Endothelial Progenitor Thrombospondin-1 Mediates Diabetes-Induced Delay in Reendothelialization Following Arterial Injury

Masaaki Ii, Hideya Takenaka, Jun Asai, Kayoko Ibusuki, Yusuke Mizukami, Kazuichi Maruyama, Young-sup Yoon, Andrea Wecker, Corinne Luedemann, Elizabeth Eaton, Marcy Silver, Tina Thorne, Douglas W. Losordo

Abstract—Delayed reendothelialization contributes to restenosis after angioplasty and stenting in diabetes. Prior data have shown that bone marrow (BM)-derived endothelial progenitor cells (EPCs) contribute to endothelial recovery after arterial injury. We investigated the hypothesis that the EPC contribution to reendothelialization may be impaired in diabetes, resulting in delayed reendothelialization. Reendothelialization was significantly reduced in diabetic mice compared with nondiabetic mice in a wire-induced carotid denudation model. The EPC contribution to neoendothelium was significantly reduced in Tie2/LacZ BM-transplanted diabetic versus nondiabetic mice. BM from diabetic and nondiabetic mice was transplanted into nondiabetic mice, revealing that reendothelialization was impaired in the recipients of diabetic BM. To examine the relative roles of denuded artery versus EPCs in diabetes, we injected diabetic and nondiabetic EPCs intravenously after arterial injury in diabetic and nondiabetic mice. Diabetic EPCs recruitment to the neoendothelium was significantly reduced, regardless of the diabetic status of the recipient mice. In vitro, diabetic EPCs exhibited decreased migration and adhesion activities. Vascular endothelial growth factor and endothelial NO synthase expressions were also significantly reduced in diabetic EPCs. Notably, thrombospondin-1 mRNA expression was significantly upregulated in diabetic EPCs, associating with the decreased EPC adhesion activity in vitro and in vivo. Reendothelialization is impaired by malfunctioning EPCs in diabetes. Diabetic EPCs have phenotypic differences involving thrombospondin-1 expression compared with nondiabetic EPCs, revealing potential novel mechanistic insights and therapeutic targets to improve reendothelialization and reduce restenosis in diabetes. (Circ Res. 2006;98:697-704.)

Key Words: diabetes mellitus ■ endothelium ■ restenosis ■ carotid arteries

Numerous clinical studies have indicated that diabetic patients have a higher incidence of restenosis after percutaneous coronary interventions compared with patients without diabetes.1-3 Excellent results have been achieved with drug-eluting stents, with significant reductions in restenosis rates. However, drug-eluting stents themselves delay reendothelialization, and diabetic patients continue to have excessive rates of restenosis, including thrombosis that may cause acute coronary syndrome.

The loss of endothelial integrity that occurs during percutaneous coronary intervention appears to be an inciting event in the accumulation of inflammatory cells and the onset of vascular smooth muscle cell proliferation and migration that contribute to the establishment of a neointimal lesion.4 Consistent with this hypothesis, recovery of endothelial integrity, ie, reendothelialization, has been shown to inhibit neointimal thickening. Endothelial dysfunction is also thought to be a factor that contributes to the increased incidence of restenosis in diabetes.5 Indeed, it has been demonstrated that neointimal formation was exacerbated in diabetic animals.6,7

Our laboratory8 and others9 have shown that endothelial cells (ECs) adjacent to the site of balloon injury might not constitute the sole participants in endothelial recovery. These studies have indicated that circulating cells, referred to as endothelial progenitor cells (EPCs), derived from the bone marrow (BM) and exhibiting certain features consistent with EC identity, are capable of being recruited to sites of arterial injury and contributing to reestablishing the neoendothelium. Indeed, several lines of evidence have demonstrated that BM-derived EPCs, which are mobilized by a variety of factors including physical training,10 statins,11,12 estrogen,13,14...
and cytokines,15,16 as well as exogenously infused cells,17,18 can significantly contribute to reendothelialization after endothelial denudation following arterial injury. It has been shown that the number of circulating EPCs inversely correlates with risk factors of atherosclerosis19,20 and that diabetes impairs the function of EPCs.19,21,22 However, the relationship between EPC function, reendothelialization, and restenosis in diabetes has not been fully defined.

