Cardiomyocyte Cell Cycle Activation Ameliorates Fibrosis in the Atrium

Hidehiro Nakajima, Hisako O. Nakajima, Klaus Dembowsky, Kishore B.S. Pasumarthi, Loren J. Field

Abstract—MHC-TGFcys33ser transgenic mice have elevated levels of active transforming growth factor (TGF)-\(\beta\) in the myocardium. Previous studies have shown that these animals develop atrial, but not ventricular, fibrosis. Here we show that atrial fibrosis was accompanied with cardiomyocyte apoptosis. Although similar levels of cardiomyocyte apoptosis were present in the right and left atria of MHC-TGFcys33ser, the extent of fibrosis was more pronounced in the right atrium. Thus, additional factors influence the degree of atrial fibrosis in this model. Tritiated thymidine incorporation studies revealed cardiomyocyte cell cycle activity in left atrial cardiomyocytes, but not in right atrial cardiomyocytes. These observations suggested that cardiomyocyte cell cycle activation ameliorated the severity of atrial fibrosis. To directly test this hypothesis, MHC-TGFcys33ser mice were crossed with MHC-cycD2 mice (which have constitutive cardiomyocyte cell cycle activity in the right atrium). Mice inheriting both transgenes exhibited right atrial cardiomyocyte cell cycle activity and a concomitant reduction in the severity of right atrial fibrosis, despite the presence of a similar level of cardiomyocyte apoptosis as was observed in mice inheriting the MHC-TGFcys33ser transgene alone. These data support the notion that cardiomyocyte cell cycle induction can antagonize fibrosis in the myocardium. (Circ Res. 2006;98:141-148.)

Key Words: cardiomyocyte proliferation | cardiac myocyte apoptosis | heart regeneration

Progressive necrotic, apoptotic, and/or oncotic cardiomyocyte death underlies many forms of cardiovascular disease.1,2 Pathophysiologic cardiomyocyte loss is often accompanied with fibrosis, which is characterized by pronounced changes in the extracellular matrix including interstitial collagen deposition.3-5 Fibrosis increases myocardial stiffness and induces electrical heterogeneity, both of which contribute to the progressive loss of systolic and diastolic function, as well as susceptibility to cardiac arrhythmia and sudden death. Fibrosis is thought to be regulated in part by the activities of a number of hormone and cytokine systems, including transforming growth factor, endothelins, and tumor necrosis factor-\(\alpha\).1

Several approaches have been used to attempt to control the progression of myocardial fibrosis. These include pharmacological modulation of the hormone/cytokine systems,6,7 as well as modulation of the activity of tissue metalloproteases, which are able to degrade the extracellular matrix.8-10 Other strategies aimed at rendering cardiomyocytes more resistant to apoptotic and necrotic stimuli are also being pursued,11-13 with the notion that this would limit cardiomyocyte loss and in turn reduce fibrosis. In addition, replacement of lost cardiomyocytes might inhibit the progression of, and perhaps even promote the regression of, cardiac fibrosis. Potential approaches to promote cardiomyocyte replacement include cell cycle activation,14,15 direct replacement of lost cardiomyocytes via cellular transplantation,16 and recruitment and/or activation of cardiomyogenic stem cells.17,18

We have previously generated transgenic mice which overexpress TGF-\(\beta\)\textsubscript{1} in the myocardium to directly examine the role of this cytokine in the genesis of myocardial fibrosis.19 The stringent posttranslational regulation of TGF-\(\beta\)\textsubscript{1} necessitated the use of cDNAs encoding site-directed mutations that increased the level of active cytokine. Accordingly, mice were generated which carried a transgene comprising the cardiomyocyte-restricted \(\alpha\) cardiac myosin heavy chain (MHC) promoter and a cDNA encoding a mutant TGF-\(\beta\)\textsubscript{1} molecule harboring a cysteine to serine substitution at amino acid residue 33. This mutation blocked covalent tethering of the TGF-\(\beta\) latent complex to the extracellular matrix,20 resulting in an approximately 30-fold increase in the level of active TGF-\(\beta\)\textsubscript{1} in the adult transgenic hearts.19 Increased TGF-\(\beta\)\textsubscript{1} activity in these animals, which were designated MHC-TGFcys33ser, did not induce ventricular fibrosis, as evidenced by histochemical and gene expression...
analyses. A delay in ventricular wound healing, which appeared to be secondary to cytokine-induced apoptosis of proliferating cardiac fibroblasts, was observed following myocardial injury in MHC-TGFcys35ser transgenic hearts. These observations suggested that TGF-β1 activity in itself was insufficient to promote fibrosis in the ventricles. Given the absence of overt fibrosis in the transgenic ventricles, it was surprising that age-dependent fibrosis was observed in the atria of these mice.

