with QT, $T_{\text{peak}}-T_{\text{end}}$ and LV MAP prolongation just prior to TdP, which could be prevented by inhibition of $I_{\text{Ca,L}}$ and Ca^{2+} load with verapamil. SCR-related repolarization prolongation was reproduced in multicellular computer simulations. Our data align with recent data showing that local βAR stimulation synchronizes SCR in the normal rabbit heart, leading to Ca^{2+}-mediated focal arrhythmia. In the setting of exaggerated spatio-temporal dispersion of repolarization such focal activity may trigger TdP, as actually observed in the canine model of drug-induced LQT1 syndrome and βAR stimulation (see also 11).

Previous cellular studies have shown that large CaTs result in abbreviation of APD, whereas a small CaT after SR Ca^{2+} depletion corresponds to prolonged APD. In agreement, we find substantial APD prolongation after application of ryanodine due to reduced CDI of $I_{\text{Ca,L}}$. Furthermore, $I_{\text{Ca,L}}$ CDI is sensitive to (partial) SR Ca^{2+} unloading by SCR. These changes in CDI are sufficient to modulate APD on a beat-to-beat basis over a wide range of CLs. Interestingly, Spencer and Sham reported the opposite effect in guinea-pig ventricular myocytes, perhaps due to species differences in the balance of NCX and $I_{\text{Ca,L}}$. In the present study, we used Ca^{2+}-sensitive fluorescent probes and cell shortening as Ca^{2+} indicators. Both measures reflect cytosolic Ca^{2+} levels, which are substantially different from the subsarcolemmal [Ca^{2+}] influencing Ca^{2+}-activated membrane currents.
The importance of I_{Ks} blockade.

Burashnikov and Antzelevitch demonstrated that I_{Ks} block alone was insufficient to induce DADs or modulate repolarization heterogeneity in canine transmural ventricular tissues. However, it amplified the effects of adrenergic stimuli. At the myocyte level, we have previously shown that I_{Ks} blockade (via KCNQ1 inhibition) has minimal effects on APD and BVR under baseline conditions. During βAR stimulation and I_{Ks} blockade, BVR is significantly increased and this is at least partly dependent on $[Ca^{2+}]_i$. Here we extend this by determining an important role for CDI of I_{CaL} at least in the presence of SCR. Under baseline conditions, I_{Kr} is the main repolarizing current in canine ventricular myocytes and inhibition of I_{Ks} can cause EADs due to APD prolongation and subsequent I_{CaL} reactivation. During additional βAR stimulation, the balance of the repolarization reserve is altered and the role of I_{Ks} becomes more prominent; enhanced I_{Ks} prevents repolarization instability and EAD generation by other proarrhythmic mechanisms (e.g., I_{Kr} inhibition or augmentation of late I_{Na}). In contrast, inhibition of I_{Ks} during βAR stimulation leads to APD prolongation, increased BVR and EADs, indicating that under our conditions with βAR stimulation, I_{Ks} is a major contributor to repolarization.

Barandi et al. have previously shown that the degree of APD prolongation induced by pharmacological block of repolarizing currents or augmentation of depolarizing currents, depends on baseline APD. Consistent with these results, we find a more pronounced APD prolongation after SCR at slow CL and in the presence of I_{Ks} blockade. In our experiments, APD prolongation after SCR is particularly pronounced because the increase in I_{CaL} also elevates the plateau potential which increases I_{Ks} activation and offsets the prolongation induced by I_{CaL} (Figure 6A, bottom panel). This compensating mechanism is absent when I_{Ks} is inhibited. Thus, I_{Ks} inhibition exacerbates the effect of SCR on APD prolongation.

The role of SCR in arrhythmogenesis.

It has long been established that SCR-induced triggered activity is a major arrhythmogenic mechanism during Ca$^{2+}$ overload and its occurrence is increased in various pathological conditions. Here we observed that diastolic SCR prolongs the subsequent APD, suggesting that even SCR below the threshold for triggered activity has important electrophysiological effects that may be proarrhythmic. Regional prolongation of APD after SCR in the intact heart may cause increased spatial dispersion of repolarization between regions with the highest Ca$^{2+}$ load (generating SCR) and regions with lower Ca$^{2+}$ loading. In agreement with this hypothesis, we observed increased QT duration and T_{peak}-T_{end} intervals following the first aftercontraction upon a challenge with a bolus of ISO during I_{Ks} blockade in-vivo. Regional heterogeneities in ion-channel expression or intercellular conduction may further amplify this dispersion. Combined, these mechanisms can promote functional reentry. Stabilization of Ca$^{2+}$ handling may therefore not only reduce the incidence of arrhythmogenic triggers but also prevent their reentrant perpetuation. Although current pharmacological interventions do not allow specific targeting of SCR or measurement of cellular Ca$^{2+}$ handling in the in-vivo dog heart, we found that I_{CaL} inhibition with verapamil could prevent aftercontractions and TdP in our model of LQT1, and this was associated with a reduction in the paradoxical increase in QT and T_{peak}-T_{end} intervals following ISO.

We have also shown that the combination of ISO and fast pacing can give rise to diastolic SCR which prolongs APD sufficiently such that the next SCR occurs before the end of repolarization, generating an EAD. The common dependence of DADs and EADs on SCR in the presence of ISO has previously been described and is in agreement with recent findings in rabbit ventricular myocytes.
Our results provide novel mechanistic insights on the coupling between SCR, APD prolongation and EAD occurrence and illustrate that diastolic SCR is a central element in both triggered activity and repolarization instability. However, the ionic mechanisms of EAD generation, particularly the relative roles of I_{NCX} and I_{CaL}, are complex and cannot be fully determined based on our data. Moreover, the measurement of the lag between the start of the aftercontraction and the EAD upstroke does not take into account the delay between SCR and activation of contraction or the SCR-induced slowing of repolarization in the priming phase before the EAD upstroke. This lag is likely due to differential Ca^{2+} thresholds for the activation of contraction versus the activation of membrane currents.

APD prolongation after SCR results from increased I_{CaL}, which enhances Ca^{2+} loading via increased sarcolemmal Ca^{2+} influx. Enhanced loading along with reduced Ca^{2+} efflux serves to restore and fine-tune SR Ca^{2+} content to maintain CICR efficacy, as has previously been described in rat ventricular myocytes. However, during increased Ca^{2+} load these mechanisms will readjust, promoting SCR, facilitating the occurrence of afterdepolarizations. Consistent with this, we found that the probability of observing a DAD was not significantly altered by the presence of a DAD on the previous beat. This strongly implies that, under our experimental conditions, the reduction in myocyte Ca^{2+} load during a DAD is overcome by the increased sarcolemmal Ca^{2+} influx during the following prolonged AP. Thus, APD prolongation after SCR contributes to the vicious cycle of Ca^{2+} loading and ultimately overload. These results are in agreement with the recent modeling study by Morotti et al. who established that I_{CaL} predominantly inactivates due to CDI and that (strongly) reduced CDI can cause Ca^{2+} overload and DADs.