Accordingly, we performed a series of investigations to test the hypothesis that the increased incidence of restenosis in diabetes is contributed to by delayed reendothelialization resulting from phenotypic abnormalities of BM-derived EPCs.

Materials and Methods

Surgical Procedure

All procedures were approved by St. Elizabeth’s Institutional Animal Care and Use Committee, consistent with the NIH Guide for the Care and Use of Laboratory Animals. Genetically diabetic (db/db) and heterozygous littermate control (db/m) C57BLKS/J mice of males between 6 and 8 weeks of age were obtained from The Jackson Laboratory (Bar Harbor, Me). Wire-induced carotid denudation was performed as described previously.13 Details are provided in the online data supplement (#1), available at http://circres.ahajournals.org.

Allogenic Bone Marrow Transplantation Model

Male db/db or db/m mice aged 4 to 6 weeks were used as recipients for BM transplantation (BMT). Transgenic mice of IVB/N-TgN (Tie2-LacZ+) 18 and db/m, or db/db mice (The Jackson Laboratory) were used as donors for the BMT. The procedure of allogenic BMT was performed as described previously,23 with some modifications. Details are provided in the online data supplement (#2).

EPC Culture Assay and BM-Derived EPC Culture

EPC culture assay and BM-derived EPC culture was performed as described previously.23,24 Details are provided in the online data supplement (#3). Briefly, cultured EPCs were quantified by counting the total number in 500 L of peripheral blood and averaged. EPCs isolated from BM were used for cell function assay, cell transfusion study, Western blot, and real-time PCR analysis. All cells for in vitro study were obtained from db/m, db/db, or thrombospondin (TSP)-1/H11002 mice.

EPC Transfusion Study

To enhance the detection of infused EPCs, splenectomy was performed in all mice 7 days before carotid denudation and EPC transfusion. The spleen was removed with vessel ligation through a lateral incision in the left abdominal wall. Cultured BM-derived EPCs were labeled with DiI-acLDL or transfected with TSP-1 plasmid DNA before transfusion to mice. Recipient mice were administered 10⁶ of EPCs by intravenous injection from tail vein just after induction of arterial injury. Denuded carotid arteries were examined 7 days for Evans blue staining and 14 days for en face histological assessment after surgery.

Histological Assessment

To measure the reendothelialized area, animals were perfused in vivo with Evans blue dye (Sigma) 3, 7, and 14 days after surgery, as described previously.13 Details are provided in the online data supplement (#5).

The carotid arteries from BMT mice were harvested 14 days after surgery. X-Gal staining was performed on en face denuded arteries to visualize and quantify BM-derived Tie2/LacZ–positive endothelial lineage cells, as described previously.11,13 X-Gal–positive cells
were counted on 5 different en face carotid arteries under a light microscope and expressed as average number per surface area (in square millimeters). Exogenously administered Dil-acLDL–labeled cultured EPCs were detected in red fluorescence on en face denuded arteries 14 days after surgery. Dil-positive cells were counted under a fluorescent microscope (Nikon ECLIPSE TE200) and quantified in the same way.

EPC Function Assay: Adhesion, Migration, and Proliferation Activity

EPC adhesion to extracellular matrices was evaluated as described previously with some modifications. Briefly, EPCs (2.5×10^4/well) were seeded on 96-well plates pre-coated with vitronectin, collagen type I, fibronectin and laminin (Sigma) (1 hour at 37°C) and incubated for 1 hour at 37°C and 5% CO2. After washing 3 times with PBS, attached cells were counted. Adhesion activity was evaluated as the mean number of attached cells in one high power field (×10 or ×20) from 8 wells.

EPC migrations were evaluated using a modified Boyden’s chamber assay as described previously. Briefly, cell suspensions (5×10^4 cells/well) were placed in the upper chamber at the indicated glucose concentrations, and the lower chamber was filled with medium containing mouse recombinant vascular endothelial growth factor (VEGF) (50 ng/mL) (R&D Systems). The chamber was incubated for 16 hours at 37°C and 5% CO2. Migration activity was evaluated as the mean number of migrated cells in 5 high power fields (×40) per chamber.

