Positive Inotropic Effects by Uridine Triphosphate (UTP) and Uridine Diphosphate (UDP) via P2Y2 and P2Y6 Receptors on Cardiomyocytes and Release of UTP in Man During Myocardial Infarction

Anna-Karin Wihlborg,* Johanna Balogh,* Lingwei Wang, Catharina Borna, Ying Dou, Bhalchandra V. Joshi, Eduardo Lazarowski, Kenneth A. Jacobson, Anders Arner, David Erlinge

Abstract—The aim of this study was to examine a possible role for extracellular pyrimidines as inotropic factors for the heart. First, nucleotide plasma levels were measured to evaluate whether UTP is released in patients with coronary heart disease. Then, inotropic effects of pyrimidines were examined in isolated mouse cardiomyocytes. Finally, expression of pyrimidine-selective receptors (a subgroup of the P2 receptors) was studied in human and mouse heart, using real time polymerase chain reaction, Western blot, and immunohistochemistry. Venous plasma levels of UTP were increased (57%) in patients with myocardial infarction. In electrically stimulated cardiomyocytes the stable P2Y2/4 agonist UTP increased contraction by 52%, similar to β1-adrenergic stimulation with isoproterenol (65%). The P2Y6-agonist UDP also increased cardiomyocyte contraction (35%), an effect abolished by the P2Y6-blocker MRS2578. The phospholipase C inhibitor U73122 inhibited both the UDP and the UTP-induced inotropic effect, indicating an IP3-mediated effect via P2Y6 receptors. The P2Y14 agonist UDP-glucose was without effect. Quantification of mRNA with real time polymerase chain reaction revealed P2Y2 as the most abundant pyrimidine receptor expressed in cardiomyocytes from man. Presence of P2Y6 receptor mRNA was detected in both species and confirmed at protein level with Western blot and immunohistochemistry in man. In conclusion, UTP levels are increased in humans during myocardial infarction, giving the first evidence for UTP release in man. UTP is a cardiac inotropic factor most likely by activation of P2Y2 receptors in man. For the first time we demonstrate inotropic effects of UDP, mediated by P2Y6 receptors via an IP3-dependent pathway. Thus, the extracellular pyrimidines (UTP and UDP) could be important inotropic factors involved in the development of cardiac disease. (Circ Res. 2006;98:970-976.)

Key Words: P2-receptors • inotropy • heart • UTP • UDP

The cardiac effects of purines such as adenosine, adenosine triphosphate (ATP), and adenosine diphosphate (ADP) have been extensively studied since the first functional findings by Drury and Szent-Györgi in 1929.1 Purines were subsequently found to have specific receptors in the surface membrane of the cardiac myocytes. However, only a few studies have focused on the effect of pyrimidines, such as uridine triphosphate (UTP) and uridine diphosphate (UDP), in the heart.

UTP alone has been shown to have inotropic effects in the heart, but previous studies have been performed with unstable nonselective agonists, and receptor characterization has not been possible. Furthermore, even though the release of purines has been extensively studied in different models, the release of pyrimidines has never been examined in human patients.

The extracellular nucleotides, ATP and ADP, are released from sympathetic nerves, activated platelets, erythrocytes, cardiac tissue, inflammatory, endothelial, and smooth muscle cells.4–6 In the heart, hypoxic conditions are prominent activators of ATP release.6,7 There is limited knowledge considering release of pyrimidines. Continuous release of UDP-glucose from endothelial cells has been detected, however no correlation to ATP release has been observed.8 Using a pig model we recently demonstrated that UTP is released from the heart during ischemia.9 However, the release of pyrimidines from the human heart under ischemic conditions has not been studied.

The extracellular nucleotides activate membrane-bound purine receptors (P2 receptors), which is one of the largest known receptor families.10 P2 receptors are divided into two classes: ligand-gated intrinsic ion channels, called P2X re-
ceptors, and G protein–coupled P2Y receptors. New P2Y receptor subtypes activated not only by purines but also pyrimidines have been identified. UTP, UDP, and UDP glucose activates at least four subtypes of P2Y receptors: P2Y$_2$, P2Y$_4$, P2Y$_6$, and P2Y$_{14}$. UTP is an agonist for P2Y$_2$, and P2Y$_4$ receptors. P2Y$_6$ is activated by UDP, and UTP glucose activates P2Y$_{14}$ receptors. P2Y$_2$ is activated by both UTP and ATP.

