Compartmentalized Phosphodiesterase-2 Activity Blunts β-Adrenergic Cardiac Inotropy via an NO/cGMP-Dependent Pathway

Marco Mongillo, Carlo G. Tocchetti, Anna Terrin, Valentina Lissandron, York-Fong Cheung, Wolfgang R. Dostmann, Tullio Pozzan, David A. Kass, Nazareno Paolocci, Miles D. Houslay, Manuela Zaccolo

Abstract—β-Adrenergic signaling via cAMP generation and PKA activation mediates the positive inotropic effect of catecholamines on heart cells. Given the large diversity of protein kinase A targets within cardiac cells, a precisely regulated and confined activity of such signaling pathway is essential for specificity of response. Phosphodiesterases (PDEs) are the only route for degrading cAMP and are thus poised to regulate intracellular cAMP gradients. Their spatial confinement to discrete compartments and functional coupling to individual receptors provides an efficient way to control local [cAMP], in a stimulus-specific manner. By performing real-time imaging of cyclic nucleotides in living ventriculocytes we identify a prominent role of PDE2 in selectively shaping the cAMP response to catecholamines via a pathway involving β1-adrenergic receptors, NO generation and cGMP production. In cardiac myocytes, PDE2, being tightly coupled to the pool of adenylyl cyclases activated by β-adrenergic receptor stimulation, coordinates cGMP and cAMP signaling in a novel feedback control loop of the β-adrenergic pathway. In this, activation of β1-adrenergic receptors counteracts cAMP generation obtained via stimulation of β1/β2-adrenoceptors. Our study illustrates the key role of compartmentalized PDE2 in the control of catecholamine-generated cAMP and furthers our understanding of localized cAMP signaling. (Circ Res. 2006;98:0-0.)

Key Words: PDE2 ▪ cAMP ▪ cardiomyocytes ▪ fluorescence resonance energy transfer ▪ compartmentalization

The activation of the β-adrenergic system is the primary neurohormonal mechanism controlling force and frequency of cardiac contraction. The majority of β-adrenergic effects are driven by the elevation of intracellular cAMP levels, followed by activation of a cAMP-dependent protein kinase A (PKA). Given the multiple PKA targets within the myocyte, a spatially confined PKA activity is essential to warrant response specificity. It is becoming increasingly evident that the compartmentalization of proteins within specific regions of cardiac myocytes is pivotal to the appropriate functioning of the cAMP/PKA signaling pathway, although the machinery that underpins compartmentalized cAMP signaling is only now becoming fully appreciated. Thus, receptors, G proteins and adenylyl cyclase (AC) are confined in discrete parts of the plasma membrane, and PKA is anchored via AKAPs (A kinase anchoring proteins) close to its specific targets. cAMP can be compartmentalized in discrete cell regions, leading to activation of selected pools of PKA.

Fundamental to the generation and shaping of cAMP gradients is the activity of phosphodiesterases (PDEs), a superfamily of enzymes grouped in 9 families able to hydrolyze cAMP with more than 40 isoenzymes. Instrumental to the generation and shaping of cAMP gradients in cells is the association of PDEs to specific subcellular structures or signaling scaffold complexes via targeting domains. PDE isoenzymes are thus poised to perform unique functional roles that depend on the particular combination of regulatory mechanism, kinetics, and localization.

Members of at least 4 cAMP-PDE families coexist in cardiac myocytes, namely (1) PDE1, a Ca2+/calmodulin activated PDE; (2) PDE2, a cGMP-activated PDE; (3) PDE3, a cGMP-inhibited PDE; and (4) PDE4, a cGMP-independent, cAMP-specific PDE. Of these, PDE3 and PDE4 provide the major PDE activity in the heart, and most studies performed to date have focused on these 2 enzyme families. However, several pieces of evidence suggest that PDE2 may also...
control important biological functions in heart cells. PDE2 is able to hydrolize both cAMP and cGMP but is unique in that its N-terminal, paired GAF domains are able to bind cGMP, leading to a concomitant increase in hydrolytic activity.10 Regarding cardiac function in particular, a cGMP-mediated, PDE2-dependent decrease of cAMP has been reported to be responsible for cholinergic attenuation of \(\beta\)-adrenergic signaling in rabbit atrioventricular nodal cells.12 Similarly, in pacemaker cells, the effect of NO on heart rate appears to be mediated, at least in part, by inhibition of L-type Ca\(^{2+}\) current (\(I_{ca}\)) via a signaling pathway involving guanylyl cyclase activation, synthesis of cGMP, and stimulation of a cGMP-activated PDE.13 The role of PDE2 in the contractile myocardiun is less clear. Although, in amphibian ventricular myocytes14 and human atrial cells,15 cGMP has been reported to induce a strong inhibition of cAMP-enhanced \(I_{ca}\), via activation of a cGMP-stimulated PDE, the same effect was not found in other species.16

Here we test the novel hypothesis that in cardiac myocytes compartmentalized PDE2 activity blunts \(\beta\)-agonist–induced cardiac contractility via a \(\beta\)-receptor–coupled NO-dependent pathway. By using real-time, fluorescence resonance energy transfer (FRET)-based imaging of cAMP, in living cells,17 we report, for the first time, that consequent upon activation of \(\beta\)-receptors, there follows a rise in intracellular NO-cGMP levels, which serve to activate membrane-associated PDE2 activity, thereby selectively attenuating spatially confined pools of intracellular cAMP that, ultimately, affect contractile function.

Materials and Methods

Primary cultures of cardiac ventricular myocytes were imaged for FRET changes as described.4 Confocal immunostaining of PDE2A was performed with a polyclonal antibody (FabGennix, Tex). Cell lysis, fractionation method, and PDE assay are described in the expanded Materials and Methods section in the online data supplement available at http://circres.ahajournals.org. Cai was assessed by expanded Materials and Methods section in the online data supplement.