In this study, the atrial phenotype in MHC-TGFcys35ser transgenic mice was further characterized. The extent of fibrosis was observed to be more severe in the right atrium as compared with the left. Cardiomyocyte apoptosis was present at similar levels in the left and right atria, suggesting that factors in addition to cell death contributed to the differential atrial fibrosis. Surprisingly, tritiated thymidine incorporation studies revealed cardiomyocyte cell cycle activity in left atrium of MHC-TGFcys35ser hearts, but not in the right atrium. These data suggested that the presence of cardiomyocyte cell cycle activity could ameliorate the severity of atrial fibrosis. To directly test this hypothesis, MHC-TGFcys35ser mice were intercrossed with MHC-cycD2 mice,21 which exhibit constitutive right atrial cell cycle activity. Mice inheriting both transgenes exhibited right atrial cardiomyocyte cell cycle activity and a concomitant reduction in the severity of right atrial fibrosis, despite having a similar level of right atrial cardiomyocyte apoptosis as compared with mice inheriting the MHC-TGFcys35ser transgene alone. Collectively, these data suggest that cardiomyocyte cell cycle activation can antagonize fibrosis and support the notion that the controlled proliferation of cardiomyocytes can have a beneficial impact on diseased hearts.

Materials and Methods

Transgenic Mouse Models

The generation and initial analyses of the MHC-TGFcys35ser,19 MHC-cycD2,21 and MHC-nLAC22 transgenic mice have been described previously. Mice were maintained in a DBA/2J genetic background. All animal manipulations were performed according to NIH and Institutional Animal Care and Use Committee Guidelines.

Histology

Paraffin sections were prepared from Bouin’s fixed samples using standard procedures.23 Cryosections (10 μm) were generated using standard histologic techniques.24 Sections were stained with picro-sirius solution (0.1% Sirius Red in picric acid, Sigma Diagnostics, St Louis, Mo) and counter-stained with Fast green (Fischer Scientific, Fair Lawn, NJ). To quantitate atrial collagen content, images were captured with a digital camera and the red pixel content of the myocardium was measured using Adobe Photoshop 5.5 and Scion Images for Windows Beta 4.02 software as described.19

Apoptosis Assays

For anti-activated caspase 3 immune assay, cryosections were processed according to the specifications of the manufacturer (Promega, Madison, Wis). For in situ end labeling (ISEL) analysis, cryosections were processed using the KLENOW-FragEL DNA Fragmentation Detection Kit (no. QIA21, Oncogene Research, Boston, Mass). Signal was detected using biotinylated nucleotides and fluorescein isothiocyanate–conjugated streptavidin (Roche Molecular Biochemicals, Indianapolis, Ind). β-Galactosidase activity was detected in the same section via immune reactivity using a polyclonal anti-β-galactosidase antibody (no. 55976, ICN, Aurora, Ohio) and rhodamine-conjugated secondary antibody (no. AQ301R, Chemicon, Temecula, Calif).

Cardiomyocyte DNA Synthesis Assay

To monitor cardiomyocyte DNA synthesis, mice received a single injection of tritiated thymidine (200 μCi IP at 28 Ci per mmol/L; Amersham, Arlington Heights Ill) and were euthanized 4 hours or 2 weeks later. Hearts were cryosectioned as described above and cardiomyocyte DNA synthesis was identified by colocalization of β-galactosidase activity (dark blue signal following X-GAL staining) and silver grains as described.25

Statistical Analysis

Results are expressed as mean±SEM. The differences between right and left atria parameters were calculated with Student’s paired t test. The differences among MHC-TGFcys35ser/−, (−)/MHC-cycD2, and MHC-TGFcys35ser/MHC-cycD2 mice were evaluated by ANOVA followed by Bonferroni post hoc test.

