Interleukin 12 Induces T-Cell Recruitment Into the Atherosclerotic Plaque

Xiaoyu Zhang,* Alexander Niessner,* Takako Nakajima, Wei Ma-Krupa, Stephen L. Kopecky, Robert L. Frye, Jörg J. Goronzy, Cornelia M. Weyand

Abstract—CD4 T cells, through the release of cytokines as well as direct effector functions, have been implicated in promoting inflammation of the atherosclerotic plaque. Plaque-infiltrating CD4 T cells include a specialized subset of CD4+CD28− T cells that express a unique profile of regulatory receptors and are responsive to novel microenvironmental cues. Here we report that CD4+CD28− T cells, either isolated from the plaque tissue or from the blood of patients with acute coronary syndrome (ACS), spontaneously express interleukin (IL)-12 receptors, even in the absence of antigenic stimulation. CD4+CD28− IL-12Rβ− cells responded to IL-12 stimulation with the upregulation of the chemokine receptor CCR5 and the C-type lectin receptor CD161, both implicated in regulating tissue homing of effector T cells. IL-12 treatment of CD4+CD28− T cells enhanced their chemotaxis and transendothelial migration toward the chemokine CCL5. In vivo relevance for the role of IL-12 in regulating the recruitment of CD4+CD28− T cells into the atheroma was examined in human atheroma-SCID mouse chimeras. Exposure of nonstimulated CD4+CD28− T cells to IL-12 was sufficient to amplify T-cell accumulation within the inflamed plaque, and coadministration of anti-CCR5 antibodies blocked T-cell recruitment into the plaque. Thus, CD4+CD28− T cells functionally resemble NK cells, which have proinflammatory activity even in the unprimed state and respond to any IL-12–inducing host infection with a shift in tissue trafficking and accrual in inflammatory lesions. (Circ Res. 2006;98:524-531.)

Key Words: inflammation ■ interleukins ■ cytokines ■ T lymphocyte ■ vascular inflammation

The cellular and biological events causing acute coronary syndrome (ACS) have been linked to the process of plaque rupture and superimposed thrombosis, leading to vessel occlusion and ischemia.1 Tissue disruption in the atheroma has multiple underlying causes; yet the presence of plaque inflammation is an excellent predictor of vulnerability.2 Plaque-infiltrating cells are composed of macrophages, dendritic cells (DC), and T cells, all of which contribute to the ultimate outcome of tissue injury. T cells mediate inflammatory damage through 2 pathways: either by regulating the functional activity of macrophages,3 endothelial cells, and vascular smooth muscle cells or via direct cytotoxicity.4 Little is known about signals that regulate T-cell recruitment to and retention in the plaque and their functional activity in the nonlymphoid microenvironment of the vessel wall.

Plaque-infiltrating T cells are enriched for a particular subset, CD4+CD28− T cells.5 Such CD4+CD28− T cells are proinflammatory lymphocytes, which produce high amounts of interferon (IFN)-γ and tumor necrosis factor (TNF)-α.6 They also are efficient killer cells, expressing perforin and granzyme B, and lyse endothelial target cells.8 CD4+CD28− T cells have an unusual chemokine receptor profile, including expression of CX3CR1, a receptor typically expressed by NK cells and cytotoxic CD8 T cells. Thus, the tissue trafficking pattern of the CD4+CD28− T-cell subset may be fundamentally different from that of other CD4 T-cell populations.

T-cell function is primarily regulated by antigen recognition, and clonality within CD4+CD28− T cells has been cited as evidence of chronic antigen stimulation.5 However, CD4+CD28− T cells from ACS patients also respond to heat shock protein 60 (HSP60),9 suggesting a possible role for autoantigens and nonclassical triggers. Accordingly, CD4+CD28− T cells bypass T-cell receptor (TCR) triggering if they have acquired killer immunoglobulin-like receptors and the appropriate adaptor DAP12.4 Thus, plaque-residing CD4 T cells are regulated by signals beyond antigen recognition, with some of these signals specific for the atheroma microenvironment.

Besides HSP60 and KIR ligands, several other mediators could enhance the activities of proinflammatory T cells in the plaque. Candidates include cytokines produced by DC and activated macrophages which colocalize with CD4 T cells in.
the plaque infiltrate. Interleukin (IL)-12, a heterodimeric cytokine released by activated macrophages and DC, is abundantly produced in plaque tissues. IL-12 plays a critical role in atherogenesis as indicated by reduced plaque burden in apolipoprotein E IL-12 knockout mice. IL-12 is a potent regulator of T-helper cell differentiation.

