Isoform-Selective Physical Coupling of TRPC3 Channels to IP₃ Receptors in Smooth Muscle Cells Regulates Arterial Contractility

Adebowale Adebiyi, Guiling Zhao, Damodaran Narayanan, Candice M. Thomas, John P. Bannister, Jonathan H. Jaggar

Rationale: Inositol 1,4,5-trisphosphate (IP₃)-induced vasoconstriction can occur independently of intracellular Ca²⁺ release and via IP₃ receptor (IP₃R) and canonical transient receptor potential (TRPC) channel activation, but functional signaling mechanisms mediating this effect are unclear.

Objectives: Study mechanisms by which IP₃Rs stimulate TRPC channels in myocytes of resistance-size cerebral arteries.

Methods and Results: Immunofluorescence resonance energy transfer (immuno-FRET) microscopy using isoform-selective antibodies indicated that endogenous type 1 IP₃Rs (IP₃R1) are in close spatial proximity to TRPC3, but distant from TRPC6 or TRPM4 channels in arterial myocytes. Endothelin-1 (ET-1), a phospholipase C-coupled receptor agonist, elevated immuno-FRET between IP₃R1 and TRPC3, but not between IP₃R1 and TRPC6 or TRPM4. TRPC3, but not TRPC6, coimmunoprecipitated with IP₃R1. TRPC3 and TRPC6 antibodies selectively inhibited recombinant channels, but only the TRPC3 antibody blocked IP₃-induced nonselective cation current (I_cat) in myocytes. TRPC3 knockdown attenuated immuno-FRET between IP₃R1 and TRPC3, IP₃-induced I_cat activation, and ET-1 and IP₃-induced vasoconstriction, whereas TRPC6 channel knockdown had no effect. ET-1 did not alter total or plasma membrane-localized TRPC3, as determined using surface biotinylation. RT-PCR demonstrated that C-terminal calmodulin and IP₃R binding (CIRB) domains are present in myocyte TRPC3 and TRPC6 channels. A peptide corresponding to the IP₃R N-terminal region that can interact with TRPC channels inhibited recombinant channels, but only the TRPC3 antibody blocked IP₃-induced nonselective cation current (I_cat). A TRPC3 CIRB domain peptide attenuated IP₃- and ET-1–induced I_cat activation and vasoconstriction.

Conclusions: IP₃ stimulates direct coupling between IP₃R1 and membrane-resident TRPC3 channels in arterial myocytes, leading to I_cat activation and vasoconstriction. Close spatial proximity between IP₃R1 and TRPC3 establishes this isoform-selective functional interaction. (Circ Res. 2010;106:00-00-00.)

Key Words: inositol 1,4,5-trisphosphate ■ canonical transient receptor potential channel ■ coupling ■ vasoconstriction

Activation of plasma membrane phospholipase (PLC)-coupled receptors by vasoconstrictor agonists leads to phosphatidylinositol 4,5-bisphosphate (PIP₂) hydrolysis and the generation of inositol-1,4,5-trisphosphate (IP₃) and diacylglycerol.¹ In vascular myocytes, diacylglycerol (DAG) activates protein kinase (PKC), leading to the phosphorylation of a wide variety of proteins, including ion channels.² IP₃ binds to sarcoplasmic reticulum (SR) IP₃ receptors (IP₃Rs), resulting in SR Ca²⁺ release, an elevation in intracellular Ca²⁺ concentration ([Ca²⁺]), and vasoconstriction.³ Recent evidence also indicates that IP₃-induced vasoconstriction can occur independently of SR Ca²⁺ release and via the activation of type 1 IP₃ receptors (IP₃R1) and type 3 canonical transient receptor potential (TRPC) channels.⁴,⁵ However, the functional signaling mechanisms by which IP₃Rs and TRPC channels communicate in arterial myocytes are unclear.

The mammalian TRP channel superfamily is encoded by at least 28 different genes that are subdivided into 7 families.⁶ These families encode ion channels with diverse ion selectivity, modes of regulation, and physiological functions.⁷ Vascular myocytes express at least 4 TRP families, including TRPC, TRPM, TRPV, and TRPP.⁷–ⁱ⁰ These channels regulate arterial myocyte membrane potential, [Ca²⁺], contractility, and proliferation, and are implicated in the etiology of vascular diseases.⁴,⁸–¹² Given the diversity of vascular myocyte TRP channels, it has become important to identify signaling pathways that specifically regulate individual chan-

© 2010 American Heart Association, Inc.
Circulation Research is available at http://circres.ahajournals.org DOI: 10.1161/CIRCRESAHA.110.216804
channel isoforms and to determine whether individual TRP channel isoforms perform distinct physiological functions. For instance, arterial myocytes express multiple TRPC isoforms, including 1, 3, and 6, but whether signaling pathways specifically regulate individual members and what the mechanisms are that mediate such effects are poorly understood.9,10 In cerebral artery myocytes, vasoconstrictors activate TRPC\textsubscript{3,9,13,14} whereas intravascular pressure stimulates TRPC currents in resistance-size cerebral arteries.9,10 Thus, TRPC\textsubscript{3} and TRPC\textsubscript{6} channels perform distinct physiological functions, but signaling pathways that mediate this differential regulation are unclear.

Here, we studied mechanisms by which IP\textsubscript{3},R1, the principal molecular and functional arterial myocyte IP\textsubscript{3},R isoform,5 stimulates TRPC currents in resistance-size cerebral arteries. Data suggest that IP\textsubscript{3},R1 is in close spatial proximity to, and associates with, TRPC\textsubscript{3}, but not TRPC\textsubscript{6} or TRPM4 channels. Endothelin (ET)-1, a PLC-coupled receptor agonist, and IP\textsubscript{3} alter the interaction between the IP\textsubscript{3},R N terminus and the TRPC\textsubscript{3} channel C terminus, leading to channel activation and vasoconstriction. Data indicate that IP\textsubscript{3},R1 selectively couples to TRPC\textsubscript{3} channels because of the close spatial proximity of these proteins and that this mechanism is essential for mediating ET-1 and IP\textsubscript{3},R-induced vasoconstriction.