EPC proliferation was evaluated by bromo-deoxyuridine (BrdUrd) incorporation as described previously. Briefly, cells (2.5×10^4 cells/well) were seeded on rat vitronectin (50 μg/mL at 37°C for 1 hour) coated 4-well chamber slides and cultured in regular medium with glucose following 24 hour-serum starvation. After 18 hours in culture, BrdUrd (10 μmol/L, Sigma) was added to each well and incubated with cells for 6 hours. BrdUrd was visualized by immunostaining with anti-BrdUrd antibody (1:100, Biodesign), and proliferation activity was expressed as averaged BrdUrd positive cell percentage in 5 high-power fields (×40).

Western Blot Analysis

Western blot analysis was performed as described previously. Briefly, protein extracts from the cells cultured under low or high-glucose conditions were electrophoresed and immunoblotted with anti–endothelial NO synthase (eNOS) (1:1000, BD Pharmingen), phospho-eNOS (1:1000, Cell Signaling), -VEGF (1:500, Santa Cruz Biotechnology), and -actin (1:1000, Santa Cruz Biotechnology) antibody followed by incubation with horseradish peroxidase–anti-rabbit IgG (1:5000, Santa Cruz Biotechnology). Immunoreactive bands were visualized with ECL reagent (Amersham) and quantified densitometrically using NIH Image 1.63 software.

Quantitative Real-Time RT-PCR

Cells were lysed with RNA-Stat (Tel-Test Inc), RNA was extracted and reverse transcribed using iScript cDNA Synthesis Kit (Bio-Rad), and amplification was performed on the TaqMan 7300 (Applied Biosystems) according to the instructions of the manufacturer. Primer and probe sequence are in the online data supplement (#4). Relative mRNA expression of the target gene was calculated with the comparative Ct method. The amount of the target gene was normalized to the endogenous 18S control gene (Applied Biosystems) and calculated as a relative expression=2^{ΔΔCt}. Adhesion molecule and extracellular matrix relating genes between db/m and db/db mice were screened by cDNA microarray kit (SuperArray).

TSP-1 Plasmid DNA transfection

A full-length human TSP-1 cDNA fragment (3.5 kb) was amplified by PCR, using human Quick clone placenta cDNA (Clontech) as a template, and was ligated into the XhoI and HpaI sites of a MSCV-I-GFP retroviral expression plasmid that contains the MSCV long terminal repeat driving expression of enhanced GFP (Clontech). Cultured EPCs were transfected with human TSP-1 plasmid DNA, using transfection reagent Arrest-In (Open Biosystems) according to
the instructions of the manufacture. Cells were used for quantitative RT-PCR for mouse and human TSP-1 mRNA and adhesion assay 3 days after the transfection.

Statistical Analysis

All data are presented as mean±SEM. Significance (P<0.05) was determined by ANOVA followed by post hoc analysis with the Fisher procedure.

Results

Delayed Reendothelialization Is Associated With Decreased Circulating EPCs in Diabetic Mice

Figure 1a shows examples of arteries harvested 7 days after injury from db/m and db/db mice. The db/db mice exhibited delayed reendothelialization as compared with db/m mice at all time points after injury (day 3: 39.1±2.6 versus 55.9±2.3%; day 7: 69.7±3.1 versus 85.7±2.7%; day 14: 87.6±2.1 versus 94.6±1.9%; P<0.05, respectively) (Figure 1b).

Before carotid injury, the number of circulating EPCs was significantly reduced in db/db mice compared with db/m mice (50.8±4.1 versus 122.0±3.4/high power field [HPF]; P<0.0001). In contrast, the number of EPCs in the BM was significantly greater in db/db mice than in db/m mice (234.2±9.9 versus 186.2±12.3/HPF; P<0.05) (Figure 1c). After arterial injury, the EPC number increased, peaking at day 3 and returning to baseline by day 7 in both db/db and db/m mice. Although the peak level of EPC mobilization was similar at day 3 (165.6±14.3 versus 172.8±11.4/HPF; P=NS), the extent of decrease in the number of circulating EPCs was significantly greater in db/db mice than that in db/m mice at day 7 (52.0±10.6 versus 134.0±12.0/HPF; P<0.0001). The circulating EPC number was further decreased in db/db mice, resulting in a significant difference between db/db and db/m mice at day 14 (31.6±7.4 versus 144.0±10.3/HPF; P<0.0001) (Figure 1d).