Two chains, IL-12 receptor (IL-12R) β1 and IL-12Rβ2, form the membrane receptor complex for IL-12. Optimal IL-12R expression in T cells requires prior activation through the TCR. One of the major functions of IL-12 is IFN-γ induction. IL-12 also induces a chemokine receptor switch, equipping activated T cells to enter peripheral sites of infection or injury. Specifically, IL-12 upregulates CCR5 expression through which differentiated effector T cells are recruited to tissues that attract them via CCL5 (also called RANTES) and macrophage inflammatory protein (MIP)-1α. Another IL-12–inducible gene is CD161, a C-type lectin receptor facilitating T cell–endothelial cell interactions.

The current study explored whether IL-12 modulates functional activity of CD4+CD28+ T cells that preferentially accumulate in the inflamed atheroma. CD4+CD28+ T cells were found to be constitutively IL-12 responsive, even in the absence of antigen stimulation. IL-12 induced enhanced chemotaxis and transendothelial migration of CD4+CD28+ T cells in response to CCL5 in vitro and recruitment of CD4+CD28+ T cells into the plaque in a mouse chimera model in vivo, suggesting that IL-12 production during infectious episodes could enhance T-cell influx into the atheroma.

Materials and Methods

Blood Samples of ACS Patients and Carotid Artery Specimens

ACS patients admitted to the hospital were enrolled into the study. Diagnostic criteria have previously been described. Peripheral blood mononuclear cells (PBMC) were isolated from 44 patients using Ficoll-Hypaque (Amersham Biosciences, Piscataway, NJ). Distal endothelial protection devices from 11 patients undergoing coronary artery stenting and carotid artery specimens from 68 patients (75% male, 70.9±9.8 years) undergoing endarterectomy were collected in sterile saline and processed without delay.

The Institutional Review Board approved all protocols, and appropriate consent was obtained.

T-Cell Lines and T-Cell Clones

Tissue fragments were immediately washed off the distal embolization protection devices, spun and cultured in RPMI medium supplemented with 20% FCS, recombinant human (rh) IL-2 (Proliekin Chiron, Emeryville, Calif), and stimulated with 1×10^6/mL irradiated PBMCs, 1.5×10^6/mL irradiated EBV-transformed B cells, 30 ng/mL anti-CD3 monoclonal antibodies (Ortho Diagnostics, Raritan, NJ), and 50 U/mL rh IL-2 after 7 days. CD4+ T-cell lines were separated by fluorescence-activated cell sorting (FACS). CD4+CD28+ and CD4+CD28− clones were established from peripheral blood T cells by limiting dilution as previously described. T-cell lines or clones were stimulated with 10 ng/mL rh IL-12 (R&D Systems, Minneapolis, Minn) for 48 hours. For adoptive transfer experiments, T cells were labeled with 4×10^4 molar PKH26 red fluorescent dye in 2 mL of PKH26 diluent C (both from Sigma, St Louis, Mo); labeling efficiency was confirmed by flow cytometry. Cell viability as determined by trypan blue exclusion was >95%.

Flow Cytometry

For multicolor flow cytometry, T cells were stained with PerCP-labeled anti-CD4, fluorescein isothiocyanate–labeled anti-CD28, anti-CD161, and anti-CCR5 and phycocerythrin-labeled anti IL-12β1 chain monoclonal antibodies (all Becton Dickinson, Franklin Lakes, NJ). Cells were analyzed on a FACS Calibur flow cytometer (Becton Dickinson). Frequencies and mean fluorescence intensities were determined using WinMDI software (Joseph Trotter, Scripps Research Institute, La Jolla, Calif).

Reverse-Transcriptase Polymerase Chain Reaction

RNA from carotid artery tissue or T-cell clones was extracted using TRizol (Invitrogen Life Technologies, Grand Island, NY), reverse transcribed, and amplified by PCR with primers specific for β-actin, TCR-α chain, CCL5, MIP-1α, and IL-12β1 and β2 chains (supplemental Table I, available online at http://circres.ahajournals.org). Transcripts for β-actin, TCR, CCL5, and MIP-1α were quantified using the Mx 4000 PCR instrument (Stratagene, Cedar Creek, Tex). Transcripts were normalized to 2×10^6 β-actin copies.

Transwell and Transendothelial Migration System

Transendothelial migration assays were performed in 12-well plates with 12-mm, 3-μm pore, collagen-coated polytetrafluoroethylene transwell inserts (Corning Costar, Acton, Mass). Human umbilical vein endothelial cells (HUVEC) (American Type Culture Collection, Manassas, Va) were plated at 5×10^4 to 1×10^5 cells/insert. After 2 days, 5×10^5 T cells were placed in the upper chamber and CCL5 (R&D Systems) was added to the lower chamber. After 4 hours of incubation at 37°C, T cells that migrated into the lower chamber were recovered, counted, and expressed as the percentage of the total cell number.