Results

Differential Atrial Fibrosis in MHC-TGFcys35ser Mice

Previous studies demonstrated that MHC-TGFcys35ser transgenic mice developed age-dependent atrial fibrosis.19 Histologic analysis of aged transgenic mice revealed that collagen deposition (red signal, Sirius Red stain) in the interstitial spaces between cardiomyocytes was markedly greater in the right atrium as compared with the left atrium (Figure 1a; heart is from an 18-month-old transgenic mouse). To further characterize the atrial fibrosis, MHC-TGFcys35ser mice were crossed with MHC-nLAC mice (the presence of the MHC-nLAC reporter transgene facilitated the identification of cardiomyocyte nuclei in subsequent experiments; see below). Sections of hearts from 2-, 4-, 6-, 8-, and 12-week-old MHC-TGFcys35ser/MHC-nLAC double transgenic mice were stained with Sirius Red and Fast Green (Figure 1b). Interstitial collagen content was similar in left and right atria at 2 weeks of age. By 4 weeks of age, collagen content appeared more pronounced in the right atrium, and this asymmetry in atrial collagen content was apparent at all subsequent ages examined. Quantitative image analysis confirmed similar collagen content in right and left transgenic atria at 2 weeks of age. Collagen content progressively increased with age in the right atria. In contrast, collagen content in the left atria remained relatively constant over the time points studied (Figure 1c).

Cardiomyocyte Apoptosis in MHC-TGFcys35ser Atria

Activated caspase 3 immune assays were performed to determine whether increased levels of cardiomyocyte apoptosis accompanied the increased fibrosis observed in the right atria of MHC-TGFcys35ser mice. Because activated caspase 3 is distributed in the cytoplasm, cardiomyocytes at early stages...
of apoptosis were easily identified by morphological criteria (ie, rod-shaped cells; see Figure 2a). Similar levels of cardiomyocyte activated caspase 3 immune reactivity were observed in the right and left atria of the MHC-TGFcys33ser hearts (0.45 \pm 0.2 and 0.58 \pm 0.18 activated caspase 3 positive cardiomyocytes per atrial section, respectively; \textit{n}=8 mice; paired \textit{t} test, NS). No apoptosis was detected when similar numbers of atrial cardiomyocytes were screened in age-matched nontransgenic littermates.

ISEL and TUNEL analyses were performed to confirm these results. These analyses took advantage of the presence of the MHC-nLAC transgene, which targets expression of a nuclear localized \(\beta\)-galactosidase reporter to cardiomyocytes.22,25 In the case of ISEL analyses, sections prepared from MHC-TGFcys33ser/MHC-nLAC double transgenic mice were stained with X-GAL (blue signal over cardiomyocyte nuclei) and then processed for ISEL activity using biotinylated nucleotides and HRP-conjugated streptavidin (dark brown signal over apoptotic nuclei). ISEL-positive cardiomyocytes, which were identified by the superimposition of dark brown and blue signals, were readily seen (Figure 2b, arrows). In the case of TUNEL analysis, sections from MHC-TGFcys33ser/MHC-nLAC double transgenic mice were processed simultaneously for \(\beta\)-galactosidase immune reactivity (Figure 2c, left, red signal) and TUNEL activity (Figure 2c, middle, green signal). Merging the images confirmed that the TUNEL-positive nucleus was from a cardiomyocyte (Figure 2c, right, yellow signal). In agreement with the activated caspase 3 immune reactivity assay, similar levels of cardiomyocyte ISEL activity and TUNEL signal were observed in the left and right atria in MHC-TGFcys33ser hearts. These data suggested that additional factors were likely to...
contribute to the differential levels of fibrosis seen in the left and right atria of the transgenic mice.

Cardiomyocyte Cell Cycle Activity in the Left Atria of MHC-TGFcys33ser Mice

Tritiated thymidine incorporation assays were performed to monitor cell cycle activity in the atria of MHC-TGFcys33ser mice. Once again, the experiments made use of the presence of the MHC-nLAC reporter transgene. MHC-TGFcys33ser/MHC-nLAC double transgenic mice received a single injection of tritiated thymidine. The animals were euthanized 4 hours later, and the hearts were sectioned, stained with X-GAL, and processed for autoradiography. Cardiomyocyte DNA synthesis was then quantitated by screening for the presence of silver grains over blue nuclei.22,25 Surprisingly, cardiomyocyte DNA synthesis was readily detected in the left atria of 12-week-old MHC-TGFcys33ser/MHC-nLAC double transgenic mice, but not in the right atria (Figure 3a and Table 1).