The P2Y family is divided into two structurally-distinct subfamilies. The first is composed of P2Y$_1$, P2Y$_2$, P2Y$_4$, P2Y$_6$, and P2Y$_14$, receptors, all coupled to G$_i$, which promotes phospholipase C (PLC) and subsequent mobilization of intracellular calcium. The members of the second subfamily P2Y$_{12}$, P2Y$_{13}$, and P2Y$_{14}$ are coupled to G$_s$, inhibiting adenylate cyclase.

Extracellular ATP is known to increase cytosolic calcium in cardiac myocytes and to have inotropic effects. Extracellular ATP is known to increase cytosolic calcium in cardiac myocytes and to have inotropic effects. 5 7 13 18 We recently examined the effects of purines in cardiomyocytes and found potent inotropic ATP effects mediated via a P2Y$_{11}$–like receptor. 18 Regarding pyrimidines, the unstable agonist UTP has been shown to induce a positive inotropic effect in rat atria and in rat and guinea pig ventricular cardiomycocytes. 13 14 15 18 21 22 but the effects of UDP and UDP-glucose has not been investigated. Furthermore, there is a need to characterize which receptor mediates the inotropic effect of UTP.

We wanted to examine whether pyrimidines are released in man, evaluate their inotropic effects, and investigate which pyrimidine selective receptors are expressed in the human heart. The first objective was to quantify the plasma level of uridine nucleotides in patients with acute ischemic heart disease. The second objective was to examine the inotropic effects of selective pyrimidine receptor agonists. Because of the limited availability of human cardiomyocytes, pharmacological characterization of pyrimidine selective P2Y receptor function was done in cardiomyocytes from mice. The third objective was to analyze expression of P2-receptors in the heart using quantitative real-time polymerase chain reaction (PCR), Western blot, and immunohistochemistry.

Materials and Methods

Patients Enrolled for UTP Measurements

Sixty-four patients were enrolled from the patients admitted for chest pain to the emergency ward, Lund University Hospital 2001 to 2003. Patients with chest pain within the last hour before admittance were eligible for inclusion in this study. Exclusion criteria were: patients treated with aspirin, clopidogrel, dipyridamole, nonsteroidal antiinflammatory drugs, heparin, low molecular heparin, or warfarin. Even patients who received a bolus dose of aspirin in the ambulance on their way to hospital were excluded. Furthermore, patients were excluded if they had a platelet count $<$140 \times 109/L, hemoglobin $<$90 g/L, renal failure (creatinine $>$140 μmol/L), or hemolysis in blood samples. Based on the diagnosis at discharge, three prespecified subgroups were compared: chest pain with no sign of cardiac disease (NCD), non–ST elevation myocardial infarction (NSTEMI), and ST elevation myocardial infarction (STEMI). The study included 43 men and 21 women in the mean age of 68.3 \pm 12 years. The NCD group was composed of patients with normal ECGs (or no new changes compared with a previous ECG), normal values of cardiac markers (TroponinT), and when appropriate, a negative exercise test. This UTP measurement study was a substudy of a larger study on ATP release during ischemic heart disease. For more methodological details see below.

Quantification of Nucleotides

UTP was measured in all 64 patients. Based on diagnosis 64 patients were grouped into STEMI (16 patients), NSTEMI (16 patients), and NCD (32 patients). Sampling was done at admission. Blood (5 mL) was added to tubes containing citrate and immediately centrifuged for 10 minutes at 1200 g, 4°C. Platelet contamination was excluded by Bürker chamber examination. The plasma was aspirated and mixed with an equal amount of 10% trichloroacetic acid (TCA) to precipitate all proteins and inactivate ectonucleotidases. Samples were treated and UTP was quantified as previously described.

Animals

Adult female NMRI mice (B&K AB, Sollentuna, Sweden), 5 to 6 months old, were used for isolation of cardiomyocytes. The animals were kept in the university animal facilities with free access to food and water according to regulations of the local animal ethics committee.

Isolation and Contraction of Cardiomyocytes

The mice were euthanized by cervical dislocation. The cardiomyocytes were isolated as previously described.