Inhibition of SCR by ryanodine and tetracaine has previously been described, and the results presented here agree with those data. We extend these observations by showing a concomitant decrease in BVR. Both ryanodine and tetracaine are useful for mechanistic studies but due to their deleterious effects in vivo cannot be used as therapeutic agents. In contrast, both magnesium and flecainide are commonly used antiarrhythmic agents. Here we show that both these agents can lead to a reduction in BVR and arrhythmogenic events, most likely due to stabilization of Ca^{2+} handling in the single myocyte. Similarly, we confirm the usefulness of modulating Calmodulin/CaMKII during increased Ca^{2+} loading as an antiarrhythmic strategy. CaMKII phosphorylation has been shown to induce a different gating mode (mode 2) of the I_{CaL} channel, thereby reducing inactivation, favoring Ca^{2+} entry and the occurrence of EADs and DADs. Interestingly, when CAMKII inhibition is applied, a disconnect appears between SCR events and APD. Whether this is due to alterations in CDI, or due to effects on other CAMKII substrates, such as I_{NaL}, is not clear and further investigation is warranted. In this regard, the development of selective CaMKII modulators suitable for antiarrhythmic interventions in humans is awaited.

CONCLUSIONS

We have shown that after SCR, inactivating I_{CaL} is increased and APD and QT intervals are prolonged, most likely due to reduced CICR-dependent inactivation of this current. The degree of APD prolongation is exacerbated by inhibition of I_{Ks}. This contributes to increased BVR and spatial dispersion
of repolarization during ISO-induced diastolic Ca2+ release and, aside from DAD-mediated triggered activity, may be an additional mechanism contributing to arrhythmogenesis. Pharmacological interventions that regularize SCR or inhibit SCR with or without preserved systolic contractions reduce BVR. Our data provide novel insights into arrhythmogenic mechanisms during increased Ca2+ loading.

ACKNOWLEDGEMENTS
The authors thank Drs. Chris Pollard and Jean-Pierre Valentin, Department of Safety Pharmacology, Safety Assessment UK, AstraZeneca R&D, Alderley Park, UK, for active collaboration and for providing cardiac myocytes. Ongoing collaborations with Dr. Yoram Rudy, Washington University in St. Louis, MO and use of his computational resources are gratefully acknowledged.

SOURCES OF FUNDING
P.G.A.V. is supported by a Vidi grant from the Netherlands Organization for Scientific Research (ZonMW 91710365). D.A.E. and A.W.T. are supported by the British Heart Foundation. D.M.J. was financially supported by AstraZeneca Ltd, UK.

DISCLOSURES
None.

REFERENCES

DOI: 10.1161/CIRCRESAHA.112.275735

FIGURE LEGENDS

Figure 1. Occurrence of DADs in canine ventricular myocytes is associated with prolongation of subsequent APs and increased BVR. A. APD$_{90}$ for 75 consecutive beats at 2000-ms CL at baseline (left panel: I), during wash-in of ISO (middle panel: II) and in the presence of HMR1556 and ISO (right panel: III). APDs preceded by a DAD are indicated with filled symbols, APDs without DADs depicted by open symbols. Dashed rectangle indicates a set of 5 beats for which cell shortening and membrane potential are depicted below. Insets show diastolic potentials at an expanded scale. Beats without prior SCR are indicated in black, beats with prior SCR in gray. B. Membrane potential (top) and [Ca$^{2+}$], for four consecutive beats. APD$_{90}$s are indicated below each AP. SCR is indicated with arrows.

Figure 2. A. Group data for APD$_{90}$ under baseline conditions, in the presence of ISO, or in the presence of ISO + HMR1556 at CLs of 500, 1000 and 2000 ms. DADs cause a significant prolongation during ISO and ISO + HMR1556 treatment. APD$_{90}$ differences are indicated above each pair of bars. *; $P<0.05$ based on paired T-test. B. BVR values for the conditions in panel A. The number of cells and number of dogs for each condition are indicated below each bar. Comparisons between conditions were made using ANOVA. C. Cell shortening (top trace) and membrane potential (bottom trace) under baseline conditions with DAD-like electrical pulses (in the absence of SCR) applied every 4th beat (top panel) or with DADs after ISO + HMR1556 in the same cell (bottom panel). APD$_{90}$ is indicated below each beat. D. Subthreshold diastolic pulses do not alter APD$_{90}$ within the same cell (left panel) nor BVR compared to cells without diastolic pulses (right panel).

Figure 3. Relationship between diastolic SCR and EADs. A. Top panel: Cell shortening (top trace) and membrane potential (bottom trace) for 5 consecutive APs followed by an AP with EAD (indicated with *) in a representative cell at 500-ms CL in the presence of HMR1556 + ISO. APD$_{90}$ is given below each beat and DADs are indicated with arrows. Vertical line indicates start of aftercontraction. Bottom panel indicates the percentages of APs that showed a DAD in the 5 beats preceding every EAD. Horizontal dashed line indicates overall DAD occurrence at 500-ms CL in the presence of HMR1556 + ISO, independent of EADs. The beat before an EAD has a DAD 95% of the time. *: $P<0.05$ compared to overall DAD occurrence. B. Similar to panel A (top) for 2 beats in the presence of ISO only. A similar contraction pattern can be observed but APD prolongation is insufficient to promote EAD formation. C. Time differences between rise of aftercontraction and EAD, indicating that aftercontractions occur earlier than EADs.

Figure 4. Inhibition of (diastolic) SCR abolishes DADs and reduces BVR. Cell shortening (top panels; arbitrary units) and membrane potential (bottom panels) for 5 representative beats during treatment with ISO + HMR1556 (A), or ISO + HMR1556 + ryanodine (1 μmol/L) (B). APD$_{90}$ is indicated below each beat and mean APD$_{90}$ and BVR are shown for 30 beats in the Poincaré plot on the right. DADs are indicated with arrows. Panels C and D show similar data for treatment with tetracaine (5 μmol/L). ISO + HMR1556 enhances BVR and DAD occurrence. Ryanodine and tetracaine abolish DADs and reduce BVR.
Figure 5. Interventions that abolish or homogenize SCR lower BVR. A. APD$_{90}$. $n_{\text{cells}} / n_{\text{dogs}}$ are indicated below each bar. B. DAD occurrence. C. BVR at CL = 1000 ms at baseline, in the presence of ISO, HMR1556 + ISO, or HMR1556 + ISO combined with interventions to modulate SCR. Interventions are grouped by type (RyR modulation, grey; Calmodulin/CaMKII modulation, black; or agents also used clinically; striped). All interventions except caffeine result in a significant lowering of DAD incidence and a concomitant reduction of BVR, with increased (ryanodine), decreased (tetracaine, flecainide (6 μmol/L)), or unaltered (W7 (1 μmol/L), KN93 (5 μmol/L), [Mg$^+$] (5 mmol/L)) APD$_{90}$. Caffeine (maximally 500 μmol/L) homogenizes SCR occurrence, increasing DAD occurrence but lowering BVR without changing APD$_{90}$. *; $P<0.05$ versus HMR1556 + ISO.