Results

PDE2 Exerts Tight Control Over cAMP Generated by \(\beta\)-Adrenoceptor Stimulation

We have previously shown that PDE4 and PDE3 families provide the major cAMP PDE activity in rat neonatal ventriculocytes, whereas PDE2 activity is only a minor fraction of the total activity.11 However, we found that the spatial confinement of specific PDEs can enhance the importance of particular PDE isoforms in determining cAMP signaling.11 With this in mind, we set out to evaluate the role of PDE2 in the control of cAMP signaling using the specific PDE2 inhibitor EHNA and a genetically encoded, FRET-based sensor for cAMP.18

We treated rat neonatal ventriculocytes expressing the genetically encoded cAMP sensor with 10 \(\mu\)mol/L EHNA and found a small increase in [cAMP], with a \(\Delta R/R_0 = 0.9\pm0.2\%\) (mean\(\pm\)SEM; \(n = 10\)) (Figure 1A). Inhibition of all PDE activity with the nonselective inhibitor IBMX (100 \(\mu\)mol/L), however, generated a rise in [cAMP], that was at least ten times larger, with a \(\Delta R/R_0\) of 10.3\(\pm1.5\%\) (\(n = 8\)) (Figure 1A).

Addition of 10 \(\mu\)mol/L EHNA to ventriculocytes that had previously been stimulated with a submaximal concentration of NE (5 \(\mu\)mol/L) resulted in a very large, saturating increase in [cAMP], (Figure 1B). The same concentration of NE applied to control cells caused a marginal [cAMP], rise. Comparable results were obtained in ventriculocytes from neonatal mice and stimulated with either NE or isoproterenol alone or in combination with EHNA (not shown). To quantify more clearly the effect of PDE2 inhibition in the presence of catecholamines, we used a variant of the cAMP sensor (RII-R230K) showing \(=100\)-fold higher EC\(_{50}\) value in a cAMP-dependent dissociation assay in vitro11 and found that the response to 1 \(\mu\)mol/L NE showed a 32 \(\Delta R/R_0\) of 1.2\(\pm1.0\%\) and the subsequent addition of 10 \(\mu\)mol/L EHNA generated a 7-fold increase in [cAMP], (32 \(\Delta R/R_0 = 6.9\pm1.7\%\)) (Figure 1C and 1D). Such a response was slightly higher than that recorded with the same sensor after inhibition of total PDE activity with IBMX (100 \(\mu\)mol/L) (Figure 1D).

The low-affinity cAMP probe RII-R230K allows for the investigation of the high range of cAMP concentrations invariably achieved after PDE inhibition. We thus used such a probe in all subsequent experiments, unless otherwise specified. To exclude the possibility that the effect of EHNA on [cAMP], was attributable to its known ability to inhibit adenosine deaminase, we challenged cells with NE and EHNA in the presence of the A2a receptor antagonist SCH5826119 (1 \(\mu\)mol/L). However, this made no difference to the effect of EHNA either in basal or in stimulated conditions (Figure 1E), indicating that EHNA functioned to alter cAMP levels in these cells by inhibiting PDE2 activity.

PDE2 Selectively Controls cAMP Generated by \(\beta\)-Adrenoreceptor Agonists

Although PDE2 represents only a small fraction of total PDE activity in rat neonatal ventriculocytes, the experiments presented in Figure 1 demonstrate that PDE2 inhibition leads to a dramatic augmentation of the \(\beta\)-adrenoceptor (AR)–induced [cAMP]. This suggests that PDE2 may be tightly coupled to a pool of AC activated by \(\beta\)-AR. To test this hypothesis, we measured the cAMP response induced by PDE2 inhibition in cells treated with the pharmacological AC activator forskolin. Cells treated with 1 \(\mu\)mol/L forskolin show a rise in [cAMP], comparable to that determined by challenge with 1 \(\mu\)mol/L NE (\(\Delta R/R_0 = 1.9\pm0.1\%\); compare Figures 1B and 2A). Inhibition of PDE2 by EHNA induced an almost undetectable amplification of the cAMP rise in forskolin-treated cells (\(\Delta R/R_0\) of 2.2\(\pm2.0\%\)) (Figure 2). Thus, the effect of EHNA is more than 30 times larger in the presence of NE than after stimulation with forskolin.

Localization of PDE2

To gain insight into the possibility that PDE2 underpins a compartmentalized effect on cAMP signaling in ventriculocytes, we performed biochemical fractionations of neonatal rat myocytes to determine whether or not PDE2 is membrane
associated. In doing this, we determined the activity of PDE2, PDE3, and PDE4 in the low-speed (P1) and high-speed (P2) membrane fractions from ventriculocytes as well as in the “soluble” high-speed supernatant fraction (S2). As shown in supplemental Table I, all of the PDE2 activity was recovered in the membrane fraction and no PDE2 activity was detectable in the supernatant. This finding suggests that the PDE2 activity in these cells is entirely attributable to the PDE2A2 isoform, which is membrane associated because of its unique N-terminal extension.20

We further investigated the subcellular localization of PDE2 by immunocytochemistry and confocal microscopy. As shown in Figure 3, PDE2 was found to localize at the plasma membrane and in particular in correspondence of the cell-to-cell junctions. In addition, localization in correspondence of the sarcomeric Z line was clearly detected (Figure 3). A similar localization at the Z line has been shown for PDE4D,11 an enzyme involved in the selective control of cAMP generated after δAR stimulation.