Methods

Tissue Preparation

Animal protocols used were reviewed and approved by the Animal Care and Use Committee at the University of Tennessee Health Science Center. Sprague–Dawley rat (\approx 250 g) resistance-size cerebral arteries and myocytes from these arteries were isolated as previously described.4

Immunofluorescence Resonance Energy Transfer

Paraformaldehyde-fixed myocytes were incubated with primary antibodies: mouse monoclonal anti-IP\textsubscript{3},R1 and rabbit polyclonal anti-TRPC\textsubscript{3}, rabbit polyclonal anti-TRPC\textsubscript{6}, or rabbit polyclonal anti-TRPM4. Cells were then labeled with secondary antibodies: Cy3-conjugated donkey antimouse for IP\textsubscript{3},R1 and Cy2-conjugated goat anti-rabbit for TRPC\textsubscript{3}, TRPM4, or TRPC\textsubscript{6}. Fluorescent images, acquired using a Zeiss LSM 5 Pascal confocal microscope, were background-subtracted and normalized fluorescence resonance energy transfer (N-FRET)–calculated using the method of Xia and Liu.15

TRPC Channel Knockdown

Silencing vectors that express TRPC3- (TRPC3\textsubscript{shV}), TRPC6- (TRPC6\textsubscript{shV}), or scrambled control (scrm) short hairpin RNA were inserted into cerebral arteries using reverse permeabilization, as previously described.16

Coimmunoprecipitation

Arterial lysate was incubated with control mouse IgG or IP\textsubscript{3},R1 monoclonal antibody and then incubated with protein A sepharose beads. Protein samples were then analyzed by Western blotting using mouse monoclonal anti-IP\textsubscript{3},R1, mouse polyclonal anti-TRPC3, rabbit polyclonal anti-TRPC6, and horseradish peroxidase–conjugated secondary antibodies.

Surface Biotinylation

Membrane expression of TRPC3 channels was measured using surface biotinylation of intact arteries, as previously described.17

Cell Culture and Transfection

HEK293 cells were transfected with vectors encoding recombinant TRPC\textsubscript{3} or TRPC\textsubscript{6}, kindly provided by Dr James Putney (National Institute of Environmental Health Sciences) and Dr Jochen Reiser (University of Miami, Fla), respectively. Electrophysiology and Western blotting experiments were performed 36 to 72 hour after transfection.

Polymerase Chain Reaction

RT-PCR was performed on pure populations of \approx 100 selected cerebral artery myocytes, as described previously.18

Patch-Clamp Electrophysiology

Membrane cation currents were measured in arterial myocytes and HEK293 cells using the conventional whole cell patch-clamp configuration, as performed previously.4,5

Pressurized Artery Diameter Measurement

Arterial diameter was measured using pressurized artery myography, as described previously.18

Statistical Analysis

Data are expressed as mean±standard error of the mean. Statistical significance was calculated by using Student’s t-tests for paired or unpaired data or ANOVA followed by Student–Newman–Keuls test for multiple data sets. P<0.05 was considered significant.

An expanded Methods section is available in the Online Data Supplement at http://circres.ahajournals.org.
Adebiyi et al. IP₃R Coupling to TRPC Channels in Arterial Myocytes

Figure 1. TRPC3, but not TRPM4 or TRPC6, is in close spatial proximity to IP₃R1 channels in arterial myocytes. A, Fluorescent images of individual Cy2 and Cy3 labels, pixel overlay, and N-FRET for indicated TRP channel primary antibody combinations. Scale bar: 10 μm. B, Mean data illustrating control and ET-1-induced (100 nmol/L) N-FRET generated by Cy3 bound IP₃R1 and Cy2-bound TRPC3, TRPC6, or TRPC6 antibodies and effects of ET-1 and 30 mmol/L K⁺. *P<0.05 compared with TRPC6 or TRPM4; #P<0.05 compared with IP₃R1-TRPC3 in control. n values for columns from left to right are: 27, 11, 15, 20, 28, 17, and 13, respectively. C, Representative Western blot illustrating that TRPC3shV causes selective knockdown of TRPC3 and TRPC6shV induces selective knockdown of TRPC6. D, Mean data illustrating effects of TRPC3shV and TRPC6shV on TRPC3 (n=4 and 6), TRPC6 (n=4 and 6), and IP₃R1 (n=4 each), respectively. *P<0.05. E, TRPC6 knockdown did not reduce the N-FRET signal between IP₃R1 and TRPC6 in control (n=15) or ET-1 (n=10), whereas TRPC3 knockdown reduced the N-FRET signal between IP₃R1 and TRPC3 in control (n=10) and ET-1 (n=15). *P<0.05 compared with scrm.

(polygonal), or IP₃R1 and TRPC6 (polygonal), generated mean N-FRET of ≈11% and ≈12%, respectively (Figure 1A and 1B). ET-1 increased mean N-FRET between IP₃R1 and TRPC3-bound antibodies to ≈34%. In contrast, N-FRET between IP₃R1 and TRPC3-bound antibodies was not altered by membrane depolarization with 30 mmol/L K⁺ (Figure 1B). ET-1 did not change N-FRET between antibodies bound to IP₃R1 and TRPC6 or IP₃R1 and TRPC4 (Figure 1A and 1B). Antigenic peptides for TRPC3, TRPC6, and TRPM4 specifically blocked immunofluorescence produced by each antibody, but did not alter immunofluorescence detection by the other 2 antibodies (Online Figure I, A).

Next, N-FRET was measured in myocytes in which TRPC3 or TRPC6 expression was reduced using short hairpin RNA and quantified using Western blotting. The selectivity of antibodies for Western blotting experiments was examined. Whole Western blots for IP₃R1, TRPC3 and TRPC6 antibodies on arterial lysate are illustrated in Online Figure I (B). The monoclonal IP₃R1 antibody detected only 1 band corresponding to IP₃R1 (Online Figure I, B), and this band is reduced by IP₃R1 knockdown, indicating specificity. Antigenic peptides abolished appropriate size bands for each TRPC isoform but did not alter detection of the other TRPC protein (Online Figure I, C). The TRPC3 antibody detected recombinant TRPC3 expressed in HEK293 cells, but did not detect recombinant TRPC6 (Online Figure II, A). Similarly, the TRPC6 antibody detected recombinant TRPC6, but did not detect recombinant TRPC3 (Online Figure II, A). Endogenous TRPC3 and TRPC6 proteins were detected in HEK293 cells, consistent with a previous report. Taken together, these data further indicate that the TRPC3 and TRPC6 antibodies are selective for their respective TRPC channel isoforms.

Western blotting indicated that TRPC3shV and TRPC6shV reduced mean TRPC3 and TRPC6 protein by ≈40 and 43%, respectively, of that in arteries treated with scrm (Figure 1C and 1D). TRPC3shV did not alter TRPC6 and IP₃R1 expression and TRPC6shV did not alter TRPC3 and IP₃R1 expression (Figure 1C and 1D). TRPC3 knockdown reduced control N-FRET and the ET-1–induced elevation in N-FRET between IP₃R1 and TRPC3 (Figure 1E). In contrast, TRPC6 knockdown had no effect on N-FRET between IP₃R1 and TRPC6 in control or ET-1 (Figure 1E), indicating that this signal represents background N-FRET.