Figure 6. Computational model of the canine ventricular myocyte implicates reduced SR Ca$^{2+}$-dependent inactivation of I$_{\text{Ca,L}}$ to cause APD prolongation. A. AP, intracellular Ca$^{2+}$, I$_{\text{Ca,L}}$ and I$_{Ks}$ (top to bottom) with (dashed lined) or without (solid lines) prior SR Ca$^{2+}$ release for a single beat after pacing to steady state in the presence of ISO at CL of 1000 ms. The DAD resulting from the SCR is indicated by an arrow. Inset in 3rd panel shows I$_{\text{Ca,L}}$ during AP plateau on an expanded scale. B. Similar to panel A in the presence of ISO and complete inhibition of I$_{Ks}$. C. After pacing to steady state in the presence of ISO, SCR was triggered (shaded bars) or not (white bars) and individual currents / fluxes were blocked for one final beat. APD$_{90}$ differences are indicated above each bar. Only inhibition of SR Ca$^{2+}$ release (RyR) or I$_{\text{Ca,L}}$ CDI was sufficient to abolish the APD prolongation after SCR.

Figure 7. I$_{\text{Ca,L}}$ inactivation is slowed after SCR. A. Voltage-clamp protocol (top panel), intracellular Ca$^{2+}$ (middle panel) and membrane current (bottom panel) in a representative canine ventricular myocyte in the presence of HMR1556 + ISO + increased [Ca$^{2+}$]$_o$ (3.6 or 5.0 mmol/L) in the absence (black) or presence of prior SCR (gray). Right inset shows membrane current at an expanded scale. 4-AP (5.0 mmol/L) and BaCl$_2$ (0.1 mmol/L) were used to isolate I$_{\text{Ca,L}}$. Left inset shows model results under similar conditions. B. Quantification of average membrane current integral (shaded area in right inset of panel A) in 6 canine ventricular myocytes in the absence or presence of SCR. Prior SCR significantly increases total inward current (*: $P<0.05$).

Figure 8. Aftercontractions and repolarization prolongation precede the occurrence of TdP in an in-vivo canine model of LQT1. A. ECG, LV MAPs and LVP in the 6 beats prior to the first extrasystolic beat and initiation of TdP in a representative experiment after a bolus of ISO in the presence of HMR1556. Inset shows TdP inducibility by ISO during HMR1556 in the absence or presence of verapamil. B. Group data showing electrophysiological properties (RR interval, QT interval, LV MAP duration and T$_{\text{peak}}$-T$_{\text{end}}$ interval) and average amplitude of the preceding aftercontraction in the absence (filled squares; n=14) or presence (open circles; n=5) of verapamil. * indicates $P<0.05$ compared to beat -6 (ANOVA for repeated measures with Bonferroni post-hoc test); $\$ indicates $P<0.05$ versus the absence of verapamil for the same beat. Data are shown relative to the start of TdP or during the maximal chronotropic response to ISO. C. Comparison of the electrophysiological properties of the beats preceding (light grey) and following (dark grey) the first aftercontraction during HMR+ISO: RR interval, QT interval, LV MAP duration, T$_{\text{peak}}$-T$_{\text{end}}$ interval. *: $P<0.05$ compared to pre 1st AC. D. Effect of diastolic Ca$^{2+}$ release in 25% of the cells on average repolarization time (top) and spatial dispersion of repolarization (bottom) in 1-dimensional strand simulations and 2-dimensional tissue simulations with intact or disabled I$_{\text{Ca,L}}$ CDI.
Novelty and Significance

What Is Known?

- Beat-to-beat variability of ventricular repolarization duration (BVR) has been proposed as a more predictive marker of Torsades de Pointes (TdP) arrhythmia than repolarization duration alone. The cellular mechanisms of BVR remain to be fully elucidated.
- During intense β-adrenergic-receptor stimulation, Ca²⁺ load of the myocyte increases. Additional blockade of the slowly-activating delayed-rectifier K⁺ current (I_{Ks}) amplifies this effect and exaggerates BVR.
- Spontaneous sarcoplasmic reticulum (SR) Ca²⁺ release (SCR) during Ca²⁺ overload can cause membrane depolarization via Ca²⁺-dependent ion currents, resulting in afterdepolarizations and, potentially, triggered activity.

What New Information Does This Article Contribute?

- In canine left-ventricular myocytes, late-diastolic SCR during β-adrenergic stimulation causes prolongation of the following action potential (AP), especially during I_{Ks} blockade. The irregular occurrence of SCR exaggerates BVR by interspersed AP prolongation. Pharmacological interventions that prevent or regularize SCR reduce BVR.
- By SR unloading, late-diastolic SCR decreases systolic SR Ca²⁺ release during the following AP. This reduces Ca²⁺-dependent inactivation of the L-type Ca²⁺ current, causing the AP prolongation.
- In a canine model of drug-induced long-QT1 syndrome, β-adrenergic challenges cause paradoxical repolarization prolongation, exaggerated BVR and aftercontractions just prior to the initiation of TdP. QT, monophasic AP and T_{peak}-T_{end} interval of the beats following aftercontractions are significantly prolonged. The Ca²⁺ antagonist verapamil prevents aftercontractions and arrhythmia.

