RANKL Increases Vascular Smooth Muscle Cell Calcification Through a RANK-BMP4–Dependent Pathway

Sara Panizo, Anna Cardus, Mario Encinas, Eva Parisi, Petya Valcheva, Susana López-Ongil, Blai Coll, Elvira Fernandez,* Jose M. Valdivielso*

Abstract—Vascular calcification commonly associated with several pathologies and it has been suggested to be similar to bone mineralization. The axis RANKL-OPG (receptor activator of nuclear factor κB ligand–osteoprotegerin) finely controls bone turnover. RANKL has been suggested to increase vascular calcification, but direct evidence is missing. Thus, in the present work, we assess the effect of RANKL in vascular smooth muscle cell (VSMC) calcification. VSMCs incubated with RANKL showed a dose-dependent increase in calcification, which was abolished by coincubation with OPG. To test whether the effect was mediated by signaling to its receptor, knockdown of RANK was accomplished by short hairpin (sh)RNA. Indeed, cells lacking RANK showed no increases in vascular calcification when incubated with RANKL. To further elucidate the mechanism by which RANK activation increases calcification, we blocked both nuclear factor (NF)-κB activation pathways. Only IKKα inactivation inhibited calcification, pointing to an involvement of the alternative NF-κB activation pathway. Furthermore, RANKL addition increased bone morphogenetic protein (BMP)4 expression in VSMCs, and that increase disappeared in cells lacking RANK or IKKα. The increase in calcification was also blunted by Noggin, pointing to a mediation of BMP4 in the calcification induced by RANKL. Furthermore, in an in vivo model, the increase in vascular calcium content was parallel to an increase in RANKL and BMP4 expression, which was localized in calcified areas. However, blood levels of the ratio RANKL/OPG did not change. We conclude that RANKL increases vascular smooth muscle cell calcification by binding to RANK and increasing BMP4 production through activation of the alternative NF-κB pathway. ([Circ Res. 2009;104:00-00.])

Key Words: vascular calcification ■ RANKL ■ BMP4 ■ NF-κB

Vascular calcification is a well recognized and common complication of a variety of pathological conditions like chronic kidney disease (CKD), diabetes mellitus, and atherosclerosis.1 There are 2 main types of vascular calcification, depending on whether the calcium deposits are located in the intima or in the medial layer.2 Intimal calcification is found in atherosclerotic plaques and is associated with a higher likelihood of adverse events such as myocardial infarction and coronary death.3 Atherosclerotic disease involves a complex interplay among several factors like inflammation, thrombosis, and lipid metabolism and different cell types such as endothelial cells, vascular smooth muscle cells (VSMCs), and macrophages. Medial calcification is usually associated with age and CKD patients. Medial calcification generates increased vascular stiffness and reduced vascular compliance, which are associated with increases in systolic blood pressure, pulse pressure, and pulse wave velocity. All of these complications lead to altered coronary perfusion and left ventricular hypertrophy.4 Furthermore, medial calcification of skin arterioles causes calciphylaxis, which is associated with thrombotic cutaneous ischemia, necrotic skin ulceration, and a high mortality rate. In this case, the main cell type involved is the VSMCs.

In the past, arterial calcification was regarded as a passive process. Thus, increases in calcium and phosphate levels over its solubility threshold would induce calcium mineral deposition in soft tissues. Nevertheless, accumulating evidence suggest that arterial calcification is the result of organized and regulated processes similar to bone formation.5 Bone remodeling is a lifelong coordinated process of bone formation and resorption that renews and adapts the skeleton.6 Thus, the balance between bone resorption and formation is finely regulated, and imbalances on one side or the other can cause bone disease. The regulation of that balance is achieved by a combination of hormones and the local cytokine milieu within the bone microenvironment.7 Among the hormones that regulate bone remodeling, the discovery of the RANK-RANKL-OPG system (receptor activator of nuclear factor κB...
[RANK]–RANK ligand–osteoprotegerin) provided a major breakthrough on the understanding of bone remodeling mechanisms.