Cardiomyocyte Contraction

The cells could be kept with unaltered contractile properties for up to 4 hours in a Hepes-buffered saline solution (1.8 mmol/L Ca$^{2+}$) in room temperature. To observe the cell shortening we used an inverted microscope and a video recording system. The cells were analyzed in a Krebs-Henseleit solution (1.8 mmol/L Ca$^{2+}$) composition adjusted to give pH 7.4 when oxygenated with O$_2$/CO$_2$ (95%/5%) at room temperature. Stimulation voltage was set to 20% above threshold and impulse duration was 4 ms at 0.5 Hz. The cell length during shortening was analyzed using an optical edge tracking method. The shortening, measured in pixels, was compared before and after addition of drug to the electrically stimulated cardiomyocyte in the cuvette. The shortening responses were expressed relative to the amplitude of responses determined in the cells before addition of drug. The extent of shortening was approximately 5% of total cell length. The cells were stimulated with additions of the agonists UTPS or UDPS. To further investigate the signaling pathway of the response to stimulation with UDPS the contracting cardiomyocytes were incubated with the P2Y$_2$ blocker MRS2578. The signaling pathway mediating the effect of UDPS was also studied by exposure to a PLC inhibitor, U73133, and an adenylyl cyclase inhibitor, SQ22563. The cells were preincubated for 5 minutes with inhibitors before addition of agonist.

RT-PCR Assay and Real-Time PCR

Total RNA was prepared from the mouse cardiomyocytes using the RNeasy column (Qiagen) and the RNA was reverse-transcribed using MultiScribe RT Kit (Qiagen). Real time-PCR reactions on mouse RNA were performed with primers designed using the VectorNTI software (Invitrogen). The transcribed cDNA was amplified in a LightCycler using 1\timesLightCycler DNA Master SYBR Green I mix (Roche Diagnostics). The procedure has previously been described. The amount of receptor was expressed relative to the housekeeping gene GAPDH. To amplify the receptors the following primers were used: P2Y$_2$ forward (fw) GCTTCAACGAGGACTGGCCTC, reverse (rw) GGTGTTGAGCCGAATCC, and P2Y$_4$ forward (fw) TACATTGCCATGACACCTCGG, reverse (rw) AATGGTGCGCACAAGCTTGC. To further investigate the signaling pathway of the response to stimulation with UDPS the contracting cardiomyocytes were incubated with the P2Y$_2$, blocker MRS2578. The signaling pathway mediating the effect of UDPS was also studied by exposure to a PLC inhibitor, U73133, and an adenylyl cyclase inhibitor, SQ22563. The cells were preincubated for 5 minutes with inhibitors before addition of agonist.

Human Heart Tissue Preparation

Hearts were explanted in the process of heart transplantation from 5 patients who were between 52 and 64 years of age and experienced...
ischemic heart disease or dilated cardiomyopathy. Samples were not taken from infarcted areas. The hearts were immediately examined in the operating room and myocardial tissue samples from the wall of the left and right ventricles and the left and right atria were removed gently and immersed in cold oxygenated Hepes-buffered saline solution. The epicardial and endocardial parts were removed from the pieces from the ventricles. Tissue samples were snap-frozen in liquid nitrogen or fixed in formalin immediately after acquisition. Total cellular RNA was extracted as above. The real-time PCR reactions on human RNA were performed as described earlier. 26

Western Blot
Protein electrophoresis was performed on 10% Tris-HCl polyacrylamide ready gels (Bio-Rad Laboratories) and electroblotted onto Hybond-C nitrocellulose membranes (0.45 μm; Amersham Pharmacia Biotech). Protein loading of 15 μg for each well was diluted with 4× SDS-reducing sample buffer. The membranes were incubated with rabbit antihuman P2Y6 (1:250; GlaxoSmithKline); thereafter, they were incubated with a secondary antibody (anti-rabbit Ig, horseradish peroxidase-linked, 1:1500; Amersham Life Science). The membranes were incubated with normal serum, sections were incubated with anti-P2Y6 antibody, and developed with DAB substrate kit for peroxidase. After counterstaining with VECTASTAIN Elite ABC kit and developed with DAB substrate kit for peroxidase. After counterstaining with VECTASTAIN Elite ABC kit and developed with DAB substrate kit for peroxidase. The proteins were visualized by chemiluminescence using the ECLTM Western blotting RPN 2108 system (Amersham Pharmacia Biotech).

Immunocytochemistry
Human heart tissue samples were fixed in formalin, embedded in paraffin, and cut in 5-μm sections. The avidin-biotin-peroxidase complex method for antibody detection was used. After incubation with normal serum, sections were incubated with anti-P2Y6 antibodies. Primary antibody was detected using VECTASTAIN Elite ABC kit and developed with DAB substrate kit for peroxidase. After counterstaining with VECTOR hematoxylin QS nuclear counterstain (Modified Mayer Formula), the slides were examined microscopically.