Determination of PDE2 Activity in Lysates From Unstimulated and NE-Treated Myocytes

Unlike other PDEs expressed in heart cells (eg, PDE321 and PDE422), no stable activation of PDE2 activity has been reported to date. To establish whether our experimental

Figure 1. Effect of PDE2 inhibition on cAMP accumulation in resting and NE-stimulated myocytes. Cells were transfected with either RII-CFP/C-YFP (A and B) or with RIIR230K-CFP/C-YFP (C and D). Representative experiments showing the effect of the PDE2 inhibitor EHNA (10 μmol/L) on [cAMP]i in resting myocytes (A) and after stimulation with NE at submaximal (5 nmol/L) (B) or saturating (1 μmol/L) (C) concentration. D. Summary of the experiments performed as in C. E. Effect on [cAMP]i of NE (1 μmol/L), EHNA (10 μmol/L), and NE (1 μmol/L) plus EHNA (10 μmol/L) in cells preincubated with the adenosine (A2a) receptor antagonist SCH58261 (1 μmol/L). In all figures, error bars indicate SEM. *0.01<P<0.05, **0.005<P<0.01, ***P<0.005.

Figure 2. Effect of EHNA (10 μmol/L) on [cAMP] generated by 25 μmol/L forskolin (FSK). Representative kinetics (A) and summary (B) of 5 independent experiments. ns indicates not significant.
conditions could lead to a stable activation of PDE2 enzymes, we tested PDE2 activity in lysates prepared from both unstimulated and NE-treated cells. The total PDE activity corresponded to 72±6 pmol/min per milligram of protein (mean±SD, n=5), and the relative PDE2 activity in the same preparations was 2.2±0.8 pmol/min per milligram of protein (n=5). The PDE2 activity in lysates of cells treated, for various lengths of time, with either NE or NE plus EHNA was then determined. The in vitro activity of PDE2 in lysates treated with 5 nmol/L NE for 1 to 10 minutes and expressed as percent of PDE2 activity at time 0, was 100±7% at 1 minute, 118±11% at 2 minutes, 82±15% at 5 minutes, 122±12% at 8 minutes, and 97±18% at 10 minutes (n=4). Similarly, the effect on PDE2 activity after treatment with 5 nmol/L NE plus 10 μmol/L EHNA was determined as 88±12% at 8 minutes and 91±14% at 14 minutes (n=4). We also tested PDE2 activity on membrane preparations found that the addition of NE had no discernible effect on PDE2 activity (see supplemental Table I). Collectively, these data indicate that no stable increase in PDE2 activity ensued as a result of treating cells with either NE alone or NE together with EHNA.

Indeed, the only known way of markedly potentiating the ability of PDE2 to hydrolyze cAMP is through an increase in cGMP levels. In fact, a 4-fold increase in cAMP-hydrolyzing PDE2 activity has been reported to result from exposure to low micromolar concentrations of cGMP.

Figure 3. Subcellular localization of PDE2. Confocal images of cultured neonatal rat ventriculocytes decorated with a polyclonal anti-PDE2 antibody (A and D). As a reference, the immunostaining of the same cells with a monoclonal anti-α-actinin is shown (B and E). C and F, Overlay of the PDE2 and α-actinin staining. Secondary antibody control (G) and α-actinin staining of the same field (H).
exploited the fact that the synthesis of cGMP by soluble guanylate cyclases (sGC) is potently activated by NO.

As shown in Figure 4A and 4B, treatment of myocytes with the NO donor sodium nitroprusside (SNP) (10 μmol/L), in the presence of 1 μmol/L NE, reduced the [cAMP], rise by ≈50%. SNP, however, had no effect on [cAMP], when added to resting cells (not shown). A similar result (reduction of [cAMP], of ≈30%) was observed with another NO donor, diethylamine/NO complex (10 μmol/L) (not shown). The reduction of [cAMP], induced by SNP was completely prevented by the addition of the sGC inhibitor ODQ (10 μmol/L) (not shown). These data indicate that the effect of SNP is mediated by cGMP synthesized by a NO-activated GC. As might be predicted, preincubation of myocytes with ODQ completely prevented the effect of SNP on [cAMP], (not shown).

The role of sGC activation in the modulation of NE-generated [cAMP], was confirmed by direct activation of sGC using the NO-independent activator BAY41–2272 (10 μmol/L) (not shown).

Interestingly, the effect of NO donors on [cAMP], was dependent on the mechanism of the [cAMP] rise. Indeed, in cells treated with 1 μmol/L forskolin, addition of neither SNP (10 μmol/L) nor ODQ (10 μmol/L) resulted in significant changes in [cAMP], concentration (Figure 4C).

The data presented above are compatible with the hypothesis that cGMP modulates β-AR–generated cAMP by increasing PDE2 activity. To confirm this, we measured the effect of SNP and ODQ on NE-generated [cAMP], under conditions of PDE2 inhibition. In the presence of 25 μmol/L EHNA, neither SNP nor ODQ elicited any significant change in the [cAMP], generated by 1 μmol/L NE (Figure 4 D). When the selective PDE3 inhibitor cilostamide (10 μmol/L) was used in place of EHNA, the effect of SNP and ODQ on NE-generated [cAMP], was unchanged (not shown).

NE, via β-AR, Counteracts β/β Signaling by Increasing Intracellular cGMP

NE activates β-AR, β-AR, and β-ARs. Whereas β and β receptors are known to couple to AC to produce cAMP, stimulation of the β receptor isofrom leads to the production of NO, which, in turn, stimulates sGC to produce cGMP. To assess whether NE generates a rise of cGMP in cardiac myocytes, we used a genetically encoded, FRET-based probe for cGMP, namely cygnet 2.1′, which allows real-time imaging of cGMP levels in living cells. Transfected ventricular myocytes, as expected, responded to SNP with a rapid and dose-dependent increase in [cGMP], as detected by a raise in the ratio of 480 nm/535 nm emission after excitation at 430 nm (ΔR655) (not shown).