Coimmunoprecipitation (co-IP) was used to examine whether IP₃R1 physically associates with TRPC3 and TRPC6.
channels in small cerebral arteries. Because of the small size of the resistance-size vessels used in this study, arteries collected from 20 rats were required for each experiment. The IP$_{R1}$ monoclonal antibody coimmunoprecipitated both IP$_{R1}$ and TRPC3 channels from lysate (Figure 2). In contrast, TRPC6 was not detected in the same IP$_{R1}$ immunoprecipitate (Figure 2).

In summary, data indicate that TRPC3, but not TRPM4 or TRPC6, is in close spatial proximity to, and associates with, IP$_{R1}$ channels in myocytes of resistance-size cerebral arteries. Data also demonstrate that ET-1 modifies the molecular relationship between IP$_{R1}$ and TRPC3.

TRPC3 Mediates IP$_{3}$-Induced $I_{Ca,t}$ Activation in Cerebral Artery Myocytes

The contribution of TRPC3 and TRPC6 channels to IP$_{3}$-induced $I_{Ca,t}$ was examined. The TRPC3 antibody blocked whole-cell currents generated by recombinant TRPC3 expressed in HEK293 cells (Figure 3A and 3B; Online Figure II, B). In contrast, the TRPC3 antibody did not alter currents produced by recombinant TRPC6 channels. Similarly, the TRPC6 antibody blocked recombinant TRPC6 channel currents, but did not alter TRPC3 currents (Figure 3A and 3B; Online Figure II, B). Therefore, the antibodies selectively inhibit their respective TRPC currents. The TRPC3 antibody reduced mean IP$_{3}$-induced $I_{Ca,t}$ density by ~57% in arterial myocytes (Figure 3C and 3D). In contrast, the TRPC6 antibody had no effect on IP$_{3}$-induced $I_{Ca,t}$ density in arterial myocytes (Figure 3C and 3D).

IP$_{3}$-induced $I_{Ca,t}$ activation and vasoconstriction were studied in myocytes and arteries in which TRPC3 or TRPC6 expression was reduced using short hairpin RNA. TRPC3 knockdown reduced IP$_{3}$-induced $I_{Ca,t}$ density by ~41%. In contrast, TRPC6 knockdown did not alter IP$_{3}$-induced $I_{Ca,t}$ density (Figure 4A and 4B). TRPC6 knockdown reduces myogenic tone at intravascular pressures >40 mm Hg.10 Therefore, diameter regulation was measured in arteries pressurized to 20 mm Hg to avoid differences in baseline tone between arteries in which TRPC3 and TRPC6 were knocked down. TRPC3 knockdown attenuated IP$_{3}$- and ET-1–induced vasoconstriction by ~43 and 49%, respectively (Figure 4C through 4E). These data indicate that TRPC3, but not TRPC6, channels mediate IP$_{3}$-induced $I_{Ca,t}$ activation and contraction in cerebral artery myocytes.

ET-1 Does Not Increase Surface Expression of TRPC3 Channels in Myocytes

An increase in ion channel activity (NPo) can occur because of both an elevation in the number of channels (N) and an increase in channel open probability (P o). To investigate whether ET-1 alters plasma membrane TRPC3 channel protein, we used surface biotinylation.17 Confirmation that biotin specifically labels surface proteins was obtained using biotin-treated arterial segments exposed to Texas Red-conjugated streptavidin (Online Figure III). In addition, heat shock protein 90, an intracellular protein, was detected only in the nonbiotinylated (cytosolic) fraction.
Biotinylation indicated that in control, ≈30% of total TRPC3 protein was present in the arterial plasma membrane (Figure 5B and 5C). ET-1 did not alter the percentage of plasma membrane-localized TRPC3 (Figure 5B and 5C). These data indicate that a significant proportion of arterial TRPC3 is cytosolic and that ET-1 elevates myocyte I_{Cat} by stimulating plasma membrane-resident TRPC3 channels.

Calmodulin and IP$_3$R Binding Domains Are Present in Myocyte TRPC3 and TRPC6 Channels

Recombinant IP$_3$R N-termini contain a conserved amino acid sequence that can interact with a conserved C-terminal CIRB (calmodulin and IP$_3$R binding) domain found on all TRPC isoforms.21,22 TRPM4 does not contain a CIRB domain (GenBank accession no. XM_574447). Our data indicate that isoform-selective association of TRPC3 channels to IP$_3$R1 occurs in arterial myocytes (Figures 1 through 4). Therefore, we used RT-PCR to investigate whether myocyte TRPC channels contain CIRB domains. Primers used were selective for TRPC3 and TRPC6 CIRB domains (Online Figure IV). RT-PCR was performed on manually selected arterial myocytes to prevent message contamination from other vascular wall cell types.18 Data indicated that the C-termini of arterial myocyte TRPC3 and TRPC6 channels contain CIRB domains (Figure 6A).

TRPC3-IP$_3$R1 Physical Coupling Is Required for ET-1- and IP$_3$-Induced I_{Cat} Activation

We tested the hypothesis that IP$_3$-induced I_{Cat} activation in arterial myocytes occurs through an interaction between the conserved IP$_3$R interaction domain and the TRPC CIRB domain. Synthetic peptides corresponding to a region in the TRPC3 CIRB domain (QIMKRLIKRYVLKAQVDKEND, CIRBP)$^{21–24}$ and a scrambled control peptide (RDLKKAQNLVEIQKKYDRMVI, CIRBPscrm) were generated. CIRBP and CIRBPscrm alone did not alter mean baseline I_{Cat} density (pA/pF: no peptide, -3.5 ± 0.5, $n=5$; CIRBPscrm, -3.7 ± 0.9, $n=10$; CIRBP, -2.9 ± 0.6, $n=11$; $P>0.05$ for each) in arterial myocytes. In contrast, CIRBP reduced IP$_3$ and ET-1–induced I_{Cat} activation by $\approx63\%$ and 60%, respectively, when compared with CIRBPscrm (Figure 6B through 6D).