Contribution of EPCs to Endothelial Recovery Is Reduced in Diabetics

As shown in Figure 2, whole-mount X-gal–stained carotid arteries from Tie2/LacZ BMT db/m mice displayed decreased numbers of X-gal–positive cells on the luminal surface than in Tie2/LacZ BMT db/m mice 14 days after arterial injury (27.2±4.5 versus 75.8±9.3 cells/mm²; P<0.01) (Figure 2b). Next, the contribution of diabetic versus nondiabetic BM-derived cell to reendothelialization was evaluated 7 days after carotid denudation in nondiabetic mice to determine whether the diabetic phenotype of the BM cells influenced their participation in endothelial recovery (donors: db/m mice; recipients: db/m mice) versus nondiabetic BMT nondiabetic mice (donors: db/m mice; recipients: db/m mice). Evans blue staining of whole-mounted carotid arteries shows delayed reendothelialization in nondiabetic mice with diabetic BM compared with that in nondiabetic mice with nondiabetic BM (Figure 2c) (db/m-BM versus db/db-BM) (43.5±2.1 versus 64±2.7%; P<0.001) (Figure 2d). These data demonstrate that delayed reendothelialization in diabetic mice involves impaired EPC incorporation into the carotid artery neointima.

Diabetic EPCs Exhibit Not Only Less Adhesion and Migration Activity but Also Decreased Cytokine Expressions

To further examine the phenotype of diabetic EPCs, we performed in vitro studies. The adhesion activity of diabetic EPCs was significantly reduced against all tested extracellular matrices: fibronectin, 19%; collagen I, 18%; vitronectin, 51%; and laminin, 24% compared with that of nondiabetic EPCs (Figure 3a). The migration activity of nondiabetic and diabetic EPCs under high-glucose condition was significantly reduced against all tested extracellular matrices. FN indicates fibronectin; CL, type I collagen; VN, vitronectin; LN, laminin. b, Migration activity of nondiabetic (db/m) and diabetic (db/db) EPCs under high-glucose condition. *P<0.05, **P<0.0001 vs db/m. Culture dishes were coated with extracellular matrices. FN indicates fibronectin; CL, type I collagen; VN, vitronectin; LN, laminin. b, Migration activity of nondiabetic (db/m) and diabetic (db/db) EPCs under high-glucose condition. *P<0.001 vs db/m (Low) (5 mmol/L) and P=NS vs db/db (Low) (5 mmol/L). c, Proliferation activity assessed by BrdUrd incorporation of nondiabetic (db/m) and diabetic (db/db) EPCs under high-glucose condition, P=NS, db/m vs db/db. Similar results were obtained from 3 independent experiments.

Diabetic EPCs also exhibited significantly less adhesion and migration activity.
Relative Role of Diabetic EPCs Versus Diabetic Vessel Wall in Delayed Reendothelialization

The above experiments indicated that a BMT model would be insufficient to evaluate a nondiabetic EPCs function in a diabetic animal, because the EPC phenotype would be impaired during the 4 weeks of recovery following BMT. Accordingly, to examine the relative role of the diabetic phenotype of circulating EPCs versus the injured vascular bed in the incorporation of EPCs in the neoendothelium, we performed EPC infusion experiments. Cultured EPCs isolated from db/db or db/m mice BM were labeled with Dil and administered systemically to splenectomized db/db mice or db/m mice via tail vein immediately after carotid denudation. Diabetic EPC recruitment to the neoendothelium was markedly reduced regardless of the diabetic status of the recipient mice (db/db EPC to db/m or db/db mice; Figure 4a, lower panels). On the other hand, nondiabetic EPC recruitment to the neoendothelium was observed with similar frequency in both in nondiabetic and diabetic recipients (db/m EPC to db/m or db/db mice; Figure 4a, upper panels). Thus, the number of recruited diabetic EPCs was significantly reduced in db/m and db/db mice compared with that of recruited nondiabetic EPCs in db/m mice (73.6±12.8 and 77.4±12.9 cells/mm²; P<0.001 and P<0.001, respectively). There were no significant differences between nondiabetic and diabetic mice in the number of incorporated nondiabetic or diabetic EPCs (152.2±13.2 versus 143.4±12.8 and 73.6±12.8 versus 77.4±12.9 cells/mm²; P=NS and P=NS, respectively) (Figure 4b). These data, while being interpreted cautiously with the knowledge that a cultured EPC was used, further support the above findings, indicating a reduced contribution of diabetic EPCs to reendothelialization that is independent of the diabetic or nondiabetic environment of the injured vascular beds.