Perfusion with NE (1 μmol/L) of cells transfected with cygnet 2.1′ induced a rise in cGMP with a ΔR655 ± 0.8% (n = 10) (Figure 5A). This corresponds with ≈20% of the maximal effect obtained with 10 μmol/L SNP. An identical effect was observed with a combination of 1 μmol/L NE and the β and β specific antagonists, CGP20712A (300 nmol/L) and ICI118,551 (100 nmol/L), respectively (Figure 5 A).

Conversely, blockade of the β receptor with the selective antagonist SR59230A (10 μmol/L) dramatically reduced the NE effect on [cGMP] (Figure 5A). Blockade of cGMP response to NE was also obtained by pre-incubation of the myocytes with ODQ (10 μmol/L) (Figure 5A).

These experiments indicate the involvement of β-AR in the synthesis of cGMP induced by NE and lead to the prediction that β-AR stimulation should negatively modulate the cAMP increase triggered by activation of β-AR and β-AR. As shown in Figure 5B and 5C, when the β-AR was selectively antagonized, NE generated a rise in [cAMP], which was ≈1.5 times higher than that in the absence of the β-AR antagonist.

β-ARs are known to be expressed at very low levels in cardiac myocytes. By performing real-time RT-PCR on neonatal myocytes from rat hearts, we estimated that β-ARs represent approximately 0.02% of the total β-ARs (see the online data supplement for details). The very low abundance of β-AR in these cells points to a tight coupling between the β-AR and its downstream signaling machinery, PDE2, and the pool of β/β-AR–activated ACs (see also Figure 8).

PDE2 Potently Modulates the Effect of Catecholamine on Intracellular Ca Transients and Myocyte Contractility

To evaluate the impact of PDE2 inhibition on ventricular myocyte function, we measured Ca transients in sponta-
neously beating rat neonatal myocytes expressing the genetically encoded Ca\(^{2+}\)/H11001 sensor aequorin.\(^{28}\) As shown in Figure 6A through 6E, addition of 5 nmol/L NE generated a 1.5-fold increase in the amplitude of Ca\(^{2+}\)/H11001 transients over basal (amplitude of individual peaks averaged over 1 minute interval, \(P<0.05\), \(n=5\)). A concentration of 10 \(\mu\)mol/L EHNA generated a further significant increase (\(\approx 35\%, \ P<0.05\)) of such amplitude, resulting in a 2-fold increase over basal (\(n=5\)). We next examined the effect of PDE2 inhibition on myocyte contractility. To this end, we measured sarcomere shortening (SS) in isolated myocytes from adult mouse hearts. In these cells, a submaximal

Figure 5. Effect of \(\beta\) AR modulation on cGMP and cAMP levels. A, Generation of cGMP by \(\beta\)-AR stimulation as detected in neonatal rat ventriculocytes expressing the cGMP receptor cygnet 2.1. Selective activation of \(\beta_3\) receptors was obtained with a combination of NE (1 \(\mu\)mol/L) plus the \(\beta_3\) antagonist CGP20712A (300 nmol/L) and the \(\beta_2\) antagonist ICI118,551 (100 nmol/L). Selective blockade of \(\beta_3\) receptors was attained with the selective \(\beta_3\) antagonist SR59230A (100 nmol/L). Inhibition of guanylyl cyclase was obtained with ODQ (10 \(\mu\)mol/L). B, Representative kinetics of the cAMP response to NE (10 \(\mu\)mol/L) in the presence of the \(\beta_3\) selective inhibitor SR59231A (SR) (100 nmol/L). C, Average fold increase of [cAMP], in the presence SR59231A (100 nmol/L) over the [cAMP], peak amplitude generated by NE. \(n=5\).

Figure 6. Functional effects of PDE2 inhibition. A, Effect of NE (5 nmol/L) and EHNA (10 \(\mu\)mol/L) on the amplitude (photon counts) of spontaneous cytosolic Ca\(^{2+}\) oscillations. B through D, Details of the kinetics shown in A and presented on an expanded time scale. E, Summary of the results of 5 independent experiments performed as in A. Values are expressed as fold increase with respect to the photon counts in non stimulated cells. F, Example tracing showing the fractional shortening recorded in isolated ventriculocytes obtained from adult hearts from wild-type or eNOS\(^{-/-}\) mice without any stimulus (control), in the presence of ISO (2.5 nmol/L for WT, or 2 nmol/L for eNOS\(^{-/-}\)) and the combination of the ISO + EHNA at the same concentrations above. G, Effect of ISO (2.5 nmol/L for WT or 2 nmol/L for eNOS\(^{-/-}\)) alone or in combination with EHNA (10 \(\mu\)mol/L) on Ca\(^{2+}\) transients, as detected by Indo-1 fluorescence changes. The Ca\(^{2+}\) transient in the absence of stimulus is also shown (control). H and I, Summary data of the experiments shown in F and G (\(n=20\) for each group).
concentration of isoproterenol (ISO) (2.5 nmol/L) increased SS by 34.5±10% (P<0.005 versus basal, n=20) and ISO coinfusion with EHNA (10 µmol/L) showed a >3-fold increase over ISO [SS: 117±18%, P<0.0005 versus ISO alone and P<0.00005 versus basal, n=20]; Figure 6F and 6G). Incubation of the cells with ODQ (10 µmol/L) blunted ISO+EHNA–induced SS by more than 50% (41±9% with ISO, P<0.01 versus 76±15% with ISO+EHNA, P<0.01; all n=16), with a relative increase of ISO+EHNA over ISO of only 84% (P<0.01 versus cells not treated with ODQ). Notably, the effect of PDE2 inhibition on contractility was dramatically reduced in myocytes obtained from mice in which the expression of endothelial NO synthase (eNOS) had been abolished by targeted gene ablation (eNOS−/−). In eNOS−/− myocytes, we titrated ISO dose (2 nmol/L) to achieve a similar contractility increase as with WT cells. This was done to avoid any possible “saturation” effect, taking into account that eNOS−/− adult murine myocytes show increased cardiac contractile force in response to β-adrenergic stimulation when compared with wild-type (WT) littermates. In presence of 2 nmol/L ISO, SS increase was 32±10% (P<0.001 versus basal; P=NS versus ISO in WT cells). In contrast, combining ISO with EHNA led to an additional increase in fractional shortening of only 23% over ISO alone, from 32±10% to 55±17% (P=0.015 versus ISO alone, n=20), that was significantly smaller when compared with the same conditions in WT cells (P<0.01) (Figure 6F and 6G). The residual effect on fractional shortening after PDE2 inhibition observed in eNOS−/− mice may result from ISO-induced generation of cGMP through an eNOS-independent mechanism. In fact, as shown in Figure 5A, the β-AR antagonist SR59230A does not completely abolish NE-induced cGMP, compatible with the existence of a parallel pathway for cGMP generation: In further support of this hypothesis is the observation that in cardiac myocytes cGMP is synthesized in response to ISO even in the presence eNOS inhibitors. The nature of this eNOS-independent pathway to cGMP synthesis remains to be investigated.