A significant rise in BVR has been observed in animal models and selected human subjects prior to TdP onset. The in-vivo mechanisms of this remain incompletely understood, but reside partly in the cardiac myocyte. Cellular Ca²⁺ overload can augment BVR and plays a major role in arrhythmogenesis. Here, we aimed at elucidating Ca²⁺-dependent mechanisms of augmented BVR during β-adrenergic stimulation and I_{Ks} blockade, in effect mimicking long-QT1 syndrome. We show that APs prolong significantly after SCR, leading to increased BVR if the occurrence of SCR is irregular. An intact I_{Ks} prevents much of the repolarization prolongation. AP prolongation is driven by reduced Ca2⁺-dependent inactivation of L-type Ca²⁺ current resulting from decreased systolic SR Ca²⁺ release following SCR. Pharmacological interventions that prevent or regularize SCR reduce BVR, which suggests novel antiarrhythmic approaches against TdP under these conditions. We also demonstrate that during β-adrenergic stimulation and I_{Ks} blockade in vivo, paradoxical prolongation of repolarization and aftercontractions precede TdP, suggesting that the identified cellular mechanisms have relevance for arrhythmogenesis in the intact heart. Thus, myocardial Ca²⁺ overload and delayed and early afterdepolarizations can not only cause arrhythmias via triggered activity, but also by increasing temporal and spatial dispersion of repolarization, promoting reentrant excitation.
Figure 1. Occurrence of DADs in canine ventricular myocytes is associated with prolongation of subsequent APs and increased BVR. A. APD\textsubscript{90} for 75 consecutive beats at 2000-ms CL at baseline (left panel: I), during wash-in of ISO (middle panel: II) and in the presence of HMR1556 and ISO (right panel: III). APDs preceded by a DAD are indicated with filled symbols, APDs without DADs depicted by open symbols. Dashed rectangle indicates a set of 5 beats for which cell shortening and membrane potential are depicted below. Insets show diastolic potentials at an expanded scale. Beats without prior SCR are indicated in black, beats with prior SCR in gray. B. Membrane potential (top) and \([\text{Ca}^{2+}]\text{i}\) for four consecutive beats. APD\textsubscript{90}s are indicated below each AP. SCR is indicated with arrows.
Figure 2. A. Group data for APD$_{90}$ under baseline conditions, in the presence of ISO, or in the presence of ISO + HMR1556 at CLs of 500, 1000 and 2000 ms. DADs cause a significant prolongation during ISO and ISO + HMR1556 treatment. APD$_{90}$ differences are indicated above each pair of bars. *; $P<0.05$ based on paired T-test.
B. BVR values for the conditions in panel A. The number of cells and number of dogs for each condition are indicated below each bar. Comparisons between conditions were made using ANOVA.
C. Cell shortening (top trace) and membrane potential (bottom trace) under baseline conditions with DAD-like electrical pulses (in the absence of SCR) applied every 4th beat (top panel) or with DADs after ISO + HMR1556 in the same cell (bottom panel). APD$_{90}$ is indicated below each beat.
D. Subthreshold diastolic pulses do not alter APD$_{90}$ within the same cell (left panel) nor BVR compared to cells without diastolic pulses (right panel).
Figure 3. Relationship between diastolic SCR and EADs. A. Top panel: Cell shortening (top trace) and membrane potential (bottom trace) for 5 consecutive APs followed by an AP with EAD (indicated with *) in a representative cell at 500-ms CL in the presence of HMR1556 + ISO. APD_{90} is given below each beat and DADs are indicated with arrows. Vertical line indicates start of aftercontraction. Bottom panel indicates the percentages of APs that showed a DAD in the 5 beats preceding every EAD. Horizontal dashed line indicates overall DAD occurrence at 500-ms CL in the presence of HMR1556 + ISO, independent of EADs. The beat before an EAD has a DAD 95% of the time. *: P<0.05 compared to overall DAD occurrence. B. Similar to panel A (top) for 2 beats in the presence of ISO only. A similar contraction pattern can be observed but APD prolongation is insufficient to promote EAD formation. C. Time differences between rise of aftercontraction and EAD, indicating that aftercontractions occur earlier than EADs.
Figure 4. Inhibition of (diastolic) SCR abolishes DADs and reduces BVR. Cell shortening (top panels; arbitrary units) and membrane potential (bottom panels) for 5 representative beats during treatment with ISO + HMR1556 (A), or ISO + HMR1556 + ryanodine (1 μmol/L) (B). APD₉₀ is indicated below each beat and mean APD₉₀ and BVR are shown for 30 beats in the Poincaré plot on the right. DADs are indicated with arrows. Panels C and D show similar data for treatment with tetracaine (5 μmol/L). ISO + HMR1556 enhances BVR and DAD occurrence. Ryanodine and tetracaine abolish DADs and reduce BVR.
Figure 5. Interventions that abolish or homogenize SCR lower BVR.** A. APD$_{90}$. $n_{\text{cells}} / n_{\text{dogs}}$ are indicated below each bar. B. DAD occurrence. C. BVR at CL = 1000 ms at baseline, in the presence of ISO, HMR1556 + ISO, or HMR1556 + ISO combined with interventions to modulate SCR. Interventions are grouped by type (RyR modulation, grey; Calmodulin/CaMKII modulation, black; or agents also used clinically; striped). All interventions except caffeine result in a significant lowering of DAD incidence and a concomitant reduction of BVR, with increased (ryanodine), decreased (tetracaine, flecainide (6 μmol/L)), or unaltered (W7 (1 μmol/L), KN93 (5 μmol/L), [Mg$^+$] (5 mmol/L)) APD$_{90}$. Caffeine (maximally 500 μmol/L) homogenizes SCR occurrence, increasing DAD occurrence but lowering BVR without changing APD$_{90}$. *; $P<0.05$ versus HMR1556 + ISO.
Figure 6. Computational model of the canine ventricular myocyte implicates reduced SR Ca\(^{2+}\)-dependent inactivation of I\(_{\text{CaL}}\) to cause APD prolongation. **A.** AP, intracellular Ca\(^{2+}\), I\(_{\text{CaL}}\) and I\(_{\text{Ks}}\) (top to bottom) with (dashed lines) or without (solid lines) prior SR Ca\(^{2+}\) release for a single beat after pacing to steady state in the presence of ISO at CL of 1000 ms. The DAD resulting from the SCR is indicated by an arrow. Inset in 3\(^{rd}\) panel shows I\(_{\text{CaL}}\) during AP plateau on an expanded scale. **B.** Similar to panel A in the presence of ISO and complete inhibition of I\(_{\text{Ks}}\). **C.** After pacing to steady state in the presence of ISO, SCR was triggered (shaded bars) or not (white bars) and individual currents / fluxes were blocked for one final beat. APD\(_{90}\) differences are indicated above each bar. Only inhibition of SR Ca\(^{2+}\) release (RyR) or I\(_{\text{CaL}}\) CDI was sufficient to abolish the APD prolongation after SCR.
Figure 7. \(I_{\text{CaL}}\) inactivation is slowed after SCR. **A.** Voltage-clamp protocol (top panel), intracellular \(\text{Ca}^{2+}\) (middle panel) and membrane current (bottom panel) in a representative canine ventricular myocyte in the presence of HMR1556 + ISO + increased \([\text{Ca}^{2+}]_o\) (3.6 or 5.0 mmol/L) in the absence (black) or presence of prior SCR (gray). Right inset shows membrane current at an expanded scale. 4-AP (5.0 mmol/L) and BaCl₂ (0.1 mmol/L) were used to isolate \(I_{\text{CaL}}\). Left inset shows model results under similar conditions. **B.** Quantification of average membrane current integral (shaded area in right inset of panel A) in 6 canine ventricular myocytes in the absence or presence of SCR. Prior SCR significantly increases total inward current (*: \(P<0.05\)).
Figure 8. Aftercontractions and repolarization prolongation precede the occurrence of TdP in an in-vivo canine model of LQT1. A. ECG, LV MAPs and LVP in the 6 beats prior to the first extrasystolic beat and initiation of TdP in a representative experiment after a bolus of ISO in the presence of HMR1556. Inset shows TdP inducibility by ISO during HMR1556 in the absence or presence of verapamil. B. Group data showing electrophysiological properties (RR interval, QT interval, LV MAP duration and T_{peak}-T_{end} interval) and average amplitude of the preceding aftercontraction in the absence (filled squares; n=14) or presence (open circles; n=5) of...
verapamil. * indicates $P<0.05$ compared to beat -6 (ANOVA for repeated measures with Bonferroni post-hoc test); $\$ $ indicates $P<0.05$ versus the absence of verapamil for the same beat. Data are shown relative to the start of TdP or during the maximal chronotropic response to ISO. C. Comparison of the electrophysiological properties of the beats preceding (light grey) and following (dark grey) the first aftercontraction during HMR+ISO: RR interval, QT interval, LV MAP duration, T_{peak}-T_{end} interval. *; $P<0.05$ compared to pre 1$^{\text{st}}$ AC. D. Effect of diastolic Ca$^{2+}$ release in 25% of the cells on average repolarization time (top) and spatial dispersion of repolarization (bottom) in 1-dimensional strand simulations and 2-dimensional tissue simulations with intact or disabled I_{CaL} CDI.
Diastolic Spontaneous Calcium Release from the Sarcoplasmic Reticulum Increases Beat-to-Beat Variability of Repolarization in Canine Ventricular Myocytes after β-Adrenergic Stimulation