Drugs
Isoproterenol, SQ22563, and U73122 were purchased from Sigma. UTP·S and UDP·S were gifts from Inspire Pharmaceuticals (Chapel Hill, NC); MRS2578 was a gift from KA Jacobson (National Institutes of Health, Bethesda, Md). All the drugs were dissolved in 0.9% saline.

Ethics
The Ethics Committee of Lund University approved the project involving human subjects. The project complies with the Declaration of Helsinki and all patients gave written consent to participation in the study. The animal study conforms to the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publication No. 85-23, revised 1996). The animal experiments were approved by the local animal ethics committee.

Calculation and Statistics
Calculations and statistics were performed using the Graph-Pad Prism 3.02 software. n denotes the number of cells if otherwise not stated. Statistical significance was accepted when P<0.05. Raw data from cardiomyocyte experiments were analyzed with paired Student t test, and cardiomyocyte shortening after drug addition was compared with cardiomyocyte shortening before addition of the drug, referred to as the control. Values are presented as mean±SEM. UTP levels were compared with Kruskal–Wallis test followed by Dunnnett multiple comparisons. Spearman rank correlation coefficient test was used for regression analysis.

Results
Human venous plasma levels of UTP were significantly increased in STEMI (22±3, n=17 mmol/L, P<0.05) compared with NCD (14±3 mmol/L, n=32) (Figure 1a). There was no difference between patients with NSTEMI compared with controls (NCD). There was no difference between patients with diabetes mellitus or on aspirin treatment compared with controls. No difference in nucleotide concentration was found between males and females. Regression analysis of the whole material revealed a correlation between UTP and ATP (r²=0.44, P<0.001). UTP was present at ≥10% of the ATP concentration (Figure 1b).

Effects of β-adrenergic and uridine nucleotide stimulation on shortening responses of mouse cardiomyocytes are shown in Figure 2. Isoproterenol (1 μmol/L) caused a 65±17% (n=24) increase in the cardiomyocyte contraction. The P2Y2 agonist UDP·S (1 μmol/L) caused an increase of 52±20% (n=20; Figure 2). The specific P2Y1 receptor agonist UDP·S (1 μmol/L) caused a 37±15% (n=19) increase in the myocyte contraction (Figure 2). The specific P2Y1 receptor agonist UDP glucose had no inotropic effects.
The expression of P2 receptor mRNA was also quantified in the human heart (Figure 5). In the left ventricle P2Y₄ was by far the highest expressed receptor followed by P2Y₁ (52±11% expressed as percent of P2Y₂ receptor mRNA). P2Y₆ (8.2±0.3%) and P2Y₁₁ (17±2%) were also present in significant amounts, but the P2Y₆ receptor had very low expression. The expression pattern was similar in the right ventricle and in the atria.

P2Y₄ was detected using specific antibodies in immunohistochemistry and Western blot. The receptor was detected in both ventricles and atria of the human heart with a band of approximately 45 kD, which is in agreement with the expected size (Figure 6a). No band was found in the control membrane, indicating that the band represents the P2Y₄ receptor. The same antibody was used in immunohistochemistry of human left ventricular heart tissue obtained from the explant heart at transplantation. Positive staining was seen for P2Y₆ that was absent when control peptide was added or in controls without the primary antibody (Figure 6b). P2Y₆ expression was only seen in cardiomyocytes and not in interstitial cells. The P2Y₂ receptor expression was seen in the whole cardiomyocyte, with increased expression at the intercalated discs.

Discussion

In our study we demonstrate that the plasma levels of UTP are significantly elevated in patients with acute myocardial infarction. A combination of pharmacology and mRNA quantification indicates that UTP is probably acting via P2Y₂ receptors in man, and via both P2Y₂ and P2Y₆ receptors on cardiomyocytes from mice. Our results indicate that UDP is a novel inotropic factor acting via P2Y₆ receptors.

The first demonstration of UTP release used [³H]uridine-labeled endothelial cells. In the study, [³H]UTP release occurred in response to increased flow.²⁷ Since the development of the first sensitive quantitative assay for UTP, its release has been measured from a variety of cells including platelets, leukocytes, primary airway epithelial cells, rat astrocytes, and several other cell lines.²⁴ To our knowledge, we are now the first to quantify UTP levels in human plasma. UTP levels correlated significantly with ATP, indicating corelease of the nucleotides. The UTP levels were ~1:10 of the ATP levels, which is in the vicinity of the relationship between UTP and ATP in most cell types (usually approximately 1:5).²⁴ Patients with acute myocardial infarction had significantly higher UTP levels, indicating release during ischemia. It was only possible to measure UTP from venous samples and thus it is not possible to establish the source of the released UTP. However, we recently performed animal studies in which the release was measured in blood from the cardiac vein, demonstrating UTP release from the heart during cardiac ischemia.⁹ UTP is therefore likely to be released from the heart by cardiomyocytes, but endothelial and red blood cells may also contribute. Platelets are less likely as a source because they contain minor amounts of UTP.²⁴