RANKL is a member of the tumor necrosis factor superfamily and is expressed mainly by osteoblasts and its immature precursors.8 RANKL activates its receptor (RANK), which is expressed in osteoclasts and its precursors, promoting osteoclast formation and activation and prolonging osteoclast survival by suppressing apoptosis.9 The final step in RANK activation is the nuclear translocation of nuclear factor (NF)-κB, which is controlled by 2 main pathways, the classic and the alternative NF-κB pathways, which are also controlled by different kinases (IKKβ and IKKα, respectively). OPG is a decoy receptor for RANKL, which directly counters all the RANKL-mediated actions.10 Thus, the RANKL/OPG ratio is critical to determining bone remodeling and bone mass, and imbalances in this ratio or in RANK signaling underlie the pathology of many disorders exhibiting excessive bone loss.7,11 In fact, vascular calcification is associated with osteoporotic bone loss, but the reasons for this are unclear. The discovery that mice lacking OPG had severe osteoporosis and arterial calcification provided the breakthrough on the understanding of bone remodeling mechanisms.

Materials and Methods

All the experiments performed in this study followed the NIH Guide for the Care and Use of Laboratory Animals.

In Vitro Studies

Cell Cultures

Primary rat aortic VSMCs of Sprague–Dawley rats were obtained as described previously12 and maintained in DMEM (GIBCO) containing 10% FBS.

Cells were plated (105 cells/plate) in 100-mm plates. When the cell confluency was about 80%, VSMCs were shifted to calcification media, DMEM containing 15% FBS, 10 mmol/L sodium pyruvate, and 10 mmol/L β-glycerophosphate (Sigma). The effect of RANKL (1, 100, 500, 1000 pmol/L), OPG (100 pmol/L), and noggin (100 pmol/L) (all 3 from Sigma) on the calcification levels was tested.

We used cells between passage 2 and 8. All of the experiments were performed in triplicate. In each experiment, 3 plates were used per condition.

Determination of VSMC Calcification

In all of the calcification experiments, the calcium levels were measured 5 days after the addition of the treatments. First, we measured the rate of calcium incorporation of VSMCs incubated with increasing doses of RANKL. Moreover, we tested the effect of OPG and noggin in the calcification level induced by 100 pmol/L RANKL. Quantification of calcium deposits and von Kossa staining were performed as previously described.12 Alkaline phosphatase (ALP) activity was determined by the para-nitrophenyl phosphate detection (BioAssay Systems).

Lentiviral Production and Infection

Lentiviral-based vectors for RNA interference-mediated gene silencing (FSVsi) consisted of a U6 promoter for expression of short hairpin (sh)RNAs and the Venus variant of yellow fluorescent protein under the control of an SV40 promoter for monitoring transduction efficiency. Oligonucleotides to produce shRNA were annealed in buffer (150 mmol/L NaCl; 50 mmol/L Tris, pH 7.6) and cloned into the Agel-BamHI sites of FSVsi. shRNA target sequence to RANK was TTAGCTGAGGATGCTGAGGAT. shRNAs to IKKα and IKKβ were a generous gift of Dr X. Dolcet.17 Negative controls consisted on scrambled sequences. To produce infective lentiviral particles, 293T cells were cotransfected by the polycyclomine method with the virion packaging elements (VSV-G and Δ8.9) and the shRNA-producing vector (FSVsi-RANK or FSVsi as a control). 293T cells were allowed to produce lentiviral particles during 3 to 4 days in the same culture media used for VSMCs. Culture media was collected and centrifuged for 5 minutes at 1000g, and the supernatant was added to growing VSMCs overnight. After this period, media were replaced with fresh media, and cells were incubated for 4 additional days to allow endogenous gene knockdown. Western blot and/or real-time PCR were performed to check the gene knockdown.