To establish the time course of atrial cardiomyocyte DNA synthesis, thymidine incorporation analyses were performed on 2-, 4-, 6-, 8-, and 12-week-old MHC-TGFcys33ser/MHC-nLAC double transgenic mice. Cardiomyocyte DNA synthesis was detected in both the right and left atria of the MHC-TGFcys33ser mice at 2 weeks of age (Figure 3b). Cardiomyocyte DNA synthesis was markedly down regulated in both atria by four 4 of age. These observations are in agreement with the marked decrease in cardiomyocyte cell cycle activity that occurs during neonatal life.26–28 At 6 weeks of age, cardiomyocyte DNA synthesis was again apparent in the left atrium of MHC-TGFcys33ser mice and persisted at similar levels for the remainder of the experiment; in contrast, DNA synthesis did not resume in right atrial cardiomyocytes (Figure 3b).

Pulse chase experiments were performed to determine the stability of cardiomyocytes which synthesized DNA. Six 12-week-old MHC-TGFcys33ser/MHC-nLAC double transgenic animals were injected with tritiated thymidine. Three mice were euthanized 4 hours later, and 3 were euthanized 14 days later. The hearts were sectioned, processed for X-GAL staining and autoradiography, and the number of radiolabeled cardiomyocyte nuclei was determined for each time point (Table 1). The increased tritiated thymidine labeling observed in the chase group indicated that left atrial cardiomyocytes that synthesized DNA were stable and also suggested that a portion of these cells underwent karyokinesis and perhaps cytokinesis. This view was supported by the observation that phosphorylated histone H3 immune reactivity (a marker for mitosis)29 was detected in left atrial cardiomyocytes of MHC-TGFcys33ser mice (Figure 3c, arrow). The frequency of cardiomyocyte phosphorylated histone H3 immune reactivity was approximately 1/15 of that observed for cardiomyocyte thymidine incorporation; similar ratios of cardiomyocyte DNA synthesis and mitosis have been reported in neonatal hearts30 and in the ventricle of adult transgenic mice with elevated cardiomyocyte cell cycle activity.21,31 DNA synthesis was also monitored in older MHC-TGFcys33ser transgenic mice. Similar levels of left atrial cardiomyocyte DNA synthesis were observed in 12- and 26-week-old animals (Table 1).

Cell Cycle Activation Ameliorates Fibrosis in the Right Atria of MHC-TGFcys33ser Mice

The data presented above raised the possibility that cardiomyocyte cell cycle activation ameliorated the extent of fibrosis in the left atria of MHC-TGFcys33ser transgenic mice. To directly examine the consequences of cardiomyocyte cell cycle activation on atrial fibrosis, MHC-TGFcys33ser mice were crossed with MHC-cycD2 mice. Previous studies have shown that expression of the MHC-cycD2 transgene was sufficient to drive cardiomyocyte DNA synthesis and prolif-
positive nuclei per section) was very similar to the level of cardiomyocyte DNA synthesis (thymidine-positive, nLAC-negative). Analysis of adjacent sections revealed that the level of cardiomyocyte apoptosis (as evidenced by activated caspase-3 positive nuclei per section) was very similar to the level of cardiomyocyte apoptosis (cell bodies with activated caspase-3 immune reactivity per section) in the right atria of MHC-TGFcys33ser/MHC-cycD2 transgenic hearts (Table 2).

In agreement with the data presented above, no cardiomyocyte DNA synthesis was detected in the right atria of mice inheriting the MHC-TGFcys33ser transgene alone (Table 2). In contrast, right atrial cardiomyocyte DNA synthesis was readily observed in mice inheriting the MHC-cycD2 transgene, indicating that targeted expression of cyclin D2 had similar effects on atrial and ventricular cardiomyocyte cell cycle induction. Right atrial cardiomyocyte DNA synthesis was also observed in mice inheriting both the MHC-cycD2 and MHC-TGFcys33ser transgenes and was accompanied with a marked reduction in right atrial collagen content (Figure 4 and Table 2). Importantly, similar rates of cardiomyocyte apoptosis (as evidenced by activated caspase 3 immune reactivity) were observed in the right atria of mice inheriting the MHC-TGFcys33ser transgene alone and in mice inheriting both the MHC-TGFcys33ser and MHC-cycD2 transgenes. Analysis of adjacent sections revealed that the level of cardiomyocyte DNA synthesis (thymidine-positive, nLAC-negative nuclei per section) was very similar to the level of cardiomyocyte apoptosis (cell bodies with activated caspase-3 immune reactivity per section) in the right atria of MHC-TGFcys33ser/MHC-cycD2 transgenic hearts (Table 2).