On the surface of cardiac cells there are ectonucleotidases rapidly hydrolyzing nucleotides (UTP to UDP to UMP to uridine).²⁸ Because UTP is rapidly degraded to UDP, these findings of cardiac UTP release indicate that UDP will be present in the circulation with possible actions on the heart via P2Y₆ receptors. This rapid degradation also results in...
much lower plasma levels than the actual nucleotide concentrations at the cell surface. Measuring UTP release from the heart during cardiac ischemia the nucleotide concentrations in plasma are in 10^{-7} mol/L range. In this experiment we therefore choose the concentration of 10^{-6} mol/L, that may represent a physiologically relevant concentration.

Extracellular pyrimidines have several effects in the cardiovascular system. In the vasculature UDP and UTP induce vasoconstriction through P2Y receptor stimulation on vascular smooth muscle cells, but also dilatation acting on P2Y receptors on endothelial cells, thereby regulating vascular tone and blood pressure. Extracellular UTP and UDP have also been shown to mediate growth stimulation and cell migration in vascular smooth muscle cells and intimal hyperplasia. In rat cardiomyocytes, UTP is also known to be a positive inotropic agent in rat atria and rat and guinea pig ventricular cardiomyocytes.

UTP is selective to P2Y2/4 and UDP to P2Y6 in both man and mouse. Earlier studies have been performed with rapidly degradable UTP, making receptor characterization difficult. UTP is degraded to UDP and may even transfer phosphate groups to generate ATP. Experience from blood vessels and other tissues have shown that it is necessary to use stable and selective compounds. To analyze the inotropic effect of pyrimidine selective receptors stimulation, without interfering with degradation products, we used the stable pyrimidines: UTP for selective stimulation of P2Y2 and P2Y4 receptors and UDP for selectively stimulate the P2Y6 receptor. UDP-glucose occurs naturally but is resistant to degradation and selective for P2Y14 receptors.

In the present study UTP was nearly as strong an inotropic stimulator as the same concentration of isoproterenol. The selectivity of UTP firmly establishes that the effect is mediated via P2Y2 or P2Y4 receptors. UDP also induced a positive inotropic effect in the cardiomyocytes, although slightly weaker. Recently, a selective P2Y4 receptor blocker, MRS2578, was developed by Jacobson and coworkers. Using this novel antagonist, the UDP response was totally blocked. This strongly indicates that UDP is a positive inotropic factor acting on the P2Y6 receptor. The P2Y4 receptor is coupled to Gs, which inhibits adenylyl cyclase resulting in a decreased cAMP level. This would theoretically result in a negative inotropic effect, but no inhibitory or stimulatory effect was observed when exposing the cardiomyocytes to UDP-glucose.

The inotropic mechanisms were studied using selective inhibitors of the intracellular pathways. The receptors P2Y2, P2Y6, and P2Y14 are Gs-coupled receptors mediating their response via PLC, resulting in increased IP3, and increased...
intracellular Ca\(^{2+}\) levels. UTP has previously been shown to be a positive inotropic agent in the heart mediating its effect via a PLC pathway.\(^9\) There is also some evidence that UTP induce cAMP elevation.\(^9\) The inotropic response induced by UTP was confirmed using the stable analogue, UTP\(\gamma\)S, confirming activation of the receptors P2Y\(_2\) or P2Y\(_4\). The PLC dependent pathway of P2Y\(_{2,4}\) was confirmed by the decreased inotropic effect of UTP\(\gamma\)S in presence of U73122. The possible involvement of cAMP was excluded because the adenylyl cyclase inhibitor SQ22563 did not attenuate the response to UTP\(\gamma\)S. The response to UDP\(\beta\)S was blocked by the PLC inhibitor U73122, confirming the involvement of a G\(_{q}\)-coupled receptor acting via IP\(_3\) generation.