The contractility trend was paralleled by consistent changes in Ca2+ transients. Basal Ca2+ transients were similar between WT and eNOS−/− myocyte groups. ISO stimulation produced an increase in Ca2+ transient amplitude of +10.6±3% in WT (P<0.005 versus basal) and +5.2±3.3% in eNOS−/− mice (P=0.05 versus basal; P=NS versus ISO WT) (Figure 6H and 6I). However, in WT coinfusion of ISO with EHNA increased Ca2+ transients by 42.3±8.8% (P<0.005 versus ISO alone; P<0.0005 versus basal), whereas in eNOS−/− myocytes, this increment was significantly less: +12.4±3% (P<0.05 versus ISO/EHNA in WT; P<0.005 versus basal; P<0.05 versus ISO) (Figure 6H and 6I).

Interestingly, the potentiation effect on SS and Ca2+ transient amplitude obtained after PDE2 inhibition in adult myocytes was solely generated in the presence of β-AR stimulation and was not detectable when all AC were stimulated with forskolin (Figure 7), confirming our findings in neonatal myocytes and supporting the tight coupling between PDE2 and the pool of cyclases activated by β-ARs.
enables its effects on catecholamine-induced cAMP generation. \(\beta_3 \)-AR can activate distinct intracellular pathways by coupling to \(G_\alpha \), \(G_\beta \), and NOS. Although the presence of a \(\beta_3 \)-AR/NO/cGMP pathway exerting a feedback control over cAMP has been reported in cardiac myocytes, the functional relevance of \(\beta_3 \)-AR signaling in the heart is still controversial. Our data show that \(\beta_3 \)-ARs are involved in NE-induced NO generation, leading to sGC activation, synthesis of cGMP, and activation of PDE2. This defines a key role for PDE2 in the attenuation of \(\beta_3 \)-AR-mediated signaling via a \(\beta_3 \)-AR-activated feedback loop (Figure 8).

The functional compartmentalization of PDE2 and \(\beta_3 \)-AR may have important clinical implications. The downregulation of \(\beta_3 \)-AR/NO/cGMP pathway may have important clinical implications. The downregulation of \(\beta_3 \)-AR/NO/cGMP pathway may further reduce the inotropic reserve and aggravate systolic dysfunction. Selective inhibition of PDE2 may attenuate the negative inotropic effect of \(\beta_3 \)-AR signaling and positively influence cardiac performance.

Discussion
A large body of evidence indicates that PDEs contribute to the compartmentalization of cAMP signaling. In particular, in rat neonatal ventriculocytes, PDE3 and PDE4 show distinct localization and PDE4 appears to be primarily involved in regulating cAMP in a domain harboring the \(\beta_3 \)-AR-activated AC, whereas PDE3 acts in a distinct compartment. In addition, specific targeting of a PDE5A to Z-bands has been reported to selectively enable modulation of ISO-induced contractility in cardiac myocytes. Thus the view is emerging that the functional coupling of distinct PDEs to individual receptors provides an efficient way to control local levels of cAMP in a stimulus-specific manner.

The present study makes a substantial advancement in our understanding of the role of PDEs in compartmentalized cAMP signaling in that provides evidence that PDE2 plays a key role in the selective control of cAMP generated after \(\beta_3 \)-AR stimulation. Although PDE2 activity provides only a small contribution to the total cAMP pool in rat neonatal ventriculocytes and PDE2 inhibition showed only a minimal ability to increase [cAMP] in unstimulated cells, the contribution of PDE2 was strikingly potentiated in the presence of NE. Such a robust effect of PDE2 on the cAMP response to catecholamines suggests a functional coupling between PDE2 and a pool of AC activated by \(\beta_3 \)-AR stimulation. The finding that PDE2 inhibition has no effect on [cAMP], generated through the nonselective activation of all AC with forskolin confirms such a hypothesis.