To study physiological functions of the IP$_3$R N terminus, a peptide was constructed corresponding to the IP$_3$R N-terminal sequence containing the conserved TRPC-binding region (EEVWLFWRD, IP$_3$RntP). IP$_3$RntP increased mean I_{Cat} density by $\approx260\%$ (Figure 7A and 7B). Gadolinium (Gd$^{3+}$), a nonselective cation channel blocker, had no significant effect on baseline currents, but reduced mean IP$_3$RntP-induced I_{Cat} density by $\approx70\%$ (Figure 7A and 7B). These data indicate that physical association between the IP$_3$R1 N terminus and the TRPC C terminus CIRB domain leads to I_{Cat} activation in arterial myocytes.
CIRBP Attenuates ET-1– and IP₃-Induced Vasoconstriction

The physiological function of molecular coupling between IP₃R and TRPC3 channels was investigated by measuring diameter regulation of pressurized (60 mm Hg) arteries. Membrane-permeant CIRBP (CIRBP-TAT) and scrambled control (CIRBPscrm-TAT) peptides were each generated by conjugation to a HIV-1 TAT sequence (RRRQRRKKRGY).²⁵ CIRBP-TAT reduced vasoconstriction caused by Bt-IP₃, a membrane permeant IP₃ analog, and ET-1 by 78% and 65%, respectively, when compared with CIRBPscrm-TAT (Figure 8A through 8D). These data indicate that interaction between the IP₃R1 N terminus and the TRPC3 channel CIRB domain contributes to IP₃ and ET-1–induced vasoconstriction.

Discussion

Here, we identify a novel vasoregulatory signaling mechanism whereby IP₃Rs couple to plasma membrane TRPC3 channels in arterial myocytes (Online Figure V). Novel findings of this study are that in cerebral artery myocytes: (1) IP₃R1 is located in close proximity to TRPC3, but not TRPC6 or TRPM4 channels; (2) ET-1 elevates FRET between fluorescent antibodies bound to IP₃R1 and TRPC3 channels but does not alter FRET between IP₃R1 and TRPC6 or TRPM4 channels; (3) TRPC3 channels co-IP with IP₃R1, whereas TRPC6 channels do not; (4) TRPC3, but not TRPC6, channels underlie IP₃-induced IC₅₀; (5) ET-1 does not alter total or plasma membrane-localized TRPC3 channel protein; (6) TRPC3 and TRPC6 both contain CIRB domains; (7) a TRPC3 CIRB domain peptide reduces IP₃- and ET-1–induced IC₅₀ activation and a peptide corresponding to the IP₃R1 N-terminal sequence that interacts with the TRPC CIRB domain activates IP₃; and (8) CIRBP attenuates IP₃- and ET-1–induced vasoconstriction. Taken together, these data indicate that interaction between the IP₃R1 N terminus and the TRPC3 channel CIRB domain contributes to IP₃ and ET-1–induced vasoconstriction.
first time that molecular coupling between IP$_3$R1 and TRPC channels has been demonstrated to occur in a native cell type, to perform a physiological function, and to exhibit TRPC channel isoform selectivity. Our data also suggest that close spatial proximity of IP$_3$R1 to TRPC3 channels establishes selective molecular coupling of these proteins. In contrast, although TRPC6 contains a CIRB domain, spatial separation appears to prevent this channel from coupling to IP$_3$R1 in arterial myocytes. Our study demonstrates that arterial myocyte IP$_3$R channels, previously considered to function solely by releasing SR Ca$^{2+}$/H$^{+}$, directly activate TRPC3 channels, thereby regulating arterial contractility. This study also illustrates that manipulating physical coupling between IP$_3$R and TRPC channels is a novel mechanism that could be exploited to regulate arterial contractility.

Rat cerebral artery myocytes express several TRP isoforms, including TRPC1, -3, -6, TRPM4, and TRPV4.$^{7,9-11}$ Mammalian TRPC channel isoforms share $>30\%$ amino acid sequence identity,27 with all TRPC channel isoforms containing a C-terminal CIRB domain.21,22 Cerebral artery myocytes express all 3 IP$_3$R isoforms, with IP$_3$R1 being the principal molecular and functional isoform.5 All recombiant IP$_3$R isoforms contain an N-terminal TRPC channel interaction domain.21,22 Coupling of the IP$_3$R TRPC binding domain to the TRPC channel CIRB domain displaces inhibitory calmodulin, leading to channel activation.22 The CIRB domain may also be a TRPC channel trafficking sequence.24 These previous studies were performed primarily by studying recombinant channels. It has been proposed that the physical interaction between IP$_3$Rs and TRPC channels may have occurred in response to TRPC channel overexpression.$^{21-23,26}$ Therefore, it was unclear whether physical coupling between IP$_3$Rs and TRPC channels would occur in native cell types. Here, we demonstrate that this coupling mechanism does occur in a native cell type, selectively regulates TRPC3 currents in arterial myocytes, and leads to vasoconstriction.

In cerebral artery myocytes, IP$_3$R stimulation leads to the activation of a I_{Cat} to which TRPC3 channels contribute.4,9 IP$_3$R-mediated I_{Cat} activation leads primarily to Na$^+$ influx, resulting in membrane depolarization, voltage-dependent Ca$^{2+}$ channel activation, an [Ca$^{2+}$]$_i$ elevation, and vasoconstriction.4 The mechanism by which IP$_3$Rs stimulate TRPC3 channels occurs independently of SR Ca$^{2+}$ release and appears to be a major mechanism by which PLC-coupled receptor agonists cause vasoconstriction.4 IP$_3$R1 and TRPC3 channels do not contribute to the cerebral artery myogenic response.4,9 In contrast, TRPC6 channels do not contribute to ET-1 or UTP-induced cerebral artery constriction, but are essential for the myogenic response.4,9,10 The different mechanisms by which vasoconstrictors and IP$_3$ activate TRPC3, whereas intravascular pressure stimulates TRPC6 were unclear. Fluorescent antibodies bound to endogenous IP$_3$R1 and TRPC3 generated FRET that was elevated by ET-1 and higher than for TRPC6 or TRPM4. TRPC3 knockdown reduced basal and ET-1-induced IP$_3$R1/TRPC3 FRET. The calculated Förster distance between Cy2 and Cy3 is 5 to 6 nm, supporting other evidence in this study that IP$_3$R1 and
TRPC3 are close enough to physically interact. In contrast, the FRET signal between IP$_R$R1 and TRPC6 and TRPM4 was consistent with background, and was not altered by ET-1, and was not altered by TRPC6 knockdown. These data indicate that TRPC6 and TRPM4 are not in close proximity to IP$_R$R1. Mechanisms that position TRPC3 nearby IP$_R$R1, but TRPC6 and TRPM4 away from IP$_R$R1, are unclear. Several possibilities exist, including differential localization by local lipid environments, including caveolae. It is also possible that IP$_R$R1 and TRPC3 are maintained by scaffolding proteins in a macromolecular complex. Scaffolding proteins, including Homer, establish close proximity of TRPC channels to other proteins, including IP$_R$Rs.