Real-Time PCR

Total cellular RNA was isolated from VSMC control, RANK knockdown, IKKα and -β knockdown, and tissue samples by the Trizol method. In the in vitro experiments, isolation of RNA was performed 48 hours after the addition of treatments. Reverse transcription was performed with the first-strand DNA synthesis kit for RT-PCR (Roche Diagnostics). We used TaqMan real-time PCR amplification with gene-specific primer for RANKL, RANK, OPG, bone morphogenetic protein (BMP)2, or BMP4 (Gene Expression Assays from Applied Biosystems), using rat glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as a reference with an ABI Prism 7000 Sequence Detection System (Applied Biosystems). The relative RNA amount was calculated by standard formulae. Average and standard error from 3 experiments were calculated.

Preparation of Nuclear and Cytoplasmic Protein Extracts

VSMCs were treated with 100 pmol/L RANKL for 0, 10, and 30 minutes and 1, 2, and 4 hours. After each time point, VSMCs were washed with cold PBS. Cytoplasmic and nuclear protein fractions were extracted using NE-PER Nuclear and Cytoplasmic Extraction KIT (Pierce).

Western Blot Analysis

Western blot analysis was performed as described previously, 48 hours after the addition of treatments.14 After blotting, the membrane was incubated overnight with anti-RANK antibody, anti–active caspase 3 antibody (1:1000. Cell Signaling), anti-IKKα, and anti-IKKβ (1:1000; Calbiochem), anti-RELB (1:1000. Santa Cruz Biotechnology), anti–histone 1 (1:500. Santa Cruz Biotechnology), anti–lactate dehydrogenase (1:1000; Rockland), and anti-tubulin (1:10 000 Sigma). Secondary antibody binding was detected with the ECL Advance Western Blotting Detection Kit (Amersham Bio-sciences) and the VersaDoc Imaging system Model 4000 (Bio-Rad).

Enzyme-Linked Immunosorbent Assay

Levels of BMP2, BMP4, RANKL, and OPG were determined in cell culture supernatant, and rat plasma was determined by a commercially available ELISA (Quantikine, R&D Systems, Minneapolis, Minn, and Biomedica, Vienna, Austria).

In Vivo Studies

Experimental Animals

Sprague–Dawley rats (200 to 225 g) underwent 5/6 nephrectomy by previously described procedures19 and were divided in 2 groups. One group received calcitriol (1 µg/kg 3 times a week for 8 weeks; n=9), whereas the second group received a vehicle injection (n=9). Moreover, 2 more groups of sham-operated rats were used (control, n=9; injected with the same dose of calcitriol, n=9). At euthanasia,
a blood sample was extracted and abdominal aortas were collected and divided into 3 pieces. One was fixed, included in paraffin, and sliced; another piece was used to determine calcium content; and the last was used to isolate RNA.

Aortic Calcification

To study the changes in the aortas of the animals, we performed von Kossa staining as described in the section Determination of VSMC Calcification above. Furthermore, we measured total calcium content as described in the same section.

Immunohistochemistry

Sequential slides were used for immunohistochemistry and von Kossa staining as previously described. Sections were incubated in 1:50 anti-RANKL (Imgenex), anti-BMP4 (Abcam), anti-TRAP (Santa Cruz Biotechnology) polyclonal antibodies or nonimmune serum (negative controls) overnight at 4°C. After washing, the sections were incubated with 1:200 biotinylated secondary antibody and Vectastain ABC and DAB substrate kits (Vector Labs).

Biochemistry Data

Blood obtained at the end of the experiment was analyzed for calcium and phosphate using a multichannel autoanalyzer (Roche/Hitachi Modular Analytics).

Statistical Analysis

Differences between groups were assessed by ANOVA followed by Dunnett’s post hoc test. A value of $P<0.05$ was considered statistically significant.

Results

In Figure 1, we show the effect of adding RANKL to VSMCs cultured with calcification media. RANKL increased VSMC calcification measured as VSMC calcium levels (Figure 1A) and ALP activity (Figure 1B) in a dose-dependent manner and starting at concentrations of 100 pmol/L. The calcification induced by RANKL was also visualized by von Kossa staining, as we show in Figure 2B. In this case, we can see that incubation of VSMCs with RANKL increased the brown staining that marks calcified areas.

In Figure 2, we show the effect of coincubation of RANKL with OPG in the calcification of VSMCs. The increase in calcium levels induced by RANKL was inhibited by OPG (Figure 2B, 2D, and 2E).