Targeting of PDE2 to lipid rafts has been reported and, interestingly, \(\beta_3 \)-AR, AC, and NOS are known to reside in the cardiac subtype of lipid rafts known as caveolae. In the present study we found that PDE2 is entirely confined to a restricted domain, in agreement with the notion that localization of the enzyme to a restricted domain potentially enhances its effects on catecholamine-induced cAMP generation. \(\beta_3 \)-AR can activate distinct intracellular pathways by coupling to \(G_\alpha \), \(G_\beta \), and NOS. Although the presence of a \(\beta_3 \)-AR/NO/cGMP pathway exerting a feedback control over cAMP has been reported in cardiac myocytes, the functional relevance of \(\beta_3 \)-AR signaling in the heart is still controversial. Our data show that \(\beta_3 \)-ARs are involved in NE-induced NO generation, leading to sGC activation, synthesis of cGMP, and activation of PDE2. This defines a key role for PDE2 in the attenuation of \(\beta_3 \)-AR-mediated signaling via a \(\beta_3 \)-AR-activated feedback loop (Figure 8).

The functional compartmentalization of PDE2 and \(\beta_3 \)-AR may have important clinical implications. The downregulation of \(\beta_3 \)-AR/NO/cGMP pathway may have important clinical implications. The downregulation of \(\beta_3 \)-AR/NO/cGMP pathway may further reduce the inotropic reserve and aggravate systolic dysfunction. Selective inhibition of PDE2 may attenuate the negative inotropic effect of \(\beta_3 \)-AR signaling and positively influence cardiac performance.

Acknowledgments
This work was supported by Telethon Italy (TCP00089), the Italian Cystic Fibrosis Research Foundation, and the Fondazione Compagnia di San Paolo (to M.Z.); the European Union (QLK3-CT-2002-02149) (to M.Z. and M.D.H.); the Medical Research Council (G8604010) and British Heart Foundation (FS/1999043) (to M.D.H.); Telethon, the Italian Association for Cancer Research, the Italian Ministry of Education, and the Italian Ministry of Health (to T.P.); the National Science Foundation (MCB-9983097) and the Tomast Medical Research Trust (to W.R.D.); and the American Heart Association (SDG, 0430144N) and National Institutes of Health (R01 HL075265) (to N.P.).

References

Compartmentalized Phosphodiesterase-2 Activity Blunts β-Adrenergic Cardiac Inotropy via an NO/cGMP-Dependent Pathway
Marco Mongillo, Carlo G. Tocchetti, Anna Terrin, Valentina Lissandron, York-Fong Cheung, Wolfgang R. Dostmann, Tullio Pozzan, David A. Kass, Nazareno Paolocci, Miles D. Houslay and Manuela Zaccolo

Circ Res. published online December 15, 2005;
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/early/2005/12/15/01.RES.0000200178.34179.93.citation

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2005/12/15/01.RES.0000200178.34179.93.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Materials and methods

Chemicals and reagents.

All chemicals were analytical grade. Norepinephrine, isoproterenol, isobutyl-methyl-xanthine (IBMX), eritro-hydroxy-nonyl-adenine (EHNA) and cilostamide were obtained from Sigma-Aldrich (MO, USA). ICI 118,551 hydrochloride, CGP 20712A, SR 59230A from Tocris Cookson (Avonmouth, UK), DeaNO from Calbiochem-Merck Biosciences (Darmstadt, Germany). Sodium nitroprusside (SNP), BAY41-2272, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) were from Alexis Biochemicals (Lausen, Switzerland) and SCH58261 was a kind gift from Prof. PG Baraldi, Univ of Ferrara, Italy.

FRET Imaging.

Primary cultures of cardiac ventricular myocytes from 1-2 days old Sprague Dawley rats or C57BL/6 mice (Charles River Laboratories, Wilmington, MA) were prepared as described\(^1\). After transfection with C-YFP and RII-CFP\(^2\), cells were imaged on an inverted Olympus IX50 microscope, equipped with a cooled-CCD camera (Sensicam QI, PCO, USA), with a software controlled monochromator (TILL Photonics, GmbH, Germany) and a beam splitter optical device (Microimager, Optical Insight, USA). During the experiments cells were perfused with HEPES buffered Ringer’s modified saline (1mmol/L CaCl\(_2\)), at RT (20-22°C). Images were acquired as described before by using custom-made software and processed using ImageJ (Rasband, W.S., NIH, USA). Fluorescence resonance energy transfer (FRET) changes were measured as changes in the 480nm/535nm fluorescence emission intensities upon excitation at 430nm and expressed as the percent 480nm/535nm emission increase over the 480nm/535nm value at time 0s (ΔR/R\(_0\)). Statistic significance was determined using the paired Student’s \(t\) test and values of \(p<0.05\) were considered significant.

Immunostaining and confocal imaging.
Cells were co-stained with anti PDE2A polyclonal antibody (FabGennix, Texas, USA) and anti alpha actinin antibodies (Sigma). Alexa fluor 488-conjugated anti mouse antibody and Alexa fluor 543-conjugated anti-goat antibody (Molecular Probes, Oregon USA) were used as secondary antibodies. Confocal images were acquired with a Bio-Rad 2100MP confocal system.

Aequorin measurements

For calcium measurements, myocytes were plated at confluency to obtain a uniformly beating syncytium and transfected with the cyt-Aeq construct\(^3\). Transfection was performed by using the FuGene reagent (Roche) as previously described\(^4\). With such method we generally obtain an efficiency of transfection of about 10%. Reconstitution of the functional aequorin was carried out in a modified Krebs–Ringer buffer (125 mM NaCl, 5 mM KCl, 1 mM Na\(_3\)PO\(_4\), 1 mM MgSO\(_4\), 5.5 mM glucose and 20 mM HEPES pH 7.4) in the presence of 100 µM EGTA supplemented with 1% serum and 5 µM coelenterazine for 1 h at 37°C. After reconstitution, the cells were placed in a perfused, thermostated chamber in Krebs-Ringer buffer supplemented with 1 mM CaCl\(_2\). The photons emitted by the sample were collected every 50 ms with an amplified photomultiplier connected to a computer for data storage and analysis (for other details see ref\(^3\)).