Diabetic EPCs Exhibit Altered Expression of NOS, VEGF, and TSP-1

Next, we examined the expression of certain candidate genes in diabetic and nondiabetic EPCs under varying glucose conditions. The expression of phosphorylated form of eNOS was significantly reduced in diabetic EPCs even at the lowest glucose concentration (relative expression in arbitrary units 0.20±0.06; P<0.0001, respectively). In contrast, eNOS and phospho-eNOS expression was reduced in nondiabetic EPCs only at higher glucose concentrations (Figure 5a). Similarly, the expression of VEGF was also significantly decreased in diabetic EPCs at lower glucose concentrations, whereas in nondiabetic EPCs VEGF expression was reduced in a glucose concentration–dependent manner (Figure 5b). cDNA microarray analysis (supplemental Figure I) indicated that the expression of TSP-1 was upregulated in diabetic EPCs. The regulation of TSP-1 was further confirmed by quantitative real-time PCR. TSP-1 mRNA expression was significantly increased in cultured EPCs under high-glucose condition in a concentration-dependent manner (25 mmol/L: 3.2±0.4; 50 mmol/L: 4.2±0.8; 75 mmol/L: 3.5±0.7; versus 5 mmol/L: 1.2±0.2; P<0.0001). Although the expression of TSP-1 in db/db EPCs was similar to that in db/m EPCs under low-glucose conditions, it was also upregulated by high glucose in a dose-dependent manner (data not shown). TSP-1−/− EPCs were included as a negative control.

TSP-1 Mediates Decreased EPC Adhesion Activity Under High-Glucose Conditions and Delayed Reendothelialization

Next, to determine the role of TSP-1 expression on EPC adhesion activity, we transfected EPCs with a TSP-1 expression vector or control vector and repeated the vitronectin adhesion experiments (Figure 4a). TSP-1 mRNA was overexpressed by TSP-1 plasmid DNA transfection in db/m EPCs under low-glucose condition over the level as under high-glucose conditions (5.2±0.3 versus [5 mmol/L] 1.2±0.2; P<0.0001). The empty vector (EV) of TSP-1 plasmid DNA transfection did not affect endogenous TSP-1 mRNA expression (1.1±0.2 versus [5 mmol/L] 1.2±0.2; P=NS) (Figure

Diabetic EPCs Exhibit Altered Expression of NOS, VEGF, and TSP-1

Next, we examined the expression of certain candidate genes in diabetic and nondiabetic EPCs under varying glucose conditions. The expression of phosphorylated form of eNOS was significantly reduced in diabetic EPCs even at the lowest glucose concentration (relative expression in arbitrary units 0.20±0.06; P<0.0001, respectively). In contrast, eNOS and phospho-eNOS expression was reduced in nondiabetic EPCs only at higher glucose concentrations (Figure 5a). Similarly, the expression of VEGF was also significantly decreased in diabetic EPCs at lower glucose concentrations, whereas in nondiabetic EPCs VEGF expression was reduced in a glucose concentration–dependent manner (Figure 5b). cDNA microarray analysis (supplemental Figure I) indicated that the expression of TSP-1 was upregulated in diabetic EPCs. The regulation of TSP-1 was further confirmed by quantitative real-time PCR. TSP-1 mRNA expression was significantly increased in cultured EPCs under high-glucose condition in a concentration-dependent manner (25 mmol/L: 3.2±0.4; 50 mmol/L: 4.2±0.8; 75 mmol/L: 3.5±0.7; versus 5 mmol/L: 1.2±0.2; P<0.0001). Although the expression of TSP-1 in db/db EPCs was similar to that in db/m EPCs under low-glucose conditions, it was also upregulated by high glucose in a dose-dependent manner (data not shown). TSP-1−/− EPCs were included as a negative control.
that in control EPC transfused nondiabetic mice (77.4±4.5 versus 89.9±1.3%; P<0.05) (Figure 6c and d), suggesting that TSP-1 plays a critical role in adhesion activity and may provide a mechanism by which diabetes and hyperglycemia leads to impaired reendothelialization under certain circumstances.