To determine whether the effect of RANKL was mediated by activation of RANK, we designed shRNA to decrease RANK protein levels. In Figure 3, we can see that levels RANK (Figure 3A) were decreased in the cells infected with FSVsi-RANK. The incubation of those cells with 100 pmol/L RANKL showed that the elimination of RANK blunted the increase in calcification (Figure 3B), suggesting that the effect of RANKL in calcification is mediated by binding to RANK. To determine whether or not part of the effect of OPG was mediated by inhibition of TRAIL (tumor necrosis factor–related apoptosis-inducing ligand), and thus inhibiting apoptosis, we also checked the effect of RANKL and coinubation of RANKL and OPG on the levels of active caspase 3. Incubation of VSMCs with RANKL or RANKL plus OPG for 48 hours did not modify the levels of active caspase 3 (data not shown). To further elucidate the pathway, we infected cells with shRNA for both kinases involved in the classic and the alternative pathways of NF-κB activation (Figure 3A). The disruption of the alternative pathway (but not the classic pathway) blunted the increase in calcification (Figure 3B). Accordingly, incubation of VSMCs with
RANKL increased the nuclear levels of RelB (Figure 3C), confirming the activation of the alternative pathway of NF-κB activation.

In Figure 4 we show the effect of adding RANKL in the mRNA (Figure 4A) and protein (Figure 4B) levels of BMP4. RANKL increased BMP4 levels in VSMCs. No effect of RANKL on BMP2 levels was detected either by real-time PCR or ELISA (data not shown). Elimination of RANK or IKKα (but not IKKβ) blunted the effect of RANKL on BMP4, pointing again to the alternative pathway of activation of NF-κB as the responsible of the increase in BMP4 induced by RANKL. In Figure 5A and 5B, we show the effect of adding Noggin (a BMP4 inhibitor) in the calcification induced by RANKL. The addition of 100 pmol/L Noggin blunted the increase in calcification induced by RANKL, suggesting that this increase is mediated by a BMP.

Figure 6 shows the results obtained in the in vivo model of vascular calcification. Arteries obtained from animals with 5/6 nephrectomy showed a significant increase in vascular calcification, measured as calcium content, which was exacerbated by treatment with calcitriol for 8 weeks (Figure 6A). Blood levels of RANKL were not modified by the treatment but OPG levels increased in uremic animals, leading to a tendency to decrease the RANKL/OPG ratio (Figure 6B). However, vascular expression of RANKL in those animals increased with no changes in OPG (Figure 6C) and was colocalized with the calcified areas (Figure 6E and 6F).

RANKL increased the nuclear levels of RelB (Figure 3C), confirming the activation of the alternative pathway of NF-κB activation.

Discussion
To our knowledge, this is the first report showing a direct effect of RANKL increasing VSMC calcification. The possible effect of RANKL on VSMC calcification has been suggested by several authors mainly based on indirect experimental results found in the literature. On the one hand, the expression of RANKL increases in calcified areas in arteries from experimental animals and from patients. In the OPG knockout mice, a model that shows osteoporosis and vascular calcification, Min et al showed that RANKL...
mRNA could be found near the calcified arterial lesions. In addition, the presence of RANKL has been also found in association with extracellular matrix surrounding calcium deposits in human atherosclerotic plaques and in calcified aortic valves. On the other hand, the expression of OPG as a transgene on an OPG-null background prevented the appearance of vascular calcification. However, the administration of OPG to adult knockout mice did not inhibit vascular calcification, indicating a possible effect of RANKL in the onset of calcification. Furthermore, Price et al showed that administration of OPG could inhibit the vascular calcification induced by warfarin and vitamin D in experimental animals. A recent report of Morony et al also shows that OPG can inhibit vascular calcification without affecting atherosclerosis in an animal model. Our results show that RANKL added to VSMCs incubated in calcification media increased both calcium content and ALP activity, together with an increase in von Kossa staining. Thus, we have shown a direct effect of RANKL inducing VSMC-mediated matrix mineralization.