To help discriminating between P2Y\(_2\) and P2Y\(_4\) effects and to establish cardiac expression patterns in man, we used real-time PCR to quantify the mRNA expression of P2 receptors in heart tissue from man and mouse. The P2Y\(_2\) receptor was abundant in both human and mouse heart tissue. The P2Y\(_4\) receptor was absent in man whereas in mouse it was present to about the same extent as P2Y\(_2\). This is similar to heart tissue from rat where P2Y\(_1\) and P2Y\(_4\) have shown to be expressed to the same extent.\(^40\) mRNA for the P2Y\(_6\) receptor was present in both mouse and man, but at a relatively low level. It is well known that the mRNA expression may not correlate directly with functional importance. Furthermore, the P2Y\(_4\) receptor has previously been shown to be more potently activated in vascular smooth muscles compared with the P2Y\(_2\) receptor, even though the receptors were expressed to about the similar extent at the mRNA level.\(^26,30,40\) This is probably because the P2Y\(_4\) receptor is resistant to desensitization during continued agonist stimulation.\(^41,42\) Detecting P2Y\(_6\) in human tissue by immunohistochemistry verified expression on the protein level and the functional pharmacology clearly demonstrated P2Y\(_6\) receptor mediated effects.

Apart from the pyrimidine selective receptors we also detected the ATP receptor P2Y\(_{11}\) in the human heart. This is consistent with recent published functional data from mouse cardiomyocytes.\(^18\) The murine P2Y\(_{11}\) receptor is not yet cloned, preventing quantification of its mRNA in mouse. P2Y\(_{11}\) was abundantly expressed in both species. However, previous functional studies of this receptor have not revealed any inotropic function in mouse cardiomyocytes.\(^18\)

The presence of pyrimidines in the circulation and receptors by which UDP and UTP can activate IP\(_3\) in cardiomyocytes stimulating both inotropy and hypertrophy could indicate a similar role for pyrimidines as for angiotensin II. Angiotensin II receptor antagonists and angiotensin converting enzyme (ACE) inhibitors have been clinically successful in the treatment of hypertension and heart failure. Similar beneficial effects could possibly be found for selective UTP and UDP receptor antagonists, inhibiting peripheral resistance, inotropy, and cardiac hypertrophy. Another interesting aspect is protection during hypoxia. Yitzhaki and coworkers recently found that UTP protects rat cardiomyocytes against hypoxic injury.\(^33\) Together with our recent finding of UTP release during preconditioning\(^8\) it suggests that UTP could be involved in the preconditioning mechanism, ie, partly explaining why a brief period of ischemia protects against a subsequent period of hypoxia. Our receptor quantification in the human heart suggests that it is the P2Y\(_2\) receptor that is the appropriate target for drug therapy aiming at cardiac protection during myocardial infarction. The parallel release of UTP together with ATP could be important both by providing additional inotropic pathways but also by having other effects on the cardiomyocyte such as hypertrophic growth or protection against hypoxic stress. Furthermore, ATP effects are often counteracted by its degradation product adenosine. This is not the case for UTP.

In conclusion, patients with myocardial infarction have higher plasma levels of UTP. UTP and UDP induce a pronounced inotropic effect on mouse cardiomyocytes. mRNA quantification indicates that the inotropic effects of UTP are mediated via P2Y\(_2\) and/or P2Y\(_4\) receptors in mice and probably mediated by P2Y\(_2\) in man. We provide novel evidence for inotropic effects of UDP acting on the P2Y\(_6\) receptor on mouse cardiomyocytes. The mechanisms are mediated via PLC-mediated signaling and independent of cAMP. The extracellular pyrimidines UTP and UDP may be inotropic factors in man acting on P2Y\(_2\) and P2Y\(_4\) receptors. Synthetic agonists could thus be used as inotropic agents during circulatory shock, and antagonists may have effects similar to angiotensin II receptor blockers being beneficial in the treatment of hypertension and congestive heart failure.

Acknowledgments

This study was supported by grants from the Swedish research council (AA:04X8268, DE:04X13130), the Swedish heart lung foundation, and Franke and Margareta Bergqvist Foundation, Lund University.

References

Positive Inotropic Effects by Uridine Triphosphate (UTP) and Uridine Diphosphate (UDP) via P2Y_2 and P2Y_6 Receptors on Cardiomyocytes and Release of UTP in Man During Myocardial Infarction

Anna-Karin Wihlborg, Johanna Balogh, Lingwei Wang, Catharina Borna, Ying Dou, Bhalchandra V. Joshi, Eduardo Lazarowski, Kenneth A. Jacobson, Anders Arner and David Erlinge

Circ Res. 2006;98:970-976; originally published online March 16, 2006;
doi: 10.1161/01.RES.0000217402.73402.cd

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/98/7/970