In the chemotaxis assays, T cells were added to the upper chamber of transwell plates with polycarbonate membranes (12-mm, 3-μm pore; Corning Costar), and CCL5 was added to the lower chambers. After 2 hours, T cells in the lower chamber were recovered, and the percentage of migrated T cells was determined.

CD4 T Cells Transfer Into Carotid Artery Plaque-SCID Mouse Chimeras

Six- to 8-week-old NOD.CB17-Prkdcre/+/J mice or NOD-129S7 (B6)-Rag1 (m/mom) J mice (Jackson Laboratories, Bar Harbor, Maine) were anesthetized with 50 mg/kg pentobarbital (Abbott Laboratories, North Chicago, Ill) IP and engrafted with human carotid artery plaque tissue placed into a subcutaneous pocket on the midback. All procedures were approved by the Animal Care and Use Committee. On day 7 after implantation, mice were injected intravenously with 1×10^6 CD4 T cells or PBS. Forty-eight hours after cell transfer, the human carotid artery grafts were explanted and shock frozen for mRNA analysis or embedded in OCT compound (Sakura FineTek, Torrance, Calif). Tissue-infiltrating cells were counted in 5 nonserial sections. In each section, 25 fields were analyzed by fluorescence microscopy.

Statistical Analysis

Statistical analyses were performed with Mann–Whitney U test, Student t test, χ² test, and Fischer exact test where appropriate. We compared the response of cell lines to different stimulation conditions using 2-way repeated measures ANOVA (SigmaStat; SPSS, Chicago, Ill).

Results

IL-12 Regulates the Function of Plaque-Derived CD4 T Cells

To evaluate whether plaque-infiltrating T cells are amenable to cytokine regulation, we devised a method to sample tissue-derived T cells from atherosclerotic lesions. Tissue debris captured in distal embolization protection devices from
11 patients was cultured; T-cell lines grew out of the tissue debris from 5 patients. No difference in risk factor profile, medication, or clinical presentation between patients with or without outgrowing tissue lines was found. Expanding T-cell lines contained CD4 and CD8 T cells and, consistent with prior reports, the cell populations were enriched for T-cell lines. The chemokine receptor expression profile and the trafficking behavior of IL-12–stimulated CD4 T cells suggested that IL-12 profoundly affects migration and tissue localization of IL-12–sensitive T cells. To establish a role for IL-12 in guiding T cells to inflammatory lesions in vivo, we examined the trafficking pattern of CD4 T-cell clones into atherosclerotic plaque. For these experiments, a novel animal model was used. Atherosclerotic plaques harvested by carotid endarterectomy were implanted into immunodeficient mice. Engraftment of the human tissue is accomplished after 7 days when mouse capillaries form anastomoses with human capillaries on the graft surface.18 Although human CCL5 is cross-reactive on murine CCR5, mouse macrophages are mostly found in a granulation tissue around the human tissue, CD4$^+$CD28$^-$ and CD4$^+$CD28$^+$ T cells displayed a clear difference for CCR5 expression. Differences in expression of CD161 and CCR5 on the 2 CD4 subpopulations were highly significant, with $P=0.0006$ and $P<0.0001$, respectively.

IL-12 Enhances CCL5-Induced Chemotaxis and Transendothelial Migration of CD4$^+$CD28$^-$ T Cells

The antigen-independent IL-12 responsiveness of circulating CD4$^+$CD28$^-$ T cells raised the question of whether IL-12 modulated their tissue trafficking patterns. CCR5 is typically expressed on effector memory T cells and guides memory T cells away from secondary lymphoid tissues into peripheral inflammatory lesions.19 The chemotactic responsiveness of CD4$^+$CD28$^-$ T cells to CCL5 was explored in a transwell system. Stable CD4$^+$CD28$^-$ T-cell clones were generated from the peripheral blood of ACS patients. A total of 46 CD4 T-cell clones were screened by RT-PCR for IL-12Rβ1 chain expression. Forty-one had abundant mRNA for IL-12 Rβ1 and 23 of these coexpressed IL-12Rβ2 sequences; 5 CD4$^+$CD28$^-$ T-cell clones lacked transcripts for IL-12Rβ1. IL-12Rβ1 could not be induced in these T-cell clones (data not shown). Thus clones did not express CCR5 in response to IL-12 and served as control cells in functional assays testing IL-12 effects (Figure 3).