The ET-1–induced elevation in immunofluorescence resonance energy transfer may occur because of an IP$_3$–induced conformational change in IP$_R$R1 that locates the Cy3-tagged antibody closer to Cy2-bound TRPC3. Alternatively, ET-1 may cause IP$_R$R clustering, thereby locating more Cy3-tagged IP$_R$R1 channels in the vicinity of Cy2-bound TRPC3. The FRET method cannot differentiate between these potential mechanisms, but these possibilities deserve future investigation.

Co-IP data indicated that IP$_R$R1 and TRPC3 are located in the same arterial macromolecular complex that does not contain TRPC6. The small arteries used for co-IP experiments inevitably contained endothelium. Complementary data, including those obtained using FRET, patch-clamp electrophysiology, RNA interference, antibodies and peptides, indicate that close spatial and functional interaction occurs between IP$_R$R1 and TRPC3 in isolated myocytes. Arterial myocyte TRPC3 and TRPC6 channels both contained CIRBP domains. Thus, although both TRPC3 and TRPC6 could interact molecularly with IP$_R$R1, spatial proximity determines their ability to communicate. The CIRBP sequence used here as a competitive antagonist is identical to the sequence in TRPC3, and between 11% (TRPC1) and 89% (TRPC7) homologous to sequences in other TRPC channel isoforms. The CIRBP peptide did not alter I_{Ca} or diameter in the absence of ET-1 or IP$_3$, but reduced ET-1 and IP$_3$-induced I_{Ca} activation and vasoconstriction. Additional support that the CIRBP domain is functional in arterial myocytes was data indicating that IP$_R$RmP stimulated a Gd$_{3+}$-sensitive I_{Cat}. The IP$_R$RmP should activate all TRP channels that contain a CIRBP domain, including TRPC3, regardless of their proximity to IP$_R$Rs. However, TRPC isoforms also have variable affinities for the IP$_R$N terminus. Taken together our data indicate that: (1) IP$_R$R1 and TRPC3 proteins are maintained in close proximity in the absence of receptor agonists; (2) physical interaction between the IP$_R$R1 N terminus and TRPC3 channel C terminus is weak in the absence of IP$_3$, indicating that the interaction domains do not maintain the close proximity; and 3) IP$_3$ enhances physical interaction between IP$_R$R1 and TRPC3. Although IP$_R$R1 did not activate TRPC6, IP$_R$R1 may activate TRPC isoforms other than TRPC3 in arterial myocytes. Given that there are seven TRPC isoforms and 3 IP$_R$R isoforms, it was beyond the scope of the current study to determine which of the potential twenty-one interactions may occur molecularly and functionally in arterial myocytes. TRPC channel heteromultimers have been reported in cultured vascular myocytes and A7r5 cells, but it is unclear whether TRPC channels that couple to IP$_3$R1 in arterial myocytes are homomultimers or heteromultimers. TRPC3 knockdown reduced TRPC3 protein by \approx40% and attenuated IP$_3$-induced I_{Cat} by \approx41%. A TRPC3-selective antibody also similarly inhibited recombinant TRPC3 currents and IP$_3$-induced I_{Cat} in arterial myocytes. Therefore, any IP$_3$-induced current mediated by channels other than TRPC3 would be small in arterial myocytes. In other native cell types, IP$_R$Rs and TRPC channels may exhibit different isoform-dependent coupling patterns, including promiscuous coupling similar to that with recombinant channels.

Several stimuli, including receptor agonists, increase plasma membrane trafficking of recombinant TRPC3 channels. Biotinylation indicated that over the same time course that ET-1 activated I_{Cat} in arterial myocytes, total TRPC3 or plasma membrane-localized TRPC3 did not change. These data indicate that ET-1 elevates I_{Cat} by increasing the P_o of membrane-resident TRPC3 channels. Biotinylation also indicated that a large proportion of TRPC3 protein is intracellular. One explanation for this data are that TRPC3 channels may be retained, for example by RNF24, and that signaling pathways other than those activated by acute ET-1 application may stimulate plasma membrane insertion. TRPC3 channels are also present on intracellular organelle membranes. Given that FRET was detected at the plasma membrane and intracellularly, our data indicate that intracellular TRPC3 channels are also in close proximity to IP$_R$R1. Protein complexes containing both IP$_R$R1 and TRPC3 may also form before plasma membrane insertion of TRPC3.

PLC not only generates IP$_3$, but also elevates DAG, which activates PKC. CIRBP reduced ET-1– and IP$_3$-induced I_{Cat} activation by >60%. These data indicate that ET-1 and IP$_3$ stimulate a I_{Cat} primarily through molecular coupling of IP$_R$Rs to TRPC channels, rather than through DAG and PKC activation. This conclusion is consistent with previous evidence that IP$_R$R1 antibodies and IP$_R$R1 knockdown also inhibit UTP-induced I_{Cat} activation in arterial myocytes. DAG and PKC can regulate TRPC channels, but in vascular myocytes isolated from a variety of different blood vessels, regulation is complex with studies reporting PKC-mediated activation, inhibition, or no effect. In cerebral artery myocytes, PKC stimulates a I_{Cat} by elevating TRPM4 channel apparent micromolar Ca$^{2+}$ sensitivity. Here, in patch-clamp experiments, free intracellular Ca$^{2+}$ was strongly buffered using EGTA and ET-1–induced PKC activation would not stimulate TRPM4 channels. Conceivably, a proportion of the CIRBP-insensitive ET-1–induced vasoconstriction may occur because of PKC activation of other TRP channels, including TRPM4. Agonists also stimulate vasoconstriction via additional mechanisms, including activation of Ca$^{2+}$ waves and voltage-dependent Ca$^{2+}$ channels, and elevation of myofilament Ca$^{2+}$ sensitivity.
In summary, we describe a novel mechanism by which IP$_3$Rs regulate arterial diameter. Our data indicate that ET-1 and IP$_3$ activate membrane-resident TRPC3 channels in arterial myocytes by causing an interaction between the IP$_3$R1 N-terminal TRPC channel interaction sequence and the C-terminal TRPC3 channel CIRB domain. We also provide a mechanism by which IP$_3$R1 activation selectively stimulates TRPC3, but not TRPC6, channels and indicate that this occurs because of the close spatial proximity of these proteins which allows physical interaction. Physical coupling between IP$_3$R1 and TRPC3 channels could be manipulated therapeutically to regulate arterial contractility and, thus, brain blood flow.

