De Novo Synthesis of Cyclooxygenase-1 Counteracts the Suppression of Platelet Thromboxane Biosynthesis by Aspirin

Virgilio Evangelista, Stefano Manarinini, Angelo Di Santo, Marta L. Capone, Emanuela Ricciotti, Luigia Di Francesco, Stefania Tacconelli, Andrea Sacchetti, Sandra D’Angelo, Antonio Scilimati, Maria G. Sciulli, Paola Patrignani

Aspirin affords cardioprotection through the acetylation of serine\(^{29}\) in human cyclooxygenase-1 (COX-1) of anucleated platelets, inducing a permanent defect in thromboxane \(A\(_2\)\) (TXA\(_2\))-dependent platelet function. However, heterogeneity of COX-1 suppression by aspirin has been detected in cardiovascular disease and may contribute to failure to prevent clinical events. The recent recognized capacity of platelets to make proteins de novo paves the way to identify new mechanisms involved in the variable response to aspirin. We found that in washed human platelets, the complete suppression of TXA\(_2\) biosynthesis by aspirin, in vitro, recovered in response to thrombin and fibrinogen in a time-dependent fashion (at 0.5 and 24 hours, TXB\(_2\) averaged 0.1±0.03 and 3±0.8 ng/mL; in the presence of arachidonic acid [10 \(\mu\)mol/L], it was 2±0.7 and 25±7 ng/mL, respectively), and it was blocked by translational inhibitors, by rapamycin, and by inhibitors of phosphatidylinositol 3-kinase. The results that COX-1 mRNA was readily detected in resting platelets and that \(^{[35]}\)S]-methionine was incorporated into COX-1 protein after stimulation strongly support the occurrence of de novo COX-1 synthesis in platelets. This process may interfere with the complete and persistent suppression of TXA\(_2\) biosynthesis by aspirin necessary for cardioprotection.

Materials and Methods

Healthy volunteers (n=9 to 22; mean age 40±5 years) who provided blood for the study did not assume aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) within 10 days before donation. Platelet-rich plasma (PRP\(^{\text{a}}\)) was incubated for 30 minutes at 37°C without or with 0.3 mmol/L of aspirin. Platelets were then isolated from plasma as described previously\(^6\) and resuspended in RPMI 1640 supplemented with 0.5% FCS. Platelet suspension contained <1 leukocyte per 10,000 platelets. Unless otherwise indicated, 5×10\(^4\) platelets/mL were used for each experimental point. Mononuclear cells were separated from whole blood containing heparin (10 IU/mL) by Ficoll-Paque and stimulated for 12 hours with lipopolysaccharide (LPS; 10 \(\mu\)g/mL).\(^{10}\) Aspirin-treated or untreated platelets were incubated in the absence or in the presence of fibrinogen (0.38 mg/mL) alone or with thrombin (1 U/mL), for different times, at 37°C. The reaction was stopped by immediate centrifugation and supernatants stored at ~80°C. In some experiments, exogenous AA (10 \(\mu\)mol/L) was added at different times, and the incubation carried on for an additional 10 minutes. In selected experiments, the following translation or signal transduction inhibitors, cycloheximide (1 mmol/L), puromycin (500 \(\mu\)mol/L), rapamycin (100 \(\mu\)mol/L), actinomycin D (1 \(\mu\)mol/L), staurosporine (10 \(\mu\)mol/L), wortmannin (100 \(\mu\)mol/L), LY294002 (10 \(\mu\)mol/L), AG490 (10 \(\mu\)mol/L), or vehicle (dimethylsulfoxide 0.1%), were added to platelets 10 minutes before starting incubation with fibrinogen and thrombin. The effects of a selective and reversible COX-1 inhibitor (P6),\(^{11}\) aspirin, and 2 selective COX-2 inhibitors, rofecoxib and etoricoxib, were studied by their addition to platelets immediately before starting the incubation with thrombin and fibrinogen. In platelet supernatants, TXB\(_2\) was evaluated by radioimmunoassay,\(^1\) reflecting TXA\(_2\) generation. All reagents were from Sigma-Aldrich. RT-PCR of COX-1 and COX-2 and radiolabeling of platelets and immunoprecipitation of COX-1 are described in the expanded Material and Methods section in the online data supplement, available at http://circres.ahajournals.org.
Statistical Analysis
Data, presented as means±SEM, were analyzed by repeated-measurement ANOVA. *P<0.05 was considered statistically significant.