CD4$^+$CD28$^-$ T cells responded to CCL5 by enhanced transmigration toward the chemokine source. The proportion of migrating CD4 T cells increased in a dose-dependent fashion and reached 20% for CCL5 concentrations of 50 ng/mL (Figure 4A). When preconditioned with IL-12, frequencies of CCL5 responsive T cells increased to 33%. Also, transendothelial migration was enhanced in the presence of CCL5. Pretreatment with IL-12 increased passage through the endothelial layer at all CCL5 concentrations. IL-12 had no effect on the trafficking pattern of CD4$^+$ T-cell clones lacking expression of IL-12R (Figure 4B).

Similar to T-cell clones, CD4 T-cell lines isolated from unstable plaque responded to IL-12 stimulation with a marked increase in CCL5-directed migration (Figure 5). With increasing doses of CCL5, a maximum of 6% of T cells could be attracted. When pretreated with IL-12, the rate of migrating T cells doubled to almost 12%.

IL-12 Enhances Tissue Homing of CD4 T Cells In Vivo

The chemokine receptor expression profile and the trafficking behavior of IL-12–stimulated CD4$^+$CD28$^-$ T cells suggested that IL-12 profoundly affects migration and tissue localization of IL-12–sensitive T cells. To establish a role for IL-12 in guiding T cells to inflammatory lesions in vivo, we examined the trafficking pattern of CD4 T-cell clones into atherosclerotic plaque. For these experiments, a novel animal model was used. Atherosclerotic plaques harvested by carotid endarterectomy were implanted into immunodeficient mice. Engraftment of the human tissue is accomplished after 7 days when mouse capillaries form anastomoses with human capillaries on the graft surface.18 Although human CCL5 is cross-reactive on murine CCR5, mouse macrophages are mostly found in a granulation tissue around the human tissue,
but not within the tissue graft, possibly because of incompatibility with human endothelial adhesion molecules. ED50s are approximately tenfold lower for human CCR5 responding to human RANTES as compared with mouse RANTES, giving human T cells a clear advantage for being recruited into the human graft. Although the model is a no-flow model, it is highly informative to study homing and effector functions of adoptively transferred cells.

To choose appropriate tissues for implantation, a total of 68 carotid plaque tissues were screened for the presence of an inflammatory infiltrate. Thirty-two percent of the endarterectomies contained TCR-specific sequences indicating a T-cell infiltrate. Real-time PCR was used to quantify the transcription of CCL5 and MIP-1α, two CCR5-binding chemokines known to be produced in plaque tissue. As shown in supplemental Figure 1, both chemokines correlated highly with the TCR load in the lesion (r=0.79 for CCL5; r=0.68 for MIP-1α). These data suggested that CCR5 expression on CD4 T cells may be a critical determinant in regulating their recruitment into the ather-

Figure 2. Expression of IL-12R and the IL-12–inducible molecules CCR5 and CD161 on circulating CD4+ T cells in ACS. Freshly harvested peripheral blood T cells from 44 ACS patients were analyzed by multicolor flow cytometry for the expressions of CD4, CD28, and IL-12Rβ1 chain (A), CCR5 (B), and CD161 (C). In the representative histograms, isotype control stains are given as shaded areas; marker expressions on T cells are shown as solid lines (left and middle). Surface expression for each marker was determined as mean fluorescence intensity (MFI) and compared on CD4+CD28+ and CD4+CD28- T cells (right). Results are given as box plots displaying medians with 25th and 75th percentiles as boxes and 10th and 90th percentiles as whiskers.

Figure 3. IL-12 responsiveness of CD4 T-cell clones depends on the combined expression of IL-12Rβ1 and β2 chains. A panel of 46 CD4+CD28+ T-cell clones was established from 3 ACS patients. Individual T-cell clones were examined for the transcription of IL-12Rβ1 and IL-12Rβ2 genes, and biological responsiveness to IL-12 was analyzed by upregulation of CCR5. A representative example for a CD4 T-cell clone lacking transcripts for both IL-12R β chains (left) and a CD4 T-cell clone expressing a combination of both IL-12R β chains (right) are shown. Shaded areas represent isotype staining controls. Dashed lines show CCR5 expression without IL-12 stimulation; solid lines show CCR5 expression with IL-12 stimulation for 48 hours.
oma and that several chemokines participate in attracting CCR5^CD4^ T cells into the plaque.