Acknowledgments
We thank Dr Lidia A. Gardner for technical advice with FRET measurements.

Sources of Funding
Supported by National Heart, Lung, and Blood Institute grants R01 HL67061 and HL77678 (to J.H.J.) and K01 HL096411 (to A.A.). D.N. is a recipient of an American Heart Association Predoctoral Fellowship.

Disclosures
None.

References

Novelty and Significance

What Is Known?

- Phospholipase C–coupled receptor agonists elevate inositol 1,4,5-trisphosphate (IP₃) in arterial smooth muscle cells, leading to the activation of sarcoplasmic reticulum (SR) type 1 IP₃ receptors (IP₃Rs), an increase in intracellular calcium ([Ca²⁺]i) concentration, and vasoconstriction.
- Canonical transient receptor potential (TRPC) channels are molecularly and functionally diverse proteins that regulate smooth muscle cell plasma membrane cation influx and vascular contractility.
- The conventional view has been that IP₃Rs stimulate vasoconstriction by releasing SR Ca²⁺, although recent evidence indicates that IP₃Rs also induce vasoconstriction via an SR Ca²⁺ release-independent mechanism that involves TRPC channel activation; the mechanism is unidentified.

What New Information Does This Article Contribute?

- Type 1 IP₃ receptors are located in very close spatial proximity to plasma membrane TRPC3 channels in arterial smooth muscle cells.
- Vasoconstrictor agonists and IP₃ induce physical interaction between the IP₃R1 N terminus and the TRPC3 channel C-terminal calmodulin and IP₃R binding domain, leading to TRPC3 channel activation and vasoconstriction.
- In arterial smooth muscle cells, IP₃R1 coupling to TRPC3 channels is isoform-selective because IP₃R1 does not activate spatially separated TRPC6 channels.

Many vasoconstrictors elevate intracellular IP₃, but the mechanisms by which this second messenger stimulates vasoconstriction are poorly understood. We used a combination of molecular, cellular, and physiological approaches to examine IP₃R regulation of TRPC channels in cerebral artery smooth muscle cells. We found that IP₃R1, the predominant functional IP₃R isoform in arterial smooth muscle cells, physically interacts with and directly activates plasma membrane TRPC3, but not TRPC6, channels. To our knowledge, this is the first demonstration that:

1. native IP₃Rs physically interact with and activate native TRPC channels and
2. IP₃Rs directly regulate the activity of a plasma membrane ion channel in arterial smooth muscle cells. Physical coupling of IP₃R1 to TRPC3 channels occurs due close spatial proximity of these proteins. In contrast, TRPC6 channels are not located nearby IP₃R1 and do not couple. Our findings identify a novel mechanism of arterial contractility regulation whereby agonist-induced IP₃ stimulates coupling of IP₃Rs to TRPC3 channels, resulting in plasma membrane cation influx, and vasoconstriction. We also show that manipulating the interaction between IP₃R1 and TRPC3 channels is a novel mechanism that could be exploited to regulate arterial contractility.
Isoform-Selective Physical Coupling of TRPC3 Channels to IP$_3$ Receptors in Smooth Muscle Cells Regulates Arterial Contractility
Adebowale Adebiyi, Guiling Zhao, Damodaran Narayanan, Candice M. Thomas, John P. Bannister and Jonathan H. Jaggar

Circ Res. published online April 8, 2010;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2010/04/08/CIRCRESAHA.110.216804.citation

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2010/04/08/CIRCRESAHA.110.216804.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Materials and Methods

Tissue Preparation and Smooth Muscle Cell Isolation

Posterior cerebral, cerebellar, and middle cerebral arteries (100–200 µm) were harvested from rat brain maintained in ice-cold (4°C) oxygenated (21% O₂-5% CO₂-74% N₂) physiological saline solution (PSS) containing: (in mmol/L) 119 NaCl, 4.7 KCl, 24 NaHCO₃, 1.2 KH₂PO₄, 1.6 CaCl₂, 1.2 MgSO₄, and 11 glucose (pH 7.4). Individual smooth muscle cells were dissociated from the cerebral arteries using a HEPES-buffered solution containing: (in mmol/L) 55 NaCl, 80 sodium glutamate, 5.6 KCl, 2 MgCl₂, 10 HEPES, and 10 glucose (pH 7.3), as previously described.1 Briefly, cerebral arteries were placed into isolation solution containing 0.7 mg/ml papain, 1 mg/ml dithioerythreitol and 1 mg/ml bovine serum albumin (BSA) for 12 minutes at 37 °C. Arteries were then immediately transferred to isolation solution containing 1 mg/ml collagenase F and H (2:1), 100 μmol/L CaCl₂ and 1 mg/ml BSA for 10 minutes at 37 °C. Arteries were subsequently washed in isolation solution and triturated using a fire-polished glass pipette to yield single smooth muscle cells. Cells were maintained at 4°C, and used for experimentation within 8 hours.

Immunofluorescence resonance energy transfer (immuno-FRET)

Freshly isolated cerebral artery smooth muscle cells were allowed to adhere to poly-L-lysine coated coverslips. Cells were fixed with 3.7% paraformaldehyde in Phosphate-Buffered Saline (PBS) for 15 min. Paraformaldehyde-fixed cells were then washed three times with PBS and permeabilized with 0.1% triton X-100 for 1 min at room temperature. Following a 1 h incubation in PBS containing 5% bovine serum albumin (BSA), smooth muscle cells were treated for 1 h at 37°C with primary antibodies: mouse monoclonal anti-IP₃R1 (NeuroMab) and either rabbit polyclonal anti-TRPC3 (Alomone), rabbit polyclonal anti-TRPC6 (Alomone), or rabbit polyclonal anti-TRPM4 (Affinity BioReagents, Golden CO), each at a dilution of 1:100 in PBS containing 5% BSA. After a wash and block with PBS containing 5% BSA, smooth muscle cells were incubated for 1 h at 37°C with secondary antibodies: Cy3-conjugated Donkey Anti-Mouse for IP₃R1 (Jackson ImmunoResearch) and Cy2-conjugated Goat Anti-Rabbit (Jackson ImmunoResearch) for TRPC3, TRPM4, or TRPC6. Following wash and mount, fluorescence images were acquired using a Zeiss LSM Pascal laser-scanning confocal microscope. Cy2 and Cy3 were excited at 488 and 543 nm and emission collected at 505-530 and >560 nm, respectively. Negative controls were prepared by omitting primary antibodies. Images were background-subtracted and N-FRET was calculated on a pixel-by-pixel basis for the entire image and in regions of interest (within the boundaries of the cell) using the Xia method 2 and Zeiss LSM FRET Macro tool version 2.5.