Results and Discussion
Aspirin (0.3 mmol/L) pretreatment of PRP of healthy individuals was associated with an almost complete suppression of TXA₂ generation in washed platelets incubated for 30 minutes with fibrinogen (0.38 mg/mL) and thrombin (1 U/mL; 162.3±30.5 versus 0.1±0.03 ng/mL; n=9). A significant increase of TXA₂ generation was detected in supernatants of aspirinated platelets cultured for 24 hours with fibrinogen and thrombin (3±0.8 ng/mL; n=22) but not in resting platelets or when they were incubated with fibrinogen alone (Figure 1A). A similar effect was detected with other platelet agonists (ADP [20 μmol/L], collagen [5 μg/mL], or thrombin receptor-activating peptide [50 μmol/L]; supplemental online Table). The generation of TXA₂ in aspirinated platelets was significantly increased in the presence of exogenous AA (10 μmol/L; at 0.5 versus 24 hours: 2±0.7 and 25±7 ng/mL [n=3]; *P<0.0004 and *P<0.0001 versus the same time points without exogenous AA; supplemental online Figure). These concentrations of TXA₂ are biologically active and, in the presence of other platelet agonists, may further boost platelet responses.4,5

As shown in Figure 1B, TXA₂ generation was depressed in a concentration-dependent fashion by P6, a COX-1 inhibitor, and by aspirin (added de novo immediately before starting incubation) but not by etoricoxib or rofecoxib, two COX-2 inhibitors. The potency of aspirin to inhibit the recovery of TXA₂ synthesis in aspirinated platelets at 24 hours of incubation (IC₅₀, 22 μmol/L; 95% CI, 9 to 56) was significantly lower than that found at 30 minutes (IC₅₀, 4.5 μmol/L; 95% CI, 3.8 to 5.5; data not shown). This led us to hypothesize that time-dependent de novo synthesis of COX-1 protein could account for recovered COX-1 activity. Consistently, we demonstrated that TXA₂ biosynthesis in aspirinated platelets stimulated with fibrinogen and thrombin occurred by a regulated pathway for protein translation. In fact, it was prevented by puromycin, which causes the premature release of nascent polypeptide chains, cycloheximide, which blocks the translocation reaction on ribosomes and rapamycin, a bacterially derived immunosuppressant that inhibits the translation of a specific subset of mRNAs. In contrast, actinomycin D, a transcriptional inhibitor, did not affect the biosynthesis of this prostanoid. In addition, we found that inhibitors of phosphatidylinositol 3-kinase, LY294002 and wortmannin, also blocked TXA₂ recovery, indicating that this response is phosphatidylinositol 3-kinase dependent. In contrast, AG-490, a tyrosine kinase inhibitor, and staurosporine, a protein kinase C inhibitor, did not significantly affect TXA₂ generation in this setting (Figure 1C). The apparent reduction obtained by staurosporine may be attributable to its possible interaction with phosphatidylinositol 3-kinase itself. First, we explored whether platelets contained mRNA for COX isoforms. As shown in Figure 2A, COX-1, but not COX-2, mRNA can be detected by RT-PCR in resting platelets (lanes 1 and 3) as well as in platelets incubated for
3 hours in the presence of both fibrinogen and thrombin (lanes 2 and 4). As positive control, COX-2 mRNA was detected in purified human mononuclear cells activated with LPS. To explore platelet ability to translate mRNA in new proteins, they were loaded with [35S]-methionine and then incubated with 50 Ci [35S]-methionine in the absence or presence of both fibrinogen and thrombin for 0.5 or 24 hours. Total cell lysates and immunoprecipitates, with a goat anti-human COX-1 antibody, were subjected to SDS-PAGE. Immunoprecipitation with an antibody specific for COX-1 yielded a [35S]-methionine–labeled protein corresponding to the exact COX-1 size.

In conclusion, signal-dependent de novo synthesis of COX-1 occurring in aspirin-treated platelets after activation may represent a mechanism involved in the interference of complete and persistent suppression of TXA2 biosynthesis by aspirin necessary for cardioprotection. The occurrence of this phenomenon in vivo in patients with cardiovascular disease treated with low-dose aspirin remains to be verified. Our results may contribute to shed some light on the rather nebulous concept of aspirin resistance.

Acknowledgments

This work was supported by a grant from ECOSANOX (LSHM-CT-2004-005033 to P.P.) and Fondazione Carrichi-Fondazione Negri Sud Onlus (to V.E. and S.D.).