If the presence of cyclin D2–induced cardiomyocyte DNA synthesis culminated in cell division, the data presented above would predict that there would be an increased number of right atrial cardiomyocytes in the MHC-TGFcys33ser/MHC-cycD2 double transgenic mice as compared with MHC-TGFcys33ser single transgenic animals. Accordingly, direct counts of cardiomyocyte cell bodies per unit area were performed. As expected, expression of cyclin D2 resulted in a statistically significant increase in the number of cardiomyocytes per unit area of right atrial tissue in the MHC-TGFcys33ser/MHC-cycD2 mice as compared with MHC-TGFcys33ser mice (Table 2).

Discussion

Transgene expression in the right atria of MHC-TGFcys33ser mice resulted in cardiomyocyte apoptosis as evidenced by activated caspase 3, ISEL, and TUNEL assays. Cardiomyocyte death was accompanied by increased extracellular collagen deposition. Thus the progressive histopathology observed in the MHC-TGFcys33ser transgenic mice was consistent with the process of reparative fibrosis in response to cardiomyocyte death. Although a similar level of cardiomyocyte apoptosis was apparent in MHC-TGFcys33ser right atria at all ages examined, the extent of reparative fibrosis was markedly less in the left atrium. The presence of cell cycle activation in the left atrium suggested that cardiomyocyte proliferation could effectively ameliorate fibrosis.

Other observations argued against alternative mechanisms for the differential fibrosis in the MHC-TGFcys33ser atria. For example, the levels of fibroblast DNA synthesis as measured by tritiated thymidine incorporation were very similar in right atria from MHC-TGF/(-), (-)/MHC-cycD2, and MHC-TGFcys33ser/MHC-cycD2 double transgenic mice. The presence of cell cycle induction in the left atrium suggested that cardiomyocyte proliferation could effectively ameliorate fibrosis.

Table 1. Cardiomyocyte DNA Synthesis Levels in Atria From MHC-TGFcys33ser/MHC-nLAC Double Transgenic Mice

<table>
<thead>
<tr>
<th>Age</th>
<th>Right Atrium</th>
<th>Left Atrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-Week-old</td>
<td>% Thymidine + nuclei</td>
<td>0.10±0.03</td>
</tr>
<tr>
<td>Nuclei screened</td>
<td>38 381</td>
<td>61 706</td>
</tr>
<tr>
<td>Mice screened</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Pulse/chase study</td>
<td>% Pulse thymidine + nuclei</td>
<td>0.12±0.05</td>
</tr>
<tr>
<td>Nuclei screened</td>
<td>11 846</td>
<td>20 217</td>
</tr>
<tr>
<td>Mice screened</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>% Chase thymidine + nuclei</td>
<td>0.21±0.05*</td>
<td></td>
</tr>
<tr>
<td>Nuclei screened</td>
<td>14 642</td>
<td>22 661</td>
</tr>
<tr>
<td>Mice screened</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>26-Week-old</td>
<td>% Thymidine + nuclei</td>
<td>0.11±0.03</td>
</tr>
<tr>
<td>Nuclei screened</td>
<td>11 851</td>
<td>27 980</td>
</tr>
<tr>
<td>Mice screened</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

*Difference in tritiated thymidine incorporation in the left atrial pulse and chase groups was significant when pooled data were analyzed with \(\chi^2 \) test (P<0.05).

Table 2. Cardiomyocyte Apoptosis, Cardiomyocyte DNA Synthesis, Collagen Content, and Cardiomyocyte Number per mm² in Right Atria From MHC-TGFcys33ser/(-), (-)/MHC-cycD2, and MHC-TGFcys33ser/MHC-cycD2 Transgenic Mice

<table>
<thead>
<tr>
<th></th>
<th>MHC-TGF/(-)</th>
<th>(-)/MHC-cycD2</th>
<th>MHC-TGF/MHC-cycD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Thymidine + nuclei</td>
<td>0.081±0.018*</td>
<td>0.055±0.010*</td>
<td></td>
</tr>
<tr>
<td>Nuclei screened</td>
<td>26 493</td>
<td>12 340</td>
<td>71 333</td>
</tr>
<tr>
<td>Mice screened</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Collagen content (%)</td>
<td>42±1.8</td>
<td>6.8±1.8</td>
<td>18±2.0*†</td>
</tr>
<tr>
<td>Mice screened</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Activated caspase 3+ cardiomyocytes/section</td>
<td>0.60±0.31</td>
<td>0</td>
<td>0.83±0.14</td>
</tr>
<tr>
<td>Mice screened</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Total thymidine + nuclei/section</td>
<td>1.3±0.10*</td>
<td>1.0±0.31*</td>
<td></td>
</tr>
<tr>
<td>Mice screened</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Cardiomyocyte no.</td>
<td>12.4±1.0</td>
<td>21.8±4.8#</td>
<td>19.8±0.7‡</td>
</tr>
<tr>
<td>Mice screened</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