Discussion

The present study provides evidence that mobilization, recruitment, and incorporation of EPCs to sites of arterial injury is reduced in diabetes and contributes to the delay in reendothelialization and, by inference, to the increase in restenosis rates observed in diabetics. This observation is shown to be dependent on the diabetic EPC phenotype as well as the high-glucose environment, as both EPC adhesion and migration activity are diminished under high-glucose conditions. Moreover, high glucose reduced EPC expression of major cytokines, eNOS and VEGF, as well as the expression of 1 of the adhesion molecules, TSP-1. These findings are consistent with recent publications and add the potentially important finding of a TSP-1–dependent mechanism for the affects of high glucose/diabetes on EPC adhesion and migration activity. Notably, the present findings suggest that reduced EPC recruitment to sites of arterial injury may be a central feature in the pathophysiology of the diabetic response to vascular injury. It has long been thought that endothelial regeneration in response to arterial injury was a local process involving endothelial proliferation and migration from intact ECs adjacent to the site of injury. The present data suggest that delayed reendothelialization after injury in diabetes is a significant byproduct of failed EPC biology. However, because EPCs are not originated from single cell type but so-called “heterogenous cell population,” we have to keep in our mind that certain subpopulations in the heterogenous EPCs may act differently in response to vascular injury as a study limitation.

The present data show that the number of circulating EPCs in diabetic mice is significantly reduced before and after (days 7 and 14) arterial injury compared with that in nondiabetic mice; however, the peak EPC number reached to similar level in both diabetic and nondiabetic mice, suggesting that the retention of circulating EPCs rather than the mobilization from BM is impaired in diabetes. Indeed, the number of EPCs in BM in diabetic mice was greater than that in nondiabetic mice. One of the possible reasons for this decreased number of EPCs in peripheral blood in diabetic mice is considered to be attributable to reduced expression of certain cytokines, such as VEGF, which can maintain EPCs in the circulation.

By using various BMT models and exogenous cultured EPC transfusion with carotid denudation, we were able to demonstrate that diabetic EPCs have less potential to be recruited to the neoendothelium. Because nondiabetic EPC recruitment does not account for the majority of ECs repopulating the neoendothelium, one must consider paracrine factors, both positive and negative, that might influence endothelial recovery differentially in diabetics and nondiabetics. Specifically it is possible that diabetic BM-derived cells, including EPCs, may actually act to delay reendotheli-
alization (Figure 2), an effect beyond the decreased BM-derived EPC contribution, which contributes to slower reendothelialization. Furthermore, the diabetic phenotype of EPCs not only leads to a decreased contribution to the neoendothelium but also appears to have a decreased effect on preexisting mature ECs, which are also major contributors in reendothelialization, because of decreased production of VEGF and eNOS (Figure 5). From the above observations, one must consider that EPCs play a role as paracrine effectors as well as direct contributors in reendothelialization.

A critical initial event for reendothelialization, in terms of EPC contribution, is considered to be the attachment of circulating EPCs to the denuded arterial wall; therefore, the modulation of EPC adhesion activity in diabetes would be a key consideration. Our data reveal the upregulation of EPC TSP-1 expression under high-glucose conditions. The upregulation of TSP-1 in vascular cells including ECs, SMCs, and fibroblasts in diabetic rats has recently been reported; however, until now, no direct evidence for TSP-1 upregulation has shown in diabetic EPCs. Furthermore, we also demonstrated the inverse association between TSP-1 expression and adhesion activity in EPCs, suggesting that TSP-1 would be, at least in part, a key adhesion molecule to extracellular matrices and that high glucose mediates impaired EPC adhesion activity via TSP-1 upregulation in diabetic EPCs. Indeed, recent accumulating evidence shows that TSP-1 is a multifunctional protein that interacts with a number of matrix proteins and cell surface receptors and may represent an important link between diabetes and high-glucose levels and the accelerated development of atherosclerotic lesions in diabetes. TSP-1 is known to have a specific binding site to fibronectin; therefore, mature ECs have high affinity to fibronectin/TSP-1 complex via integrin, which is on the EC cell surface. This may explain, in part, why the difference of EPC adhesion to fibronectin between EPCs of nondiabetic and diabetic mice was more modest compared with vitronectin (Figure 4a). The full implications of these findings for our understanding of the role of TSP-1 on vascular biology in diabetes remain to be further investigated.