Endarterectomy tissues containing high levels of TCR and CCL5 transcripts from 5 patients were implanted into 10 mice. CD4^CD28^- T-cell clones were labeled with a stable membrane dye, cultured with IL-12, and adoptively transferred into these human plaque mouse chimeras. After 48 hours, the human plaque tissues were explanted and analyzed for labeled T cells in the plaque. CCL5-negative plaque tissues from 5 donors were implanted into 10 mice and served as controls. Both sets of chimeras were injected with the identical CD4^CD28^- T-cell clones labeled with PKH26. T-cell migration into the tissue was quantified by enumerating fluorescent T cells in tissue sections (Figure 6A). Labeled T cells consistently accumulated in CCL5^ atheromas, mostly in tissue areas occupied by inflammatory infiltrate. Preconditioning with IL-12 significantly enhanced the recruitment of adoptively transferred T cells, withSee Figures 3 and 5 showing these results. In plaques that lacked CCL5, adoptively transferred T cells were rarely detected. Likewise, IL-12 pretreatment could not enhance the migration of adoptively transferred T cells into such lesions. To provide further support for the role of IL-12 in regulating the tissue migration of plaque-infiltrating CD4 T cells, the density of adoptively transferred CD4 T cells in the atheroma was determined by quantitative PCR. Engrafted plaques were harvested 48 hours after T-cell injection. TCR-specific sequences were quantified by real-time PCR. Results from 4 representative experiments are shown in Figure 6B. TCR sequences were abundantly present in CCL5^ atheroma. IL-12 preconditioning of transferred CD4 T-cell clones enhanced the tissue concentrations of TCR sequences significantly. CCL5^ plaque tissues did not contain detectable levels of TCR sequences and were unable to attract any T cells, independent of IL-12 pretreatment. Blocking studies documented that the IL-12-mediated increase in homing to the atherosclerotic plaque was dependent on CCR5. Incubation of T cells with anti-CCR5 antibodies at the time of adoptive transfer completely inhibited the increase in T-cell accumulation (Figure 6C and 6E) and brought the tissue content of TCR mRNA even below baseline levels (Figure 6D). To add further support for IL-12 regulated T-cell trafficking to the inflamed atheroma, CD4^CD28^- T-cell clones lacking IL-12R expression (see Figure 3) were adoptively transferred into chimeras engrafted with CCL5-rich atheroma tissue. As shown in supplemental Figure II, low numbers of adoptively transferred CD4^CD28^-IL-12R^- T cells were found in the grafts. IL-12 pretreatment left the trafficking pattern of such T cells unaffected. Together, these data confirmed the regulatory function of IL-12 in optimizing the tissue migration behavior of CD4 T cells into the atherosclerotic plaque.

Discussion
A specialized subset of CD4^ T cells, CD4^CD28^- T cells, are enriched in the culprit lesions of ACS patients. In contrast...
common CD4 T cells, CD4⁺CD28⁺ T cells respond to different regulatory signals. Receptor ligands and soluble factors triggering the activation of such T cells outside and within the atherosclerotic plaque potentially play a critical role in plaque destabilization. Here we report that CD4⁺CD28⁺ T cells are constitutively responsive to IL-12, a proinflammatory cytokine produced by activated DC and macrophages. IL-12 enhanced chemotaxis and transendothelial migration by upregulating the chemokine receptor CCR5. In vivo relevance of this mechanism was tested in human atheroma SCID mouse chimeras in which carotid artery plaques were implanted into SCID mice, and the homing of
adoptively transferred T cells was determined. Pretreatment of CD4+CD28+ T cells with IL-12 before adoptive transfer facilitated migration to the engrafted human atheroma.

IL-12 is a powerful modulator of T-cell and NK cell function.20 Bacterial infections and other means of DC activation rapidly induce IL-12.13 On antigen recognition T cells upregulate IL-12R and thus become sensitive to DC modulation. By activating the STAT4 pathway,21 IL-12 induces IFN-γ production and guides the differentiation of T cells into potent Th1 effector cells.16 Accordingly, genetic defects in the IL-12/IL-12R axis render individuals highly susceptible to infections, particularly intracellular pathogens.22 Using its ability to regulate the differentiation and expansion of antigen-primed T cells, IL-12 has also been involved in promoting autoimmune responses.23

The surprising finding of this study is that CD4+CD28+ T cells, in contrast to their CD4+CD28− counterparts, did not require antigen-priming to express functional IL-12R. Instead, they were constitutively IL-12 responsive. This rule held for T cells isolated from plaque debris captured in distal embolization protection devices and also pertained to circulating CD4 T cells from ACS patients where CD4+CD28− but not CD4+CD28+ T cells were IL-12R+. Circumventing the need for antigen triggering to express IL-12R makes these cells rapidly responsive to activation of the innate immune system, comparable to NK cells, which are efficient effector cells even in an unprimed state. However, the expression of IL-12R on CD4+CD28− T cells also renders this T-cell subset dangerous, as they have escaped from tolerance control, by the absolute need for antigen recognition before T cells invade peripheral tissue sites and release IFN-γ.