Isolation of adult mouse ventricular myocytes

Wild type 2-4 month old mice were anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg/ip). The heart was quickly removed from the chest and aorta retrograde perfused at constant pressure (100 cm H\(_2\)O) at 37°C for ~3 min with a Ca\(^{2+}\)-free bicarbonate-based isolation buffer containing (in mM) 120 NaCl, 5.4 KCl, 1.2 NaH\(_2\)PO\(_4\), 20 NaHCO\(_3\), 1.6 MgCl\(_2\); and glucose (1 mg/ml), 2,3-butanedione monoxime (BDM, 1 mg/ml), and taurine (0.628 mg/ml), gassed with 95% O\(_2\)-5% CO\(_2\). To reduce bacterial or viral contamination, the perfusion setup was washed with 70% alcohol and then rinsed three times with sterilized distilled water before cannulation. The enzymatic digestion was initiated by adding 0.9 mg/ml collagenase type 2 (Worthington Biochemical Co., 299 U/mg) and 0.05 mg/ml protease type XIV (Sigma Chemical Co.) to the
perfusion solution. About five minutes later, the left ventricle was removed, cut into several chunks in the same enzyme solution. This solution containing dispersed myocytes was filtered through a 150 µm mesh and gently centrifuged at 500 rpm for 30 seconds. The cell pellet was then promptly re-suspended in isolation buffer added with 125 µM Ca\(^{2+}\) and bovine serum albumin (5 mg/ml). After myocyte separation by gravity (~10 min), the supernatant was aspirated and myocytes resuspended in Tyrode’s solution (in mM: 140 NaCl, 10 HEPES, 1 MgCl\(_2\), 5 KCl; and glucose, 1 mg/ml) added with 250 µM Ca\(^{2+}\). The final cell pellet was suspended in 1.8 mM Ca\(^{2+}\). All solutions were adjusted to pH 7.45 with NaOH.

Simultaneous measurements of contraction and Indo1 fluorescence

Changes in the Ca\(_i\) was assessed by Indo 1 fluorescence. Myocytes were loaded with the membrane-permeable acetoxyethyl ester of Indo 1 (Indo 1-AM), using a 12-min incubation with 100 ul of 1 mM Indo-1 AM prepared with 50% Pluronics (Molecular Probes) and 50% DMSO, at room temperature. A final rinse at room temperature in normal Tyrode solution (30 min) allowed intracellular dye de-esterification. Cells were imaged using field stimulation (Warner instruments) in an inverted fluorescence microscope (Diaphot 200; Nikon, Inc). Sarcomere length was measured by real-time Fourier transform (IonOptix MyoCam, CCCD100M), and whole calcium transient by xenon excitation of Indo-1 fluorescence, as previously reported\(^5;6\). Myocytes were chosen for study according to previously established criteria\(^7\), i.e. a rod-shaped appearance with clear striations and no membrane blebs, a negative staircase of twitch performance on stimulation from rest, and the absence of spontaneous contractions. The cells were superinfused with Tyrodes solution, and the test solutions were applied with a rapid switcher. Experiments were performed in a dark room, since whole calcium transient was measured by xenon excitation of Indo-1 fluorescence.

At the start of each experiment, cells were field stimulated continuously for 10-15 minutes to establish contractile stability. Recording of twitch amplitude was started during the stabilization period and cell shortening data were collected throughout the whole experiment. When the cells
reached a stable baseline contraction, Ca2+ transients was recorded for 30 seconds. Steady-state twitches and Ca2+ transients were averaged over 30 s periods. Cell twitch amplitude was expressed as a percentage of resting cell length. Twitch kinetics were quantified by measuring the time to peak shortening and the time from peak shortening to 50% relaxation. Similar measurements were derived to quantify Ca2+ transients kinetics.

Myocyte fractionation and phosphodiesterase assay

Cell lysis and fractionation method is modified from that as described by8. Media was removed from gelatin pre-coated 6 well plates containing ventriculocytes at concentration of 1 million cells/well and cells were washed twice with PBS. PBS was removed and to each 6 well plate was added 0.5 ml lysis buffer (20 mM Tris-HCl pH 7.4, 1 mM dithiothreitol with a complete EDTA free protease inhibitor cocktail tablet (Roche) added per 50 ml buffer). Lysis buffer was drained off and the ventriculocytes scraped into tube. Ventriculocytes were snap frozen on dry ice and left to thaw on ice. They were then manually disrupted using a dounce homogeniser followed by syringing with a needle several times to ensure that cells were fully lysed as assessed both through trypan blue entry and also by evaluating latent lactate dehydrogenase activity. The lysate was centrifuged at 2000 gav for 10mins at 4\textdegree C to generate a P1 membrane pellet fraction. The resulting supernatant was removed and centrifuged at 75,000 gav for 30mins at 4\textdegree C to generate a a membrane pellet fraction together with a S2 high speed supernatant fraction. 0.5ml lysis buffer was added to this high-speed pellet and the centrifugation step repeated. The resultant washed pellet fraction was resuspended in lysis buffer to yield P2 high-speed pellet fraction.

PDE activity was assayed using a modification of the Thompson and Appleman two-step procedure as described previously9. Protein concentration was determined using the Bradford method.