References

Key Words: aspirin ▪ thromboxane ▪ platelets ▪ protein synthesis
De Novo Synthesis of Cyclooxygenase-1 Counteracts the Suppression of Platelet Thromboxane Biosynthesis by Aspirin
Virgilio Evangelista, Stefano Manarini, Angelo Di Santo, Marta L. Capone, Emanuela Ricciotti, Luigia Di Francesco, Stefania Tacconelli, Andrea Sacchetti, Sandra D'Angelo, Antonio Scilimati, Maria G. Sciulli and Paola Patrignani

Circ Res. 2006;98:593-595; originally published online February 16, 2006;
doi: 10.1161/01.RES.0000214553.37930.3e
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/98/5/593

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2006/02/16/01.RES.0000214553.37930.3e.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/
Supplementary Information

Evangelista et al
De novo synthesis of cyclooxygenase-1 counteracts the suppression of platelet thromboxane biosynthesis by aspirin

Expanded Material and Methods

RT(Reverse Transcription)-PCR
Total RNA was isolated from washed platelets (8x10⁹/mL) and from human mononuclear cells (2-3x10⁶/mL). One µg of total RNA served as a template for RT-PCR of COX-1, COX-2 and GAPDH as previously described.¹ PCR was performed for 30, 40 or 50 cycles using a cycling program of 1 minute at 94°C, 1 minute at 64°C and 1 minute at 72°C for COX-1 and 1 minute at 94°C, 1 minute at 60°C and 1 minute at 72°C for COX-2.

Radiolabeling of platelets and immunoprecipitation of COX-1.
Platelets (1x10⁹/mL) resuspended in methionine-free M199 medium were incubated with 50 µCi [³⁵S]-methionine (Amersham) in the absence or in the presence of fibrinogen alone or with thrombin for 24h. The reaction was stopped by addition of one volume lysis buffer. Total cell lysates and immunoprecipitates, with a goat anti-human COX-1 polyclonal antibody (Santa Cruz, Biotechnology), were boiled for 10 minutes and then subjected to SDS-PAGE.²
Supplementary Figure

Time-dependent recovery of COX-1 activity in aspirin-treated platelets.

PRP from healthy donors was treated for 30 minutes at 37°C with aspirin (0.3 mmol/L) and washed platelets 3 (5x10⁸/mL) were incubated for 0.5-24 h with thrombin (1U/mL). At 0.5, 3, 5 and 24 h, AA (10 μmol/L) was added and the incubation carried on for further 10 minutes at 37°C. The reaction was stopped by immediate centrifugation and supernatants stored at -80°C until assayed for TXB₂ levels by radioimmunoassay 4, as a reflection of TXA₂ biosynthesis. Values are reported as mean±SEM, n=3. *P<0.05, **P<0.01 AA versus the same time without AA; †P<0.05 versus time 0.5 h without AA; ‡P<0.05, ‡‡P<0.01 versus time 0.5 h with AA.

Supplementary Table

Aspirin-treated platelets recover COX-1-dependent capacity to synthesize TXA₂ in response to platelet agonists

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>None</th>
<th>Fibrinogen</th>
<th>Collagen fibrinogen</th>
<th>ADP fibrinogen</th>
<th>TRAP fibrinogen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TXA₂ biosynthesis (ng/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.08±0.01</td>
<td>0.06±0.01</td>
<td>0.19±0.03</td>
<td>0.08±0.02</td>
<td>0.07±0.02</td>
</tr>
<tr>
<td>24</td>
<td>0.3±0.1</td>
<td>0.4±0.1</td>
<td>4.99±1.40*§</td>
<td>2.51±0.09**‡</td>
<td>2.0±0.19**§</td>
</tr>
</tbody>
</table>

PRP from healthy donors was treated for 30 minutes at 37°C with aspirin (0.3 mmol/L) and washed platelets ³ (5x10⁸/mL) were incubated for 0.5 and 24 h without (none) or with fibrinogen (0.38 mg/mL) alone or fibrinogen and collagen (5 μg/mL), ADP (20 μmol/L) or thrombin receptor-activating peptide (TRAP, 50 μmol/L). The reaction was stopped by immediate centrifugation and supernatants stored at -80°C until assayed for TXB₂ levels by radioimmunoassay ⁴, as a reflection of
TXA₂ biosynthesis. *P<0.05, **P<0.001 versus time 0.5 h; §P<0.001 versus none 0.5, 24 h and versus fibrinogen 0.5, 24 h. Values are reported as mean±SEM, n=3.

REFERENCES