Daniel M. Johnson, Jordi Heijman, Elizabeth F. Bode, David J. Greensmith, Henk van der Linde, Najah Abi-Gerges, David Eisner, Andrew W. Trafford and Paul G. A. Volders

Circ Res. published online November 13, 2012;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2012/11/13/CIRCRESAHA.112.275735

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2012/11/13/CIRCRESAHA.112.275735.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/
Diastolic Spontaneous Calcium Release from the Sarcoplasmic Reticulum Increases Beat-to-Beat Variability of Repolarization in Canine Ventricular Myocytes after β-Adrenergic Stimulation

Supplemental Material

Daniel M. Johnson,* Jordi Heijman*, Elizabeth F. Bode, David J. Greensmith, Henk van der Linde, Najah Abi-Gerges, David A. Eisner, Andrew W. Trafford, Paul G.A. Volders

* These authors contributed equally to this work

Corresponding Author:
Paul G.A. Volders, MD, PhD
Department of Cardiology
Cardiovascular Research Institute Maastricht
Maastricht University Medical Centre
P.O. Box 5800
6202 AZ Maastricht
The Netherlands

e-mail: p.volders@maastrichtuniversity.nl
phone: +31 43 3875094
fax: +31 43 3875104
Extended Methods

Cell-isolation procedure
Adult female beagle dogs were used for the myocyte isolations. Anesthesia was induced with 45 mg/kg pentobarbital. Once full anesthesia was reached, the chest was opened via a left thoracotomy and the heart was excised and placed in an O₂-gassed Ca²⁺-free standard buffer solution at approximately 4 °C. The cell-isolation procedure was the same as previously described. Briefly the left-anterior descending coronary artery was cannulated and perfused. After ~20 min of collagenase perfusion and subsequent washout of the enzyme, the epicardial surface layer was removed from the LV wedge until a depth of ≥3 mm was reached. Softened tissue samples were collected from the midmyocardial layer underneath while contamination with the epi- and endocardium was avoided. Samples were gently agitated, filtered and washed. LV midmyocytes were stored at room temperature in standard buffer solution (vide infra) and only quiescent rod-shaped cells with clear cross-striations were used for the experiments. Cells were used within 48 h of isolation.

Sharp-electrode action potential recordings
Transmembrane action potentials (APs) were recorded at 37 °C using high-resistance (30–60 MΩ) glass microelectrodes filled with 3 mol/L KCl with a microelectrode amplifier (Axoclamp-2B, Axon Instruments, Inc). Intracellular pacing was done at various cycle lengths (CLs; 500 ms – 2000 ms). Only cells showing a stable spike-and-dome AP morphology and resting membrane potential were accepted for the experiments. Myocyte contractions were recorded with a video edge motion detector (Crescent Electronics, Sandy, UT, USA).

Ca²⁺ measurements
Isolated myocytes were loaded with the acetoxymethyl ester of indicator Fluo-3 or Fura-2 (Molecular Probes; 5 μmol/L, 5 min loading and 30 min de-esterification). Electrophysiological control for current-clamp and voltage-clamp experiments with simultaneous [Ca²⁺]i measurements was achieved using the perforated patch clamp technique with amphotericin-B (240 μg/ml). The switch-clamp facility (frequency 1–3 kHz and gain 1–3) of the Axoclamp-2B voltage clamp amplifier (Axon Instruments, CA, USA) was used to overcome the access resistance of the perforated patch. All experiments were performed at 37 °C.
Drugs and experimental solutions

The standard buffer solution used for the experiments was composed of (in mmol/L): NaCl 145, KCl 4.0, CaCl$_2$ 1.8, MgCl$_2$ 1.0, glucose 11 and HEPES 10, pH 7.4 with NaOH at 37 °C. In a subset of experiments, extracellular [Mg$^{2+}$] was increased to 5 mmol/L by the addition of 4 mmol/L MgSO$_4$. In other experiments, extracellular [Ca$^{2+}$] was increased to 3.6 mmol/L to further increase cellular Ca$^{2+}$ loading.

500 nmol/L HMR1556 ((3R,4S)-(+)N-[3-hydroxy-2,2-dimethyl-6-(4,4,4-trifluorobutoxy)chroman-4-y]N-methylmethanesulfonamide; a gift from Dr. H. Gögelein, Sanofi-Aventis Germany GmbH, Frankfurt, Germany) was used to selectively and completely block I$_{Ks}$. Sarcoplasmic reticulum (SR) Ca$^{2+}$ release through the ryanodine receptor (RyR) was inhibited with 1 μmol/L ryanodine (RBI, Natick, MA, USA) or stabilized using 5 μmol/L tetracaine (Sigma-Aldrich Zwijndrecht, The Netherlands). Caffeine (Sigma-Aldrich Zwijndrecht, The Netherlands; maximally 500 μmol/L) was used to increase RyR open probability. Ca$^{2+}$/Calmodulin-dependent kinase (CaMKII) activity was modulated using the CaMKII inhibitor KN93 (Sigma-Aldrich Zwijndrecht, The Netherlands; 5 μmol/L) and the calmodulin inhibitor W7 (Tocris Bioscience, Bristol, UK; 1 μmol/L). The class-1C antiarrhythmic agent flecainide (MedaPharma, Amstelveen, The Netherlands) was employed in a subset of experiments. At 6 μmol/L, flecainide results in a 40% decrease in RyR activity5 as well as affecting multiple other targets (40% inhibition of I$_{to}$6, significant inhibition of (late) I$_{Na}$7 and ~50% inhibition of HERG K$^+$ channels8).