Real-time RT-PCR
Total RNA was isolated from cultured rat neonatal cardiac myocytes, freshly isolated rat adipocytes from epididymal fat pads and, as negative controls, from CHO and HEK293T cell lines by using the TRIzol reagent (Invitrogen, USA). An aliquot of total RNA (1 µg) was reversed transcribed by 1 µl Superscript II (Invitrogen, USA), 1 µl RNAsin, oligo dT primer (0.5 µg), 10 pmol dNTPs 4 µl 5x first strand buffer, 2 µl of 0.1 mol/l dithiothreitol in a final volume of 20 µl. The oligonucleotides used for the detection of cDNA specific for β1, β2, β3 and HPRT are shown in supplementary table II. Real time PCR assay was carried out with LightCycler (Roche Diagnostics, Germany) using QuantiTect SYBR Green PCR kit (Qiagen, USA). 60 ng of cDNA was added to 10 µl QuantiTect SYBR Green Master mix, 10 pmol of each primer in a total volume of 20 µl in water. Cycling conditions were as follow: 95°C for 15 min followed by 50 cycles of 95°C for 15s, 55°C for 20 s, 72°C for 8 s.

Data were collected from three independent mRNA preparations and in each experiment samples were in duplicates. For each set of primers a standard curve was generated in adipocytes. Standard curves for calibration of data were created using cANA derived from adipocyte tissue (where β1, β2, β3 genes are highly expressed). The relative quantity of each transcript was determined using the comparative Ct method by interpolating the Ct values of the unknown samples to each standard curve. Values were then normalized with respect to HPRT gene. Melting curve analysis was also performed after PCR amplification to confirm that there were no primer dimers in the PCR products. The identity of the PCR products of all genes was verified by DNA sequencing.

The expression values for the β1, β2, β3 genes we found in cardiac myocytes resulted to be 92.13%, 7.85% and 0.02% of the total β-receptor complement in these cells, respectively.

Amplification curves for β1, β2 and β3 in heart cells are shown in supplementary Fig1 A. In the same figure the amplification curve obtained with the corresponding primers in the absence of template is also shown. Amplification curves for HPRT and β3 in CHO and HEK293 cells, as well
as template free controls for the same primers, are shown in supplementary Fig 1B and C respectively.

To confirm that the mRNA levels found for β3-AR in cardiac myocytes were not due to contaminating cells different from cardiac myocytes, the same analysis was performed on plastic-adherent non-myocyte cells obtained after a 1h pre-plating of the heart cell suspension. Such sample is heavily enriched in fibroblasts and endothelial cells and contains only a minor proportion of cardiac myocytes. In this sample the total amount of β-AR resulted to be approximately one-third of the total calculated in cardiac myocytes and the relative values for β1, β2, β3 genes resulted to be 11.31%, 88.67% and 0.02% respectively.

References

Supplemental Table I

<table>
<thead>
<tr>
<th>PDE</th>
<th>P1</th>
<th>P2</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE2</td>
<td>4.7 ± 1.1</td>
<td>6.6 ± 0.61</td>
<td>ND</td>
</tr>
<tr>
<td>PDE3</td>
<td>8.7 ± 2.4</td>
<td>11.6 ± 1.2</td>
<td>5.2 ± 0.9</td>
</tr>
<tr>
<td>PDE4</td>
<td>38.3 ± 3.0</td>
<td>15.5 ± 1.5</td>
<td>29.0 ± 1.4</td>
</tr>
</tbody>
</table>

Legend:

Distribution of PDE sub-family activity in fractionated cardiac myocytes. Activity is expressed as pmol cAMP hydrolysed/min/mg protein. Data represent means ± SDM. n = 3 independent experiments. ND = non detectable.

Supplemental Table I

We tested PDE2 activity on membrane preparations (P1 and P2 fractions) by either adding 100nM or 5µM NE directly to the PDE2 assay or by pre-incubating fractions P1 and P2 membrane fractions from ventriculocytes with either 100nM or with 5µM NE for 5 and 10 min prior to assay for PDE2 activity in the presence of such concentrations of NE. In each instance we found that the addition of NE had no discernible effect on PDE2 activity (< 5% change in PDE2 activity; n=3).

Supplemental Table II Primers used for real time RT-PCR

<table>
<thead>
<tr>
<th>Genes</th>
<th>Sequence</th>
<th>Predicted size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β1</td>
<td>F: 5’CCTGGACCGCTACCTCG 3’ R: 5’GTTGTAGCAGCGCGCGCG 3’</td>
<td>175</td>
</tr>
<tr>
<td>β2</td>
<td>F: 5’ACCTCCTTCTTGCCTATCCA 3’ R: 5’CCATGACCACCAGGGGC 3’</td>
<td>157</td>
</tr>
<tr>
<td>β3</td>
<td>F: 5’GCAGCCCGGACTTTCG 3’ R: 5’GCTCACCTTCATAGCC 3’</td>
<td>157a</td>
</tr>
<tr>
<td>HPRT</td>
<td>F: 5’AGTCCCAGCGTCGATTAG 3’ R: 5’CCATCTCCTTCATGACATCTCG 3’</td>
<td>160</td>
</tr>
</tbody>
</table>

* a: the reverse (R) primer was designed in the coding region immediately 3’ to intron 1 of the rat β3 gene.
Legend to supplemental Figure 1

RT-PCR amplification curves. Each panel shows curves from three independent mRNA preparations and one curve from a template free sample for the indicated gene. A: amplification curves for β_1, β_2 and β_3 in cardiac myocytes. Template free controls for β_1, β_2 and β_3 primers are shown in violet, grey and pink, respectively. B: amplification curves for HPRT and β_3 in CHO cells. Template free controls are shown in turquoise for HPRT and in pink for β_3. C: amplification curves for HPRT and β_3 in HEK293T cells. Template free controls are shown in turquoise for HPRT and in pink for β_3.
Supplementary fig. 1

A. HEART

B. CHO

C. HEK 293T