The fact that OPG inhibits vascular calcification in experimental models has been attributed in the past to 2 possible mechanisms. One was explained by the fact that OPG inhibits bone resorption, and some authors link an increase in bone resorption with vascular calcification. Thus, it has been proposed that an imbalance in calcium allocation allows its movement from bone to vascular wall via mechanisms that involve OPG. This hypothesis was supported by results that link arterial calcification with diseases with a high bone resorption rate and also because treatments that inhibit bone resorption can inhibit vascular calcification in experimental models. However, in patients with chronic renal failure, high levels of OPG seem to be unable to protect against vascular calcification. Nonetheless the significance of those results is limited because of the fact that in those studies, RANKL levels were not measured, and, thus, RANKL/OPG ratios were not determined. The other mechanism is by acting directly on cells in the artery inhibiting the effect of calcification stimulators. OPG is a decoy receptor for RANKL and also for TRAIL. VSMCs express both OPG and TRAIL. The binding of TRAIL to its receptor induced apoptosis, which has also been related to vascular calcification. In vitro models of calcifying VSMCs have shown that a mineral imbalance induces VSMC apoptosis and vesicle release and that these apoptotic bodies and vesicles form a nidus for the deposition of calcium phosphate. Thus, inhibition of TRAIL could inhibit also vascular calcification. However, no direct evidence of apoptosis has been found in models of vascular calcification in which OPG treatment was able to inhibit it. There is a third possibility, which is that OPG inhibits vascular calcification by directly inhibiting RANKL. Our results clearly show that coinubcation with OPG inhibits RANKL-induced VSMC calcification. However, it could be hypothesized that incubation with RANKL will increase VSMC calcification by depleting endogenously produced OPG and, thus, leaving TRAIL free to induce apoptosis. Our experimental results showed that incubation of VSMCs with RANK did not increase the levels of active BMP4 expression. A and B, mRNA (A) and protein (B) levels of BMP4 in control VSMCs or cells lacking RANK, iKKα, and iKKβ incubated in calcification media (gray bars) or calcification media with RANKL (white bars). Data are means ± SEM. *P < 0.05 vs control cells incubated in calcification media.

Figure 4. Effect of the incubation of rat VSMCs with RANKL (100 pmol/L) and Noggin (100 pmol/L). A, Quantification of calcium incorporation. Data are expressed in nanograms of calcium per milligram of protein. B, Effect on ALP activity. Data are expressed in international units of ALP per milligram of protein. Data are means ± SEM. *P < 0.05 vs RANKL 0 pmol/L, Noggin 0 pmol/L; #P < 0.05 vs RANKL 100 pmol/L, Noggin 0 pmol/L.
caspase 3, which is involved in TRAIL-induced apoptosis. Furthermore, we performed experiments in which we inhibited RANK expression by shRNA. In those cells, incubation with RANKL did not increase VSMC calcification, pointing to a direct role of RANKL increasing VSMC calcification by binding to RANK.

The binding of RANKL to its receptor RANK activates both the canonical and the alternative NF-κB pathways. We further investigated how activation of RANK induced vascular calcification by inhibiting either pathway in the NF-κB cascade. The results showed that inhibition of the canonical pathway did not affect vascular calcification, whereas the use of shRNA for the main kinase involved in the alternative pathway totally blunted RANKL-induced VSMC calcification. Accordingly, incubation with RANKL induced an increase in nuclear translocation of RelB, proving an activation of the alternative NF-κB pathway. Furthermore, activation of RANK increased the production of BMP4. BMP4 is a member of the BMP family, a group of signaling molecules that belong to the transforming growth factor β superfamily and were initially identified by their capacity to induce endochondral bone formation. In addition, BMP4 has been involved in the osteogenic transition of VSMCs, leading to vascular calcification. It has also been described that BMP4 increases in vitro VSMC calcification and is upregulated in calcified atherosclerotic lesions. Our results further show that parallel to a decrease in vascular calcification, inhibition of the alternative NF-κB activation pathway also decreased BMP4. Furthermore, the addition of noggin (a pharmacological inhibitor of the BMPs) to the incubation media also inhibited the RANKL-induced VSMC calcification, suggesting that it is mediated by an increase in BMP4 expression.