Reverse transcription polymerase chain reaction (RT-PCR)

Briefly, total RNA was prepared from isolated cerebral artery smooth muscle cells using Absolutely RNA nanoprep kit (Stratagene, La Jolla, CA). cDNA was synthesized from DNase-treated RNA samples using AffinityScript Multiple Temperature Reverse Transcriptase (Stratagene). cDNA products were amplified by nested-PCR using gene-specific oligonucleotide primer pairs. The oligonucleotide primer sequences used for RT-PCR were as follows: TRPC3 channel CIRB domain, first-round PCR: 5′-ATCATGAGGATCATGACTAAGTTTCCA-3′ (forward) and 5′-TATCGTGTTGGCTGATTGAGA-3′ (reverse); nested-PCR: 5′-GGAACCTGGGCGAAGATGCTAAACTC-3′ (forward) and 5′-TGCTGATTGAGAATGCTGTTA-3′ (reverse). TRPC6 channel CIRB domain, first-round PCR: 5′-TGACAGAAATCGCTGGCAC-3′ (forward) and 5′-TGGCGCTGTCAGTACGTCTC-3′ (reverse); nested-PCR: 5′-GAATCTGCTGGCATGACACAAA-3′ (forward) and 5′-CATGATTTTCGACTGCTCAGTCTGAAGA-3′ (reverse). GeneBank accession numbers used to design TRPC3 and TRPC6 CIRB domains were NM_021771.1 and NM_053559.1, respectively. PCR amplification was performed in an Eppendorf Mastercycler (Eppendorf, Westbury, NY) with the
following reaction conditions: an initial denaturation at 94 °C for 2 min, followed by 40 cycles
(denaturation at 94 °C for 30 s, annealing at 50 °C for 30 s, and extension at 72 °C for 45 s), with a final
extension at 72 °C for 10 min. PCR products were separated by agarose gel (1.5%) electrophoresis and
sequenced.

Short Hairpin RNA Silencing Vector Construction
Using pRNA-U6.1/Neo as a template, silencing vectors were constructed to express short hairpin
(sh)RNA (GenScript Corp, Piscataway, NJ) as previously described.3 Expressed DNA sequences were
as follows: for TRPC3shV, GTTCATACTTTACTCCTACTA; and for TRPC6shV,
AGCTCAGAAGATTTCCATTTA

Reverse Permeabilization
Silencing vectors were inserted intracellularly into cerebral artery segments using a reverse
permeabilization procedure, as previously described.4 Arteries were placed into serum-free Dulbecco's
Modified Eagle Medium (DMEM) supplemented with 1% penicillin/streptomycin and incubated at 37°C
(95%O2, 5% CO2) for 4 days.

Western Immunoblotting
Western Immunoblotting was performed as previously described.3, 5 Briefly, rat cerebral artery lysate
protein concentrations were determined spectrophotometrically with amido black solution. Proteins were
separated by 4-15% gradient SDS-polyacrylamide gel electrophoresis and transferred onto PVDF
membranes using a Mini Trans Blot Cell (Bio-Rad, Hercules, CA). Membranes were then incubated in
respective antibodies and developed using enhanced chemiluminescence (Pierce, Rockford IL).

Co-immunoprecipitation
For each experiment, lysate was harvested from cerebral arteries pooled from ~20 rats using ice-cold lysis
buffer, giving ~1 mg total protein. The composition of lysis buffer was (in mmol/L): 140 NaCl, 8 sodium
phosphate, 2 potassium phosphate, 10 KCl, and 0.2% Triton X-100, plus 1% protease inhibitor cocktail
(Sigma). Arterial lysate was incubated with control mouse IgG or IP3R1 mouse monoclonal antibody (5
µg) at 4 °C overnight. Samples were then incubated with 50 µL protein A Sepharose beads (Pierce,
Rockford, IL) for 2 h at room temperature. Beads were subsequently collected by centrifugation at 5000 g
for 5 minutes at 4 °C and washed three times with lysis buffer. Laemmli sample buffer (2x, 25 µL) was
added to protein beads and incubated for ~ 10 min at room temperature, followed by heating in boiling
water for 5 min. Protein samples were then analyzed by Western blotting using mouse monoclonal anti-
IP3R1 (NeuroMab), mouse polyclonal anti-TRPC3 (Abnova), rabbit polyclonal anti-TRPC6 (Alomone),
and horseradish peroxidase-conjugated secondary antibodies, as previously described.3, 5

Surface Biotinylation
For each experiment, intact cerebral arteries from ~2 rats were incubated for 1 h at room temperature in a
1 mg/ml mixture each of EZ-Link Sulfo-NHS-LC-LC-Biotin and EZ-Link Maleimide-PEG2-Biotin
reagents (Pierce) in PBS pH 7.4. Unbound biotin was removed by quenching with PBS supplemented
with 100 mmol/L glycine and excess removed by washing with PBS. Arteries were then homogenized in
RIPA buffer (Sigma) and cellular debris removed by centrifugation. The total protein concentration of the
supernatant was determined and used to calculate the amount of lysate to be used for Avidin (Monomeric
Avidin, Pierce) pull-down of biotinylated surface proteins. This ensured that the same amount of total
protein was present in all samples. Following pull-down, biotinylated proteins remained bound to the
Avidin beads, whereas the supernatant contained non-biotinylated cytosolic proteins. Biotinylated
proteins were eluted from Avidin beads by boiling in 1x SDS-buffer containing 2% 2-mercaptoethanol.
Western blotting was used to quantify surface and cytosolic TRPC3 protein using rabbit polyclonal anti-
TRPC3 (Abnova) and horseradish peroxidase-conjugated secondary antibody, as previously described.3, 5
Mouse monoclonal anti-Hsp90 antibody was from Santa Cruz Biotechnology Inc. (Santa Cruz, CA).
Band intensity was determined using Quantity One software (BioRad). The percentage of total protein at the surface was calculated as $100 \times \frac{\text{biotinylated}}{\text{biotinylated} + \text{non-biotinylated}}$.

Cell culture and Transfection

Human Embryonic Kidney 293 (HEK293) cells were maintained in DMEM supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin under standard tissue culture conditions (21% O$_2$-5% CO$_2$; 37°C). HEK293 cells were transfected with vectors encoding GFP (control), GFP-tagged TRPC3, or GFP-tagged TRPC6 (2 µg of each). Transfection was done using the Ca$^{2+}$ phosphate method. TRPC3-GFP and TRPC6-GFP constructs were kindly provided by Dr. James Putney (NIEHS, Research Triangle Park) and Dr. Jochen Reiser (University of Miami Miller School of Medicine), respectively. The vectors used for transfection were confirmed by PCR analysis (Online Figure IV). Transfected cells grown on sterile glass coverslips were used for electrophysiological experiments. Transfected cells grown on 35 mm culture dishes were used for Western blotting experiments. Cells were used between 36 and 72 h after transfection.