For perforated patch experiments the patch pipette solution contained (in mmol/L): KCH$_3$O$_3$S 125, KCl 20, NaCl 10, HEPES 10, MgCl$_2$ 5, K$_2$EGTA 0.1, titrated to 7.2 with KOH with patch pipette resistance being 2-3 MΩ. In voltage clamp experiments, K$^+$ currents were blocked by addition of 500 nmol/L HMR1556, 5 mmol/L 4-aminopyridine and 100 nmol/L BaCl$_2$ to the standard buffer solution. Extracellular Ca$^{2+}$ was raised (to 3.6 or 5.0 mmol/L) to further enhance cellular Ca$^{2+}$ loading.

HMR1556, ryanodine, tetracaine, caffeine, W7 and KN93 were initially dissolved in dimethyl sulfoxide (DMSO) and then diluted so that the concentration of the solvent was maximally 0.1% in the superfusate, a concentration that has no measurable effects on AP or ionic currents.
βAS was applied by 100 nmol/L isoproterenol in all experiments. This agent was originally dissolved in distilled water containing 30 μmol/L ascorbic acid and then stored in the dark at 4 °C until use.

When assessing the effect of pharmacological interventions, all conditions were kept constant for several minutes until APD and cell shortening reached steady state. Analyses were performed using these steady-state data.

Data analysis

Detection of EADs, DADs and determination of APD, BVR and DAD parameters was done in a semi-automated fashion using a custom Matlab (The Mathworks, Natick, MA, USA) script. Briefly, Axon (Axon Instruments, CA, USA) data files were loaded into Matlab. AP upstroke was detected based on peaks in the numerically calculated dV/dt, and APD\textsubscript{90} was determined. Subsequently, the diastolic interval between APD\textsubscript{90} of one beat and the point of maximum dV/dt of the next beat was processed for all beats. The signal was low-pass filtered at 30 Hz to reduce noise. All peaks in the filtered signal were determined and resting membrane potential was defined as the average value between the smallest (most negative) local maximum and local minimum. The amplitude of all other peaks was determined relative to this resting membrane potential. DADs were identified as a local maximum in the filtered signal of more than 2 mV in amplitude and manually confirmed by the investigators. EADs were detected as positive local maxima in the low-pass filtered dV/dt signal preceded and followed by negative local minima. Detection of EADs was manually validated.

BVR was determined using a sliding window of 30 consecutive beats using: \[\frac{\sum|\text{APD}_{i+1} - \text{APD}_i|}{n\text{beats} \times \sqrt{2}}\], and mean BVR for a given condition (CL and/or pharmacological intervention) was determined for each cell.

In-vivo dog model of LQT1

TdP arrhythmias were induced in an in-vivo dog model of long-QT1 syndrome as previously described.9 Briefly, general anesthesia was induced in 10 beagle dogs by lofentanil (0.075 mg/kg body weight i.v.), scopolamine (0.015 mg/kg), succinyllcholine (1.0 mg/kg), hourly slow injections of fentanyl (0.025 mg/kg i.v.), and continuous infusion of etomidate (1.5 mg/kg/hour). Dogs were ventilated with 30% oxygen in pressurized air to normocapnia. The body temperature was kept at 37 °C with a heated water mattress. ECG standard lead II was
continuously recorded and the QT interval (QT; ms) measured from the onset of the QRS to the final end of the T wave. Left ventricular (LV) intracavitary pressures were recorded with high-fidelity catheter-tip micromanometers (Gaeltec Ltd, Dunvegan, UK and Millar Instruments Inc, Houston, TX). Under fluoroscopic guidance a MAP catheter (Boston Scientific-EP Technologies, San Jose, CA) was placed at the endocardium of the LV and RV, near the apical septum.

HMR1556 (dissolved in 20% HP-β-cyclodextrin) was infused i.v. in the dogs, initially at a rate of 0.025 mg/kg/min for 30 min and followed (if necessary) by infusions at 0.05 mg/kg/min and 0.1 mg/kg/min. At regular time intervals, boluses of isoproterenol (1.25, 2.5 or 5 μg/kg) were injected to induce torsades de pointes and in prevention experiments verapamil (0.4 mg/kg) was infused pre-isoproterenol challenge after confirming TdP inducibility with HMR1556 + ISO in the same animal. External electrical cardioversion was applied to terminate sustained TdP or its deterioration into ventricular fibrillation, if induced by isoproterenol.

Computational modeling
A recent model of the canine ventricular myocyte electrophysiology including βAR stimulation was extended to induce diastolic SR Ca\(^{2+}\) release in a controlled fashion, similar to a recent approach by Xie et al. Both timing (start, duration) and amplitude of diastolic SR Ca\(^{2+}\) release could be controlled.

In particular, the model was divided into two identical domains (Online Figure I) coupled by Ca\(^{2+}\) diffusion between cytosol and network SR to simulate the local origin of SCR. Diffusion time constants were based on the local control model by Restrepo et al. and diffusion was significantly slower in SR compared to cytosol, consistent with experimental observations. The late component of \(I_{Na} (I_{NaL})\) was increased in the model to simulate the midmyocardial origin of the myocytes used in our experiments, consistent with experimental data from Zygmunt et al. Model APD rate dependence at baseline, in the presence of ISO and in the presence of ISO+HMR1556 (simulated as 100% inhibition of \(I_{Ks}\)) was consistent with experimental data (Online Figure IIA). Parameters of the L-type Ca\(^{2+}\) current (\(I_{CaL}\)) were adjusted based on the experiments in the presence of ryanodine to obtain quantitative agreement on the amount of APD prolongation in the absence of SR Ca\(^{2+}\) release.

To initiate SCR, steady-state RyR activation was set to a constant value in one of the two domains for the interval of diastolic SR Ca\(^{2+}\) release such that the desired reduction in local JSR
Ca$^{2+}$ was achieved. When steady-state RyR activation was set to 0.375 ($\text{SCR}_{\text{level}} = 0.375$) from $t = 925$ ms until $t = 950$ ms (at $\text{CL} = 1000$ ms), the SCR-induced prolongation of APD was consistent with experimental observations (Online Figure IIB).

The model was paced to steady state (2000 seconds of pacing) in the presence of βAR stimulation with or without I_{Ks} inhibition, to mimic experimental conditions. The effect of diastolic SR Ca$^{2+}$ release was examined by determining APD of a single beat at steady-state as a function of the timing and amplitude of the preceding diastolic Ca$^{2+}$ release. In some simulations other currents / fluxes (I_{CaL}, I_{NaCa}, $I_{Cl(Ca)}$, J_{rel}) were blocked for the duration of this final beat.