All values are mean±SEM; statistical significance was determined by ANOVA followed by Bonferroni post hoc test. *P<0.05 vs MHC-TGF/(-) mice; †P<0.05, (-)/MHC-cycD2 vs MHC-TGF/MHC-cycD2; #P<0.01, MHC-TGFcys33ser/(-) vs (-)/MHC-cycD2; ‡P<0.001, MHC-TGFcys33ser/(-) vs MHC-TGFcys33ser/MHC-cycD2.

Table 1. Cardiomyocyte DNA Synthesis Levels in Atria From MHC-TGFcys33ser/MHC-nLAC Double Transgenic Mice

<table>
<thead>
<tr>
<th>Age</th>
<th>Right Atrium</th>
<th>Left Atrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-Week-old</td>
<td>% Thymidine + nuclei</td>
<td>0.10±0.03</td>
</tr>
<tr>
<td>Nuclei screened</td>
<td>38 381</td>
<td>61 706</td>
</tr>
<tr>
<td>Mice screened</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Pulse/chase study</td>
<td>% Pulse thymidine + nuclei</td>
<td>0.12±0.05</td>
</tr>
<tr>
<td>Nuclei screened</td>
<td>11 846</td>
<td>20 217</td>
</tr>
<tr>
<td>Mice screened</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>% Chase thymidine + nuclei</td>
<td>0.21±0.05*</td>
<td></td>
</tr>
<tr>
<td>Nuclei screened</td>
<td>14 642</td>
<td>22 661</td>
</tr>
<tr>
<td>Mice screened</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>26-Week-old</td>
<td>% Thymidine + nuclei</td>
<td>0.11±0.03</td>
</tr>
<tr>
<td>Nuclei screened</td>
<td>11 851</td>
<td>27 980</td>
</tr>
<tr>
<td>Mice screened</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

*Difference in tritiated thymidine incorporation in the left atrial pulse and chase groups was significant when pooled data were analyzed with \(\chi^2 \) test (P<0.05).
and left atria of the MHC-TGFcys33ser transgenic mice (0.28±0.039% and 0.36±0.048%, respectively; n=5 mice; paired t test, NS). The differential atrial collagen content was thus not attributable to differences in fibroblast cell cycle activity. In addition, the presence of similar levels of transgene-encoded mRNA in the right and left atria suggested that differential TGF-β1 expression did not underlie the asymmetrical atrial fibrosis (see the online data supplement available at http://circres.ahajournals.org); unfortunately the lack of species-specific antibodies, and the presence of a marked induction of the endogenous TGF-β1 gene, prohibited direct quantitation of transgene-encoded TGF-β1 protein in mice carrying the MHC-TGFcys33ser transgene alone or in combination with the MHC-cycD2 transgene. Collectively, these data suggested that cardiomyocyte cell cycle activity could ameliorate atrial fibrosis. This hypothesis was directly supported by the observation that cyclin D2-mediated cardiomyocyte proliferation markedly reduced the severity of fibrosis in the right atria of MHC-TGFcys33ser/MHC-cycD2 double transgenic mice without impacting the level of cardiomyocyte apoptosis.

The mechanism by which expression of the MHC-TGFcys33ser transgene induced atrial cardiomyocyte apoptosis, as well as left atrial cardiomyocyte cell cycle activity, was not clear. In vitro studies with cultured fetal or neonatal ventricular cardiomyocytes suggested that TGF-β1 administration antagonized the mitogenic effects of other growth factors but, by itself, has little effect on cardiomyocyte cell cycle activity.33,34 In light of this, the hypoplastic heart phenotype in mice expressing an activated TGF type 1 receptor (Alk5) under the regulation of the cardiac MHC promoter19 likely resulted from interplay between intrinsic (ie, transgene expression) and extrinsic (ie, cytokines) factors. In contrast, targeted expression of a constitutively active variant of the TGF-β–activated kinase (TAK-1, a major effector of the TGF-β1 signal transduction pathway) with the same MHC promoter did not induce a hypoplastic myocardial response.38 Rather these animals developed cardiac hypertrophy and exhibited cardiomyocyte apoptosis at an early age that progressed rapidly to overt heart failure and death. Moreover, this proapoptotic effect of TAK1 activation on ventricular myocardium in vivo contrasted with the apparent cardioprotective effect of TGF-β1 administration during reperfusion injury of cultured adult cardiomyocytes.37