We also tested our results in an in vivo model of vascular calcification. In that model, subtotally nephrectomized rats

Figure 6. Aortic calcium content (A), serum levels of the ratio RANKL/OPG (B), aortic RNA of levels of the ration RANKL/OPG (C), and aortic levels of BMP4 (D). Groups are sham-operated rats (white bars), sham-operated rats treated with calcitriol (1 μg/kg 3 times a week for 8 weeks) (gray bars), rats with subtotal nephrectomy (dotted bars), and rats with subtotal nephrectomy treated with calcitriol (1 μg/kg 3 times a week for 8 weeks) (dashed bars). Data are means±SEM. ∗P<0.05 vs control; #P<0.05 vs 5/6 nephrectomy. Representative serial sections of aorta obtained from a rat with subtotal nephrectomy treated with calcitriol and stained with von Kossa (E) and immunostained for RANKL (F), BMP4 (G), TRAP (H), and negative control (I). Original magnification, ×20.
were treated with high doses of vitamin D to intensify vascular calcification. This model has been used before, and it has been shown that administration of OPG was able to decrease the vascular calcification. The results show that administration of calcitriol to normal animals does not increase either the expression of RANKL/OPG or BMP4 in arteries or in blood. Those animals showed no increases in vascular calcification. In addition, uremia induces an increase in the RANKL/OPG ratio and in BMP4 expression in arteries. Consistently, the levels of vascular calcification are increased in those animals. The increase in vascular calcification is higher in the uremic animals treated with calcitriol, together with a tendency to increase arterial RANKL and BMP4 expression. This finding suggests that there are other factors that have an effect on the degree of vascular calcification in vivo that can be influenced by calcitriol treatment. For instance, uremic animals treated with calcitriol show higher levels of phosphorus in blood, a parameter that has been shown to increase vascular calcification. Furthermore, the expression of RANKL and BMP4 were localized in areas of medial calcification, supporting the role of RANKL in promoting VSMC calcification. The staining for TRAP was negative in those areas and agrees with previous reports suggesting that, contrary to atherosclerotic plaque calcification, in medial calcification macrophage infiltration is not involved. The clinical implications of our in vivo model to human pathology are relative, because vitamin D intoxication in uremic patients is currently a rare phenomenon.

We also tested the role of circulating levels of RANKL as a possible marker for vascular calcification in our model. However, whereas the vascular expression of RANKL increased, the circulating levels of RANKL did not change. The association of circulating OPG levels with traditional vascular risk factors has been extensively reported, but the association of circulating OPG levels with traditional vascular calcification and cardiovascular disease in uremia. Serum RANKL levels were not associated with traditional risk factors has been extensively reported, but the association of circulating OPG levels with traditional vascular calcification and cardiovascular disease in uremia. Serum RANKL levels were not associated with traditional risk factors has been extensively reported, but the association of circulating OPG levels with traditional vascular calcification and cardiovascular disease in uremia. Serum RANKL levels were not associated with traditional risk factors has been extensively reported, but the association of circulating OPG levels with traditional vascular calcification and cardiovascular disease in uremia.

Sources of Funding

This work was supported, in part, by grants from Fondo de Investigaciones Sanitarias (grants PI06/0010 and PI07/0427) and REDinREN (16/06). J.M.V. and B.C. hold a contract from the Miguel Servet program. M.E holds a contract from the Ramon y Cajal program. S.P. and P.V. hold a fellowship from Generalitat de Cataluña.

Disclosures

None.

References

RANKL Increases Vascular Smooth Muscle Cell Calcification Through a RANK-BMP4–Dependent Pathway
Sara Panizo, Anna Cardus, Mario Encinas, Eva Parisi, Petya Valcheva, Susana López-Ongil, Blai Coll, Elvira Fernandez and Jose M. Valdivielso

Circ Res. published online March 26, 2009;

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2009/03/26/CIRCRESAHA.108.189001.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/