One-dimensional strand simulations were performed as previously described. Steady-state conditions of single-cell simulations in the presence of ISO and I_{Ks} blockade were used as initial conditions for the homogeneous strand of 128 cells. The strand was subsequently paced by direct stimulation of the first 3 cells (-80 pA/pF for 2.0 ms) for 100 seconds to achieve steady-state conditions for the strand. The effect of diastolic SR Ca$^{2+}$ release was determined by applying the methodology described above to k cells in the middle of the strand. SR Ca$^{2+}$ release was initiated simultaneously in all k cells. The exact mechanisms by which SCR synchronizes across a sufficient number of myocytes to generate ventricular ectopic beats remain incompletely understood. Recent research by Wasserstrom et al. has suggested that an intrinsic synchronization occurs due to a decrease in variability of SCR events with increasing Ca$^{2+}$ load. Furthermore, Myles et al. have shown that localized βAR can produce spatiotemporal synchronization of SR Ca$^{2+}$ overload and release, which can produce focal activity and arrhythmia in normal rabbit hearts. Although direct diffusion of Ca$^{2+}$ between cells through gap junctions could further contribute to the synchronization of SCR, this was not implemented in the current model because the main goal of the present research was to determine the electrophysiological consequences of SCR, independent of the synchronization method.

A similar approach was used to study the effect of diastolic SR Ca$^{2+}$ release on homogeneous two-dimensional sheets of virtual ‘tissue’. The tissue size was 2 x 2 cm and was simulated using 200 x 200 grid points, in line with previous studies. Steady-state conditions of single-cell simulations in the presence of ISO and I_{Ks} blockade were used as initial conditions and 5 beats were simulated following stimulation of the left-most column of 200 cells (-80 pA/pF for 2.0 ms),
resulting in a planar wave activating the entire sheet. Conduction velocity was 49 cm/s. Diastolic SR Ca\(^{2+}\) release was initiated simultaneously in 25% of the 40,000 cells surrounding the center of the tissues (i.e., cells with x and y coordinates between 50 and 150).

Alterations in model equations compared to Heijman et al.\(^{10}\):

The superscript symbol x, is used to designate one of the two identical Ca\(^{2+}\) domains. Whole-cell concentrations / currents are defined as the average of both domains and are indicated without superscript x.

Altered \(I_{NaL}\):

\[
I_{NaL}^{NP} = 1.6 \cdot 6.500 \cdot 10^{-3} \cdot (m_L)^3 \cdot h_L \cdot (V_m - E_{Na})
\]

\[
I_{NaL}^{P,Ca_{MK}} = 1.6 \cdot 1.600 \cdot 10^{-2} \cdot (m_L)^3 \cdot h_L \cdot (V_m - E_{Na})
\]

Altered \(I_{CaL}\):

\[
I_{V,x}^{P} = \frac{1}{70.0 \cdot \left(1 + \exp\left(\frac{(V_m + 49.10)/10.349}{1 + \exp\left(-\frac{(V_m + 0.213)/10.807}{1}\right)}\right) + \frac{1}{1 + \exp\left((V_m + 29.979)/3.1775\right)}\right)}
\]

\[
I_{V,\infty}^{P} = \left(0.02 + \frac{1}{1 + \exp\left((V_m + 29.979)/3.1775\right)}\right)
\]

\[
I_{S_{V,\infty}}^{P} = \left(0.0004 + \frac{1}{1 + \exp\left((V_m + 29.979)/3.1775\right)}\right)
\]

Altered RyR:

\[
h_R = 10
\]

\[
I_{Rel,\infty}^{NP} = \frac{\alpha_{Rel} h_R}{1 + \frac{K_{Rel,\infty}}{[Ca^{2+}]_{JSR}}} \frac{I_{CaL}^{x}}{1 + \exp\left(\frac{I_{CaL}^{x} + 1.5}{0.0001}\right)} - SCR_{level}
\]

\[
I_{Rel,\infty}^{P} = 1.9925 \cdot \frac{\alpha_{Rel} h_R}{1 + \frac{K_{Rel,\infty}}{[Ca^{2+}]_{JSR}}} \frac{I_{CaL}^{x}}{1 + \exp\left(\frac{I_{CaL}^{x} + 1.5}{0.0001}\right)} - SCR_{level}
\]

Altered Ca\(^{2+}\) diffusion:
\[I_{tr}^{x} = \frac{[Ca^{2+}]_{NSR}^{x} - [Ca^{2+}]_{JSR}^{x}}{\tau_{tr}}, \quad \tau_{tr} = 100 \text{ ms} \]

\[I_{Diff, cyt}^{x} = \frac{[Ca^{2+}]_{i}^{y} - [Ca^{2+}]_{i}^{x}}{\tau_{Diff, cyt}}, \quad \tau_{Diff, cyt} = 1.00 \text{ ms}, \quad y: \text{other Ca}^{2+} \text{ domain} \]

\[I_{Diff, nesr}^{x} = \frac{[Ca^{2+}]_{NSR}^{y} - [Ca^{2+}]_{NSR}^{x}}{\tau_{Diff, nesr}}, \quad \tau_{Diff, nesr} = 25.0 \text{ ms}, \quad y: \text{other Ca}^{2+} \text{ domain} \]

\[\frac{d[Ca^{2+}]_{i, x}}{dt} = - \left(\frac{(I_{Ca,b}^{x} + I_{PCa}^{x} - 2 \cdot I_{NaCa,i}^{x}) \cdot C_{se} \cdot A_{cap}}{z_{Ca} \cdot F \cdot V_{myo}} + I_{up}^{x} \cdot \frac{V_{nse}}{V_{myo}} - I_{Diff, nesr}^{x} \cdot \frac{V_{SS, se}}{V_{myo}} - I_{Diff, cyt}^{x} \right) \]