In the present study, we used a wire-induced carotid denudation model in which the medial injury is limited for evaluating reendothelialization. Although this animal model may not be suitable for evaluating vascular smooth muscle cells, which have potential effects and exceed the effects on endothelium in diabetes, the present study reveals that delayed reendothelialization in diabetes is mediated, in part, by deficits in BM-derived EPC contribution to sites of neoendothelium in injured arteries. This may be the result, in part, of reduced numbers of circulating EPCs, as has been shown in human diabetics, but is also clearly a phenotypic feature of the diabetic EPCs themselves, as documented in the infusion studies. The reduced contribution of EPCs appears to be attributable to the impaired adhesion activity associating with upregulation of TSP-1 expression; however, the precise mechanism by which TSP-1 reduces EPC adhesion activity remains to be determined. In addition, our data simultaneously suggest that EPCs may provide a major contribution in the nature of endothelial recovery after arterial injury.

Figure 6. TSP-1 mRNA expression and effect on adhesion activity in EPCs. a, TSP-1 mRNA expression in nondiabetic (db/m) and TSP-1−/− EPCs under high-glucose condition for 24 hours. EPCs were transfected with TSP-1 plasmid DNA (TSP-1 Vector) or its backbone empty vector (EV) and incubated for 48 hours. Assays were triplicated and averaged. *P<0.0001 and **P=NS vs db/m (Low) (5 mmol/L). b, Adhesion activity to vitronectin of nondiabetic (db/m), empty vector (EV), transfected and TSP-1 plasmid DNA (TSP-1 Vector) transfected EPCs. EPCs were cultured under high-glucose conditions for 3 days before the assay. *P<0.0001, **P<0.05 and P=NS vs db/m (Low) (5 mmol/L). Similar results were obtained from 3 independent experiments. c, Representative in situ Evans blue staining 7 days after carotid denudation in the empty vector (EV) transfected EPC transfection group (EV-EPC) and in the TSP-1–overexpressing EPC transfection group (TSP-1-EPC). Bar=1 mm. d, Reendothelialization was quantified in Evans blue–stained en face carotid arteries 7 days after operation (n=5 in each group).
In conclusion, these data provide novel insights into potential mechanisms of delayed reendothelialization in diabetics, demonstrating a potentially important role for TSP-1 in regulating diabetic EPC biology. Modulation of TSP-1 expression in EPCs could represent a novel therapeutic approach for preventing restenosis after arterial intervention in diabetic patients.

Acknowledgments

This study was supported in part by NIH grants HL-53534, HL-57516, HL-77428, HL-80137, and PO1-69695. We thank Dr J. Lawler for providing TSP-1-/- mice, Dr Y. Mizukami for generating human TSP-1 plasmid DNA, and M. Neely and D. Couchon for secretarial assistance.

References

Endothelial Progenitor Thrombospondin-1 Mediates Diabetes-Induced Delay in Reendothelialization Following Arterial Injury
Masaaki Ii, Hideya Takenaka, Jun Asai, Kayoko Ibushi, Yusuke Mizukami, Kazuichi Reendothelialization Following Arterial Injury
Maruyama, Young-sup Yoon, Andrea Wecker, Corinne Luedemann, Elizabeth Eaton, Marcy Silver, Tina Thorne and Douglas W. Losordo

Circ Res. 2006;98:697-704; originally published online February 16, 2006;
doi: 10.1161/01.RES.0000209948.50943.ea

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/98/5/697

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2006/02/16/01.RES.0000209948.50943.ea.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Expanded Materials and Methods

#1: The bifurcation of the left carotid artery was exposed, and 6-0 silk sutures were placed around the common, internal and external carotid arteries to temporarily restrict blood flow. The common carotid artery was denuded 3 times with a 0.014”-PTCA flexible guide wire through the external carotid artery. The total length of denudation was 4 mm from the bifurcation of carotid arteries. The external carotid artery was permanently ligated after removing the wire, and the temporary ligatures were released to allow blood flow to be restored followed by skin suture.