The dichotomy between CD4+CD28+ and CD4+CD28− T cells extends beyond homing patterns and includes several effector functions. CD4+CD28− T cells are delayed in cell cycle progression but are resistant to proapoptotic signals, produce high amounts of cytokines, in particular, IFN-γ and TNF-α, and exhibit cytotoxic activity.24–26 They are responsible for the increased constitutive IFN-γ production seen in ACS patients.6 The current study demonstrates the presence of IL-12-inducible genes CCR5 and CD161 on freshly harvested CD4+CD28− T cells. These data confirm that the T-cell pool in ACS is in a constant state of activation. This could be caused by a primary defect, eg, uncontrolled T-cell responsiveness, or a secondary defect, eg, excessive stimulation of the innate immune system. IL-12 is elevated in the circulation of ACS patients.27,28 Lending support to the model of chronic stimulation of hematopoietic phagocytic cells, such as DC and macrophages.

Whereas earlier studies had focused on T-cell effector function, the current study examined an alternative pathway that may have critical relevance for plaque instability, namely, the accumulation of effector T cells in the atheroma. The tissue trafficking of T cells is regulated through chemokine receptors. CCR5 is expressed on highly differentiated T cells of the memory effector type29 and facilitates the transit from lymphoid organs to peripheral tissue sites.30–32 CCL5 and MIP-1α, both ligands for CCR5, are abundantly present in the plaque33 and are produced by different cell types. In a series of carotid atherectomy samples, tissue CCL5 and MIP-1α expression correlated closely with the density of tissue-infiltrating T cells (supplemental Figure I), suggesting that the chemokine receptor CCR5 is a key regulator in bringing T cells to the inflamed atheroma.

In vivo, CD4 T cells could be exposed to IL-12 at 2 strategically important sites. IL-12 is abundantly expressed in the atheroma. However, IL-12 is also rapidly induced in phagocytic cells on host infection. IL-12 release within the plaque could regulate retention of CD4+CD28− T cells by upregulating CCR5. The plaque is an environment rich in the CCR5-binding chemokines CCL5 and MIP-1α, and CCR5-expressing T cells would be trapped within the lesion. Also, it is possible that the binding of CCR5 ligands initiates signaling events that directly modulate T-cell function. Experiments shown here suggest that IL-12 exposure may even be more important when occurring outside of the atheromatous lesion; specifically, IL-12 pretreatment enhanced trafficking of CD4+T cells into engrafted human plaque. Classical sources of IL-12 are DC and other phagocytes after they have been triggered by macromolecules derived from infectious agents.34 In this model, any infectious episode that causes IL-12 release by DC located in lymph nodes could immediately mobilize unstimulated CD4+CD28− T cells and redirect them from their storage place in the lymphoid tissue into CCL5- and MIP-1α-producing peripheral tissue sites.

A large number of infectious microorganisms have been implicated as possible risk factors for coronary events.35,36 Here we propose that IL-12 released from DC is 1 of the molecular mediators translating infection into increased plaque inflammation. In this model, a large spectrum of distinct infections could trigger plaque inflammation, even without being present in the vessel wall at all. The common denominator among such infectious triggers, cumulatively called “infectious burden,”35,36 could be their ability to induce IL-12, leading to the detrimental redistribution of spontaneously IL-12–responsive effector T cells.

Data presented here support the notion that ACS patients have fundamental abnormalities in T-lymphocyte function. This is not limited to plaque-infiltrating T cells but extends to T cells stored in lymphoid tissues. The accumulation of CD4+CD28− T cells in these patients, with elevated frequencies easily detectable in the circulating blood,5 signals defects in immunoregulation that have direct consequences for the process of plaque inflammation. The finding that CD4+CD28− T cells are spontaneously responsive to IL-12, reacting with enhanced transmigration into carotid lesions, places IL-12 in a key position for determining tissue trafficking patterns of end-differentiated effector lymphocytes. The central function of IL-12 lies in protecting the host from infections. In susceptible individuals, especially those who have high frequencies of CD4+CD28− T cells, this protective effect may paradoxically be associated with shifting CD4 T cells into peripheral inflammatory tissues, thereby threatening tissue integrity. These findings provide a rationale for exploring antigen-nonspecific means of immunosuppression to downregulate inflammatory responses in ACS.

Acknowledgments

This work was funded in part by grants from the NIH (RO1 AI 44142, RO1 EY 11916, RO1 HL 63919, and RO1 AG 15043) and by...
a grant from Fonds zur Foerderung der wissenschaftlichen For-
schung (J2236-B14). We thank T. Yeargin for editorial support and
the staff of the Mayo Clinic for help with patient recruitment.