Thus, varying outcomes have been obtained following stimulation of the TGF-β1 signal transduction pathway, depending on the extent to which the pathway was activated as well as the degree to which pathway cross-talk occurred; this was particularly evident when a given effector molecule participated in multiple signaling pathways. The situation in MHC-TGFcys33ser mice was further complicated as cardiomyocytes from different chambers of the heart exhibited strikingly different phenotypes. Indeed, with respect to cell cycle activity, TGF-β1 expression induced cardiomyocyte DNA synthesis in left atrial cardiomyocytes, but not right atrial cardiomyocytes. Moreover, transgene expression did not influence the rate of ventricular cardiomyocyte DNA synthesis in normal adult hearts.19 In addition, experimental injury did not induce ventricular cardiomyocyte DNA synthesis in injured hearts.19 The presence of cardiac injury per se was probably not an overriding factor in the differential induction of atrial cardiomyocyte cell cycle activity in the MHC-TGFcys33ser transgenic mice, as similar levels of apoptosis were present in left and right atria. Of interest, previous studies suggested a greater propensity for cell cycle induction in left atrial cardiomyocytes as compared other cardiomyocytes in the heart,39 a phenomenon that may be reflected in the results observed here.

Although direct evidence indicating that the MHC-TGFcys33ser left atrial cardiomyocytes that synthesize DNA ultimately divided is lacking, the results of the pulse-chase experiment suggested that at least karyokinesis occurred, a view supported by the presence of phosphorylated histone H3 immune. The failure to detect enlarged cardiomyocytes in histologic sections of the left atrium provided additional, albeit circumstantial, support of this viewpoint. Given that the MHC promoter used in this study was only expressed in differentiated cardiomyocytes, the observed results were most consistent with the notion that expression of the MHC-TGFcys33ser transgene resulted in cell cycle activation in differentiated left atrial cardiomyocytes. Although the experiments as performed did not rule out the possibility that transgene-induced cardiac injury resulted in the activation of resident cardiomyogenic stem cell populations,37 the absence of cardiomyocyte cell cycle activity in the right atrium did not support this argument.

The mechanistic underpinning of cardiomyocyte cell cycle activation in MHC-cycD2 transgenic mice was much more...
straightforward. D-type cyclins (cyclin D1, D2, and D3) are induced in response to growth factors and are obligate cofactors for the activity of cyclin dependent kinase. The active kinase complex phosphorylates members of the retinoblastoma protein family, resulting in the release of E2F transcription factors. E2F transcription factors induce expression of genes required for S-phase entry, thereby triggering cell cycle progression. Previous studies have shown that targeted expression of cyclins D1, D2, or D3 induced cell cycle activity in ventricular cardiomyocytes in uninjured hearts from transgenic mice. Interestingly, cardiomyocyte cell cycle activity persisted following myocardial infarction in mice that expressed cyclin D2 (but not cyclins D1 or D3) and was accompanied by a reduction in infarct size.

In the current study, cyclin D2–induced right atrial cardiomyocyte cell cycle activity reduced the level of TGF-β–mediated fibrotic injury in mice inheriting both transgenes. Cardiomyocyte cell cycle activity was evidenced by tritiated thymidine incorporation. Although the absence of increased ploidy and multinucleation in MHC-cycD2 right atrial cardiomyocytes (see the online data supplement) suggested that cyclin D2–induced cardiomyocyte DNA synthesis was associated with cell division, the sensitivity of these analyses cannot preclude the possibility that the observed DNA synthesis contributed in part to multinucleation and/or endoreduplication. However, the observed increase in the number of cardiomyocytes per unit area right atrial tissue supports the notion that cell division occurred. Because transgene-mediated cyclin D2–induced cell cycle activation occurred independently of the transgene-mediated TGF-cys33ser–induced fibrosis, the increase in cardiomyocyte cell number and concomitant reduction of atrial fibrosis in the right atria of MHC-TGF-cys33ser/MHC-cycD2 double transgenic mice strongly supports the hypothesis that cell cycle activation can ameliorate structural damage to the heart.

The data presented here join a growing number of studies in which cardiomyocyte cell cycle induction was observed in response to cardiac-restricted gene expression in transgenic mice. The results from the current study indicating that cell cycle induction ameliorated reparative fibrosis in the atrium complement and extend recent observations that cell cycle induction in the ventricle promotes favorable postinfarction remodeling and infarct regression. It is thus becoming apparent that cardiomyocyte cell cycle induction can promote myocardial repair in response to a variety of injuries. Successful therapeutic translation of these observations will likely require the development of small molecules that are able to mimic key aspects of transgene expression.