#2: The recipient mice were received rabbit polyclonal anti asialo GM1 antibody (15µl per db/m mouse and 30µl per db/db mouse) (Wako Chemicals USA) 24 hours prior to 12 Gy of lethal irradiation for BM ablation; each received a half million-donor BM mononuclear cells. At 4-6 weeks post-BMT, by which time the BM of the recipient mice was reconstituted, all the procedures described below were performed.

#3: EPC Culture Assay
Mononuclear cells isolated from 500 µl of peripheral blood (PB) or BM (5×10^5/well) were cultured in 5% FBS/EBM-2 (Clonetics) medium with supplements (SingleQuot Kit; Clonetics) on rat vitronectin (Sigma) coated 4-well chamber slides. After 4 days in culture, cells were co-incubated with DiI-acLDL (Biomedical Technologies) for 1 hour followed by FITC-BS-1 lectin staining. The dual-stained cells, considered EPCs, were counted in 10 randomly selected high-power fields (HPF) under a fluorescent microscope.

BM-derived EPC Culture
BM-derived mononuclear cells isolated from bones were cultured on dishes (5×10^5/cm²) in the same way as PB. After 4 days in culture, adherent cells were reseeded at a density of 5×10^4/cm². After 3 days in further culture, the cells were used as EPC-rich cell population for in vitro study.

#4: Primers and probe sequence: mouse TSP-1: forward 5’-ACTGGTGAAGGGAAGGATCT-3’, reverse 5’-GGATCAGGGTTGCAACATTCAA-3’ and FAM-TCCAGCCCAGCTTCCG-BHQ; human TSP-1: forward 5’-AGTAGGACTGGGTGACCTGTGTTTCC-3’, reverse 5’-TCCAGCAGGCTTACGTGTTG-3’ and FAM-TCCAGCCCAGCTTCCG-BHQ and 18S: forward 5’-CGGGGCTGGAGGATAACGTTGGTGA-3’, reverse 5’-GAAACGGCTACCACATCCAAAG-3’ and FAM-TTTGCGCGCCTGCTGCTT-BHQ.

#5: Fifty µl of 5% Evans blue diluted was injected into the heart 10 minutes before the animals were killed. The common carotid artery was then harvested 4 mm from the bifurcation and was opened longitudinally. The areas stained and unstained in blue were measured in the entire injured area, and the percentage areas were calculated. Morphometric analysis of digitalized images was performed with the use of NIH Image 1.63 software.
Supplement Figure 1: cDNA microarray analysis for gene expressions in non-diabetic vs. diabetic cultured EPCs. (a) RNA extracted from non-diabetic EPCs (left panel) and diabetic EPCs (right panel) was reverse-transcripted to cDNA and hybridized with pre-determined cDNA membrane. Dot blots circled with squares, which are correspond to the array layout (b), are selected for real-time RT-PCR analysis for quantification. Yellow square (45): CD11c/Integrin αX, Black square (54): Laminin B-1 subunit, Green square (78): Tissue plasminogen activator (t-PA), Blue square (81): E-selectin, Red square (88): Thrombospondin-1 (TSP-1). The detailed gene table is available online (http://www.superarray.com/genetable.php?pcatn=MM-010). The significant TSP-1 mRNA up-regulation in diabetic EPCs was confirmed by real-time PCR. More than 2-fold different expression in triplicated samples was considered as significant. The other up-regulated genes on cDNA microarray were not reproducible.
Supplement Figure 1

Table:

<table>
<thead>
<tr>
<th>Array 1</th>
<th>Array 2</th>
<th>Bag</th>
<th>corpse 1</th>
<th>corpse 2</th>
<th>corpse 3</th>
<th>corpse 4</th>
<th>corpse 5</th>
<th>corpse 6</th>
<th>corpse 7</th>
<th>corpse 8</th>
<th>corpse 9</th>
<th>corpse 10</th>
<th>corpse 11</th>
<th>corpse 12</th>
<th>corpse 13</th>
<th>corpse 14</th>
<th>corpse 15</th>
<th>corpse 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>