References

1. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circula-
2. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J,
Badimon JJ, Stefanadis C, Moreno P, PastorKamp G, Fayad Z, Stone PH,
Waxman S, Raggi P, Majid M, Zarribi A, Burke A, Yuan C, Fitzgerald PJ,
Siscovick DS, de Korte CL, Aikawa M, Juhan Arakinsen KE, Asmann G,
Becker CR, Chesbro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W,
Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr
W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S,
Drexl H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah
PK, Willerson JT. From vulnerable plaque to vulnerable patient: a call for new
3. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and
atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90:
251–262.
Weyand CM. De novo expression of killer immunoglobulin-like receptors
and signaling proteins regulates the cytotoxic function of CD4 T cells in
5. Liuzzo G, Goronzy JJ, Yang H, Kopecky SL, Holmes DR, Frye RL,
Weyand CM. Monoclonal T-cell proliferation and plaque instability in
Weyand CM. Perturbation of the T-cell repertoire in patients with
7. Sawai H, Park YW, Roberson J, Imai T, Goronzy JJ, Weyand CM.
JJ, Weyand CM. T-cell-mediated lysis of endothelial cells in acute
N, Madrigal JA, Dodi IA, Baboobian C. Heat-shock protein 60-reactive
CD4+CD28null T cells in patients with acute coronary syndromes.
Middel S, Middel R, Zarrabi A, Burke A, Yuan C, Fitzgerald J, Ballantyne
DP, Kaul S, Drexl H, Greenland P, Muller JE, Virmani R, Ridker PM,
Zipes DP, Shah PK, Willerson JT. From vulnerable plaque to vulnerable
11. Uyemura K, Demer LL, Castle SC, Jullien D, Berliner JA, Gately MK,
Okada K, Otsuka T, Harada M. Influence of interleukin-12 receptor beta
12. Adorini L, Gregori S, Magram J, Trembleau S. The role of IL-12 in the
pathogenesis of Th1 cell-mediated autoimmune diseases. Ann NY Acad
13. Trinchieri G. Interleukin-12 and the regulation of innate resistance and
14. Bertagnolli MM, Lin BY, Young D, Herrman SH. IL-12 augments
15. Kim CH, Nagata K, Butler EC. Dendritic cells support sequential
reprogramming of chemotractant receptor profiles during naive to
Shearer GM, Fujihara H, Hamaoka T. IL-12 as well as IL-2 upregulates
CCR5 expression on T cell receptor-triggered human CD4+ and CD8+
17. Warrington KJ, Vallejo AN, Weyand CM, Goronzy JJ. CD28 loss in
senescent CD4+ T cells: reversal by interleukin-12 stimulation. Blood.
18. Ma-Krupa W, Jeon MS, Spoerl S, Tedder TF, Goronzy JJ, Weyand CM.
Activation of arterial wall dendritic cells and breakdown of self-tolerance
19. Gezon J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and
differentiation of human naive, central memory, and effector memory
Okada K, Otsuka T, Harada M. Influence of interleukin-12 receptor beta
23. Adorini L, Gregori S, Magram J, Trembleau S. The role of IL-12 in the
pathogenesis of Th1 cell-mediated autoimmune diseases. Ann NY Acad
24. Park W, Weyand CM, Schmidt D, Goronzy JJ. Co-stimulatory pathways
controlling activation and peripheral tolerance of human CD4+CD28-
25. Schirmer M, Vallejo AN, Weyand CM, Goronzy JJ. Resistance to apo-
ptosis and elevated expression of Bcl-2 in clonally expanded
26. Warrington KJ, Takemura S, Goronzy JJ, Weyand CM. CD4+CD28-
T cells in rheumatoid arthritis patients combine features of the innate
27. Zhou RH, Shi Q, Gao HQ, Shen BJ. Changes in serum interleukin-8 and
interleukin-12 levels in patients with ischemic heart disease in a Chinese
H, Okada K, Otsuka T, Harada M. Influence of interleukin-12 receptor beta
29. Zhou RH, Shi Q, Gao HQ, Shen BJ. Changes in serum interleukin-8 and
interleukin-12 levels in patients with ischemic heart disease in a Chinese
MM, Lannes-Vieira J. Regulated on activation, normal T cell expressed
and secreted (RANTES) antagonist (Met-RANTES) controls the early
response of Trypanosoma cruzi-elicited myocarditis. Circulation. 2004;110:
1443–1449.
31. Taubman MA, Kawai T. Involvement of T-lymphocytes in periodontal
disease and in direct and indirect induction of bone resorption. Crit Rev
32. Wilcox JN, Nelken NA, Coughlin SR, Gordon D, Schall TJ. Local
expression of inflammatory cytokines in human atherosclerotic plaques.
33. Moser M, Murphy KM. Dendritic cell regulation of TH1-TH2 devel-
34. Espinola-Klein C, Rupprecht HF, Blankenberg S, Bickel C, Kopp H,
Investigators. Impact of infectious burden on extent and long-term
Risk of myocardial infarction and stroke after acute infection or vacci-
Interleukin 12 Induces T-Cell Recruitment Into the Atherosclerotic Plaque
Xiaoyu Zhang, Alexander Niessner, Takako Nakajima, Wei Ma-Krupa, Stephen L. Kopecky, Robert L. Frye, Jörg J. Goronzy and Cornelia M. Weyand