Patch-Clamp Electrophysiology

Patch-clamp electrophysiology was performed on isolated arterial smooth muscle cells or HEK293 cells. Isolated smooth muscle cells were allowed to attach to a glass coverslip in the bottom of a chamber for 15 min prior to experimentation. Transfected HEK293 cells expressing GFP, GFP-tagged TRPC3, or GFP-tagged TRPC6 channels were grown on glass coverslips, which were then placed in the bottom of a patch-clamp chamber. GFP-positive HEK293 cells were visualized using a Nikon TS100 microscope using an epifluorescence attachment. Fluorescent HEK cells that were not attached to neighboring cells were used to obtain whole cell patch-clamp recordings. Membrane currents were measured using the patch-clamp technique (Axopatch 200B, Clampex 8.2). I_{cat} was measured using the conventional whole cell patch-clamp configuration, as we have done previously.3,5 Whole cell currents were measured by applying 940-ms voltage ramps between -120 and +20 mV with a holding potential of -40 mV. Bath solution for conventional whole-cell experiments contained (in mmol/L): 140 NaCl, 1.8 CaCl$_2$, 1.2 MgCl$_2$, 10 Hepes, and 10 glucose (pH 7.4). The pipette solution contained (in mmol/L): 140 CsCl, 10 HEPES, 10 glucose, 5 Mg-ATP, and 5 EGTA (with pH adjusted to 7.2 with CsOH), and 100 nmol/L free Ca$^{2+}$. Where applicable, anti-TRPC3 and -TRPC6 antibodies were included in the pipette solution. Antibodies were denatured by incubation at 95 °C for 20 minutes. Cells were dialyzed with antibodies or peptides for 10 minutes prior to current recordings. Effects of Gd$^{3+}$ were measured in paired experiments. Current amplitude at -120 mV was analyzed offline using pClamp 9 (Axon Instruments).

Pressurized Artery Diameter Measurement

An arterial segment 1–2 mm in length was cannulated at each end in a perfusion chamber (Living Systems Instrumentation; Burlington, VT). The chamber was continuously perfused with PSS equilibrated with a mixture of 21% O$_2$-5% CO$_2$-74% N$_2$, and maintained at 37°C. Intravascular pressure was altered using an attached reservoir and monitored using a pressure transducer. Pressurized arteries were observed with a charge-coupled device camera attached to an inverted microscope (Nikon TE 200). Arterial diameter was measured at 1 Hz using the automatic edge-detection function of IonWizard software (Ionoptix; Milton, MA). Pharmacological compounds were applied via chamber perfusion.

Chemicals

Unless otherwise stated, all reagents were purchased from Sigma Chemical (St. Louis, MO). Papain was purchased from Worthington Biochemical (Lakewood, NJ) and 2,3,6-Tri-O-Butyryl-myo-Inositol 1,4,5-Trisphosphate-Hexakis(propionoxymethyl) Ester (Bt-IP$_3$) was purchased from SiChem (Bremen, Germany). CIRB and IP3RntP peptides were synthesized by Sigma-Genosys (Woodlands, TX) while CIRBPsCRM, CIRBP-TAT, and CIRBPsCRM-TAT were synthesized by Molecular Resource Center, UTHSC (Memphis, TN).
Statistical Analysis
GraphPad Instat software (GraphPad Prism, San Diego, CA) was used for statistical analysis.
References

Online Figure Legends

Online Figure I. A, Antigenic peptides for each TRP channel primary antibody specifically block immunofluorescence produced by that antibody, but do not alter immunofluorescence detection by the other two primary antibodies. B, Whole western blot illustrating detection of IP₃R1 (~270 kDa), TRPC3 (~90 kDa), and TRPC6 (~110 kDa) proteins by their respective antibodies in cerebral arteries. C, TRPC3 antigenic peptide blocked TRPC3 detection, but had no effect on TRPC6 recognition. Similarly, a TRPC6 antigenic peptide blocked TRPC6 detection, but had no effect on TRPC3 recognition.

Online Figure II. A, TRPC3 (left panel) and TRPC6 (right panel) antibodies selectively detect overexpressed recombinant TRPC3 and TRPC6 in HEK293 cells. Each lane represents corresponding construct transfected into the cells. Faint TRPC3 and TRPC6 bands indicate endogenous TRPC3 and TRPC6 in HEK293 cells, as previously demonstrated. B, Exemplary recordings of I_{cat} measured in HEK293 cells transfected with vectors encoding GFP (control), GFP-TRPC3, or GFP-TRPC6 and effects of TRPC3 and TRPC6 antibodies and heat-denatured antibodies (2 µg/mL each).

Online Figure III. Surface labeling of myocytes using Texas red-conjugated streptavidin in non-biotinylated (left) and biotinylated (right) intact cerebral arteries. Scale bar = 20 µm.

Online Figure IV. First-round PCR analysis of TRPC3 and TRPC6 vector constructs using specific primers.

Online Figure V. Proposed mechanisms by which IP₃R coupling to TRPC3 channels regulate IP₃-induced arterial smooth muscle cell contractility.
Online Fig. I

A

<table>
<thead>
<tr>
<th>Antigenic peptide</th>
<th>None</th>
<th>TRPC3</th>
<th>TRPC6</th>
<th>TRPM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-TRPC3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-TRPC6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-TRPM4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>KDa</th>
<th>IP₃R1</th>
<th>KDa</th>
<th>TRPC3</th>
<th>KDa</th>
<th>TRPC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td></td>
<td>150</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>100</td>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>75</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>50</td>
<td></td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

Antibody: TRPC3 TRPC6 TRPC3 TRPC6 TRPC6 TRPC3
Antigenic peptide: None None TRPC3 TRPC6 TRPC6

Online Fig. I
Online Fig. II

A

B

Online Fig. II
Online Fig. III
Online Fig. IV

Input DNA

TRPC3 TRPC3 TRPC6 TRPC6

<table>
<thead>
<tr>
<th>Primer Set</th>
<th>100 bp</th>
<th>200 bp</th>
<th>300 bp</th>
<th>400 bp</th>
<th>500 bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRPC3 Primers</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TRPC6 Primers</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>