\[\frac{d[Ca^{2+}]_{NSR}}{dt} = I_{up}^{x} - I_{tr}^{x} \cdot \frac{V_{JSR}}{V_{NSR}} + I_{Diff, nesr}^{x} \]
Online Figure I. Schematic overview of the computational model of the canine ventricular myocyte. Adapted from Heijman et al.\(^\text{10}\) The model was divided into two identical domains to simulate the local origin of SCR. Only components on the left side of the model are labeled for clarity, identical components are located on the right side. The domains are coupled via diffusion of Ca\(^{2+}\) (\(I_{\text{diff,cyt}}\) and \(I_{\text{diff,nsr}}\)). All other abbreviations are as previously described.\(^\text{10}\)
Online Figure II. Validation of model properties. A. Steady-state APD-rate dependence under baseline conditions (left panel), in the presence of ISO (middle panel) or in the presence of ISO + HMR1556 (right panel) for APs without prior DAD. Average APD for each cell is shown in blue. Average APD over all myocytes is indicated with symbols. Model APD is shown in black. Model APD-rate dependence falls within experimental range and is close to the experimental average for all conditions and CLs. B. Average APD difference between APs preceded by a DAD and those without prior DAD in the presence of ISO or ISO + HMR1556. Average APD difference for each cell is shown in blue. Average group data is indicated with symbols. Model APD prolongation after SCR is indicated with grey bars. Model APD prolongation is consistent with experimental observations.
Online Figure III. Rate-dependent characteristics of DADs in the presence of ISO (left panels) or ISO + HMR1556 (right panels). A. Percentage of cells which showed DADs during βARS. Number of cells and number of dogs are indicated in each bar. B. Average percentage of APs which had a DAD. C. Coupling interval between end of repolarization (APD_{90}) and subsequent DAD for those beats which showed a DAD. D. Average DAD amplitude. * indicates P<0.05 based on one-way ANOVA with Tukey-Kramer post-hoc test. DADs occur earlier and are larger at faster rates. Data are consistent with those of Prior and Corr^{22} in canine ventricular myocytes measured using a pace-pause protocol.
Online Figure IV. Effect of increased [Ca$^{2+}$]o on APD$_{90}$ (top panels), DAD occurrence (middle panels), and BVR (bottom panels) under baseline conditions, HMR1556 + ISO, HMR1556 + ISO + Intervention or HMR1556 + ISO + Intervention + 3.6 mmol/L [Ca$^{2+}$]o. A. Ryanodine. B. Tetracaine. C. W7. * indicates $P<0.05$. Only significance of intervention versus intervention in the presence of high [Ca$^{2+}$]o is indicated for clarity reasons. Inset in lower-right panel shows APD$_{90}$ in the presence of HMR1556 + ISO + W7 + increased [Ca$^{2+}$]o for beats in the absence or presence of a preceding DAD.
Online Figure V. Multicellular simulations in a one-dimensional strand of 128 cells in the presence of ISO and I_{ks} blockade. A. APs during steady-state pacing at CL = 1000 ms (top panel). Prior to beat (0), diastolic SR Ca^{2+} release was initiated in cells 32-96 (arrow). The bottom panel shows an overlay of Vm for cell 10 (orange, no DAD), cell 64 (grey, with DAD indicated by arrow) and cell 118 (green, no DAD) for these three beats. B. APD_{90} for all cells in the strand for these 3 beats. Cells 10, 64 and 118 have been indicated by vertical dashed lines. The presence of a preceding ‘spontaneous’ diastolic SR Ca^{2+} release (SCR) causes a pronounced prolongation of APD_{90} of beat (0) throughout the strand (black line). In addition, an
increase in the spatial dispersion of repolarization could be observed. C. Average repolarization time (activation time + APD$_{90}$; left panel) and spatial dispersion of repolarization (maximum repolarization time – minimum repolarization time; right panel) as a function of the number of cells with SCR. SCR caused a progressive increase in the average repolarization time. Dispersion of repolarization was influenced by the number of cells with SCR (with a maximum around 50%). A low spatial dispersion of repolarization was expected at 100%, when all cells exhibit SCR. However, spatial dispersion of repolarization also depends on the timing of the SCR. Since SCR was initiated at the same time in all cells, but the time of Ca$^{2+}$-induced Ca$^{2+}$-release differs due to AP propagation along the strand, there is a longer time for SR refilling after the SCR in cell 128 than in cell 1. As such, the amount of APD prolongation differs throughout the strand resulting in an increased spatial dispersion even at 100%. Spatial dispersion of repolarization is a complex, non-monotonic function that depends on the number of cells with SCR, their location in the strand, the timing of the SCR and the conduction velocity.
Online Figure VI. Multicellular simulations in homogeneous two-dimensional tissue of 200x200 nodes in the presence of ISO and I_{Ks} blockade. A. APs (top panel) and [Ca^{2+}]_{i} (bottom panel) for 5 beats during steady-state pacing at 1000-ms CL for a cell on the edge of the tissue (at coordinates (4,4), black lines) and a cell in the center of the tissue (blue lines). The location of these cells is indicated with stars in panels B and C (left). APD_{90} of each AP is given below each beat in the corresponding color. Diastolic SR Ca^{2+} release was induced from 1925 to 1950 ms (indicated by arrows) for a region of 100x100 cells (25% of the cells) around the center of the tissue (i.e., cells with x and y coordinates between 50 and 150, dashed box in panels B and C). B. Spatial electrophysiological properties of beat 2. The left panel shows repolarization time (activation time + APD_{90}) at every point in the tissue. Average repolarization time was 291 ms and spatial dispersion of repolarization (maximum-minimum repolarization time) was 29 ms. The
eight smaller panels on the right show voltage maps at different time instants. The voltage maps show a homogeneous diastolic interval followed by a planar wave propagating from left to right following pacing (conduction velocity of 49 cm/s). Repolarization occurs uniformly around 1290 ms. C. Similar to panel B for beat 3 which is preceded by diastolic Ca2+ release in a subset of the cells. Average repolarization time is longer (305 ms) and shows increased spatial dispersion (45 ms), in line with one-dimensional simulations and in-vivo experimental data. Voltage maps identify the DAD in the center of the tissue and the prolonged repolarization of this same area during the following beat.
Online Figure VII. Multicellular simulations in homogeneous two-dimensional tissue of 200x200 nodes in the presence of ISO and I_{Ks} blockade after inhibition of Ca$^{2+}$-dependent inactivation (CDI) of I_{CaL}. Simulation protocol and figure layout are identical to Online Figure VI, except for the inhibition of CDI for these 5 beats (after pacing to steady-state in the presence of ISO and I_{Ks} blockade). Inhibiting CDI prolongs APD$_{90}$, consistent with experimental data23 and single-cell simulations (Figure 6). Inhibition of CDI prevents APD prolongation following diastolic SR Ca$^{2+}$ release despite similar DAD and systolic Ca$^{2+}$ transient properties and prevents increased spatial dispersion of repolarization. Note that due to this APD prolongation different time-points were used for the voltage maps in panels B and C (indicated in purple).
Online Figure VIII. ECG, left-ventricular (LV) monophasic action potential (MAP) and LV pressure (LVP) recordings following a bolus of ISO during continuous HMR1556 infusion in the absence (panel A) or presence (panel B) of verapamil (0.4 mg/kg) in the same dog. RR intervals are indicated above the ECG traces and QT and LV MAP durations are indicated below the ECG and LV MAP signals, respectively. TdP was induced in the absence of verapamil and was preceded by aftercontractions in the LVP signal (indicated by arrows). Verapamil reduced the systolic LVP by approximately 17% and prevented the aftercontraction formation and TdP induction.
References