Circ Res. 2006;98:524-531; originally published online January 19, 2006; doi: 10.1161/01.RES.0000204452.46568.57

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/98/4/524

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2006/01/19/01.RES.0000204452.46568.57.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/
Supplemental Figure 1. Correlation of tissue-infiltrating T cells with the CCR5 ligands CCL5 and MIP1-α in human atherosclerotic plaque. cDNA was generated from extracts of carotid atherectomy samples. Copy numbers for TCR, CCL5 (A), and MIP1-α (B) transcripts were measured by real-time PCR. All samples were adjusted for β-actin transcripts. Levels of both CCL5 and MIP1-α sequences correlated with the amount of TCR mRNA, suggesting a role for both CCR5-binding chemokines in regulating the influx of T cells into the atheroma.
Supplemental Figure 2. Tissue trafficking of $\text{CD}4^+\text{CD}28^-\text{IL-12R}^-$ T cells into carotid atheromas.

Human carotid atheroma tissues with high expression of CCL5 were implanted into SCID mice. CD4$^+\text{CD}28^-\text{IL-12R}^-$ T-cell clones were pre-cultured with IL-12 (10 ng/ml) or medium alone, fluorescent-labeled, and injected i.p. into the chimeras. 48 hrs after adoptive transfer, the atheroma grafts were explanted and processed. cDNA was generated from shock-frozen atheroma explants, and the expression of TCR transcripts was determined by real-time PCR (A). Results from two independent experiments are shown and are given as means +/- SD from triplicate measurements. Frozen tissue sections of the explanted atheromas were analyzed for the number of fluorescent T cells (B). Results from two independent experiments are presented and are given as box plots displaying medians with 25th and 75th percentiles as boxes, and 10th and 90th percentiles as whiskers.
Supplemental Table 1. Gene-specific primers used for RT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sense</th>
<th>Anti-sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-actin</td>
<td>5´-ATGGCCACGGCTGCTTCCAGC-3’</td>
<td>5´-CATGGTGTTGCGCCAGAGAG-3’</td>
</tr>
<tr>
<td>T-cell receptor α chain</td>
<td>5´-CCTTCAACaAACAGCATTATCCAG-3’</td>
<td>5´-CGAGGGAGCACAGGGCTGCTTTA-3'</td>
</tr>
<tr>
<td>CCL5</td>
<td>5´-TCATTGCTACTGCCCTCTGC-3’</td>
<td>5´-AGTTGATGACTCCAGAACCC-3’</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>5´-AGCCACATTCCGTCAC-3’</td>
<td>5´-CTGCTCGTCTCAAAGTAGTCA-3’</td>
</tr>
<tr>
<td>IL-12R β1</td>
<td>5´-TGTCACACTCTGGGTGGAATCCT-3’</td>
<td>5´-AGTATCATCATCCTGGAGGCCG-3’</td>
</tr>
<tr>
<td>IL-12R β2</td>
<td>5´-GAGGGACTGTACTGCTAATCGACTC-3’</td>
<td>5´-CCTCACACAGGTCCATTGTTAAATACGAGT-3’</td>
</tr>
</tbody>
</table>
Supplemental Table 2. Demographic and Clinical Characteristics of the Study Population

<table>
<thead>
<tr>
<th>Patients (n)</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (mean ± SD)</td>
<td>61.7 ± 15.4</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>28/16</td>
</tr>
<tr>
<td>Unstable angina (n)</td>
<td>22</td>
</tr>
<tr>
<td>Myocardial infarction (n)</td>
<td>22</td>
</tr>
<tr>
<td>Risk factors (%)</td>
<td></td>
</tr>
<tr>
<td>Family history of Ischemic heart disease</td>
<td>43.2%</td>
</tr>
<tr>
<td>Hypercholesteremia</td>
<td>65.9%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>45.5%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>63.6%</td>
</tr>
<tr>
<td>Smoking</td>
<td>22.7%</td>
</tr>
</tbody>
</table>