Acknowledgments

This work was supported by the National Heart, Lung, and Blood Institute (to L.J.F.) and a Grant-in-Aid from the American Heart Association, Indiana Affiliate (to H.N.). We thank D. Field for excellent technical assistance and Drs Mark Soonpaa, Michael Rubart, Pascal Lafontant, Wuqiang Zhu, and Rethinamasy Prabhakar for comments on the manuscript.

References

15. Dowell JD, Field LJ, Pasumarthi KB. Cell cycle regulation to repair the infarcted myocardium. Heart Fail Rev. 2003;8:293–303.

Cardiomyocyte Cell Cycle Activation Ameliorates Fibrosis in the Atrium
Hidehiro Nakajima, Hisako O. Nakajima, Klaus Dembowsky, Kishore B.S. Pasumarthi and Loren J. Field

Circ Res. 2006;98:141-148; originally published online November 23, 2005;
doi: 10.1161/01.RES.0000197783.70106.4a
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/98/1/141

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2005/11/23/01.RES.0000197783.70106.4a.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Online Supplement

Nakajima et al.

On Line Supplemental Data:

A. Transgene expression in left and right atria

For assessment of transgene expression in the MHC-TGFcys33ser mice, we were unable to discriminate between transgene-encoded and endogenous TGF-beta 1 via Western blot analysis (previous studies have shown that the endogenous TGF-beta gene is markedly induced in the atria of these mice, see CircRes 86:571-579, Figure 3). Accordingly, RT-PCR analysis was used to demonstrate that there are similar levels of transgene encoded TGF-beta1 mRNA in the left atria, right atria and ventricles of the MHC-TGFcys33ser transgenic hearts (Supplemental Figure 1). In this experiment, one microgram of RNA was reverse-transcribed, and used to program a PCR reaction with primers specific for the TGFcys33ser transcript and the endogenous connexin 43 transcript. The reactions were run for 20, 25 or 30 cycles, and then displayed on an agarose gel, stained with Ethidium Bromide and visualized under a UV lamp. Similar levels of transgene mRNA were detected in the right atrial, left atrial and ventricular samples. In other controls, no signal was seen in the absence of RT, confirming that there was no genomic DNA in the samples.

B. Assessment of right atrial endoreduplication in MHC-cycD2 transgenic mice

To determine if transgene expression promoted right atrial cardiomyocyte endoreduplication, dispersed cell preparations from non-transgenic and MHC-
cycD2 right atria were subjected to flow cytometric analysis as described previously by our group (see JClinInvest 99:2644-2654.). Briefly, dispersed cardiomyocyte preparations were generated by digesting atrial appendages with collagenase. The cells were suspended into 1 ml of PBS, incubated with 500 µl of RNAse (12µg/ml in PBS) and 500 µl propidium iodine (50 µg/ml in PBS) at room temperature for 30 minutes. Samples were then analyzed on a Becton & Dickinson FACScan to ascertain the nuclear DNA content. No overt evidence of endoreduplication was detected in MHC-cycD2 right atrial cardiomyocytes (i.e., the preponderance of nuclei retained a 2n content). Indeed, there appeared to be a slight reduction in the number of 4n nuclei in MHC-cycD2 right atria.

C. Assessment of right atrial multinucleation in MHC-cycD2 transgenic mice

To determine if cyclin D2 expression promoted right atrial cardiomyocyte multinucleation, dispersed cell preparations from MHC-nLAC control and from MHC-nLAC / MHC-cycD2 double transgenic right atria were prepared by digesting atrial appendages with collagenase. The resulting cell suspensions were fixed in several volumes of flow fix for one hour and smeared onto positively charged slides (Superfrost Plus). After drying the cells were stained with X-GAL and visualized by microscopy. Nuclear content was then scored. In MHC-nLAC right atria, 89.62 +/- 0.54% of the cardiomyocytes were mono-nucleated, and 10.38 +/- 0.54% were bi-nucleated. In MHC-nLAC / MHC-cycD2 double transgenic right atria, 88.54 +/- 0.7% of the cardiomyocytes were mono-nucleated and 11.46 +/- 0.7% were bi-nucleated. There was no statistical difference between the groups. Thus, expression of the MHC-cycD2 transgene does not promote right atrial multi-nucleation.