Combination of Tumor Necrosis Factor-α Ablation and Matrix Metalloproteinase Inhibition Prevents Heart Failure After Pressure Overload in Tissue Inhibitor of Metalloproteinase-3 Knock-Out Mice

Zameeh Kassiri, Gavin Y. Oudit, Otto Sanchez, Fayezy Dawood, Fazilat F. Mohammed, Robert K. Nuttall, Dylan R. Edwards, Peter P. Liu, Peter H. Backx, Rama Khokha

Abstract—Cytokine and extracellular matrix (ECM) homeostasis are distinct systems that are each dysregulated in heart failure. Here we show that tissue inhibitor of metalloproteinase (TIMP)-3 is a critical regulator of both systems in a mouse model of left ventricular (LV) dilation and dysfunction. Tmp-3"−/−" mice develop precipitous LV dilation and dysfunction reminiscent of dilated cardiomyopathy (DCM), culminating in early onset of heart failure by 6 weeks, compared with wild-type aortic-banding (AB). Tmp-3 deficiency resulted in increased TNFα converting enzyme (TACE) activity within 6 hours after AB leading to enhanced tumor necrosis factor-α (TNFα) processing. In addition, TNFα production increased in timp-3-"−/−"-AB myocardium. A significant elevation in gelatinase and collagenase activities was observed 1 week after AB, with localized ECM degradation in timp-3-"−/−"-AB myocardium. Tmp-3"−/−"/tnfα"−/−" mice were generated and subjected to AB for comparative analyses with timp-3-"−/−"-AB mice. This revealed the critical role of TNFα in the early phase of LV remodeling, de novo expression of Matrix metalloproteinases (MMP)-8 in the absence of TNFα, and highlighted the importance of interstitial collagens (MMP-2, MMP-13, and MT1-MMP) for cardiac ECM degradation. Ablation of TNFα, or limiting MMP activity with a synthetic MMP inhibitor (PD166793), each partially attenuated LV dilation and cardiac dysfunction in timp-3-"−/−"-AB mice. Notably, combining TNFα ablation with MMP inhibition completely rescued heart disease in timp-3-"−/−"-AB mice. This study provides a basis for anti-TNFα and MMP inhibitor combination therapy in heart disease. (Circ Res. 2005;97:380-390.)

Key Words: left ventricular dilation and dysfunction ■ extracellular matrix ■ tissue inhibitor of metalloproteinase-3 ■ matrix metalloproteinase ■ tumor necrosis factor-α

Cardiovascular disease is the major cause of death in the Western world and is predicted to be the leading cause of mortality worldwide by 2020.1 A close relationship between the severity of cardiac dysfunction, development of heart failure, and cardiac expression of tumor necrosis factor-α (TNFα) has been demonstrated.2-3 TNFα is a pleiotropic cytokine and is found elevated in patients with dilated cardiomyopathy (DCM), ischemic heart disease, and congestive heart failure (CHF).3 Based on the potential importance of TNFα in heart disease, anti-TNFα therapy has been attempted in patients with heart failure although significant benefits of this therapy remain to be demonstrated.6,7 This suggests that other factors play key roles in the progression of heart failure. Maladaptive extracellular matrix (ECM) remodeling is a common feature of ventricular remodeling in patients with DCM and CHF.8 Matrix metalloproteinases (MMPs) are the primary ECM remodeling enzymes,9 and a disintegrin and metalloproteinase, ADAM-17/TACE (TNFα converting enzyme) converts membrane bound TNFα to its soluble form.10,11 Furthermore, TNFα signaling is known to induce the transcription of metalloproteinases,9,12 evoking a potentially important but overlooked interaction between TNFα signaling and ECM remodeling. Whether a direct relation between cytokine and ECM homeostasis operates during the progression of heart failure is currently unknown. Such an interaction could help explain the lack of efficacy of TNFα-targeted therapy in heart disease. The discovery of factors that regulate both these systems is critical to designing novel treatments for heart disease.

Among tissue inhibitor of metalloproteinases (TIMPs), TIMP-3 is the only ECM-bound and the most expressed TIMP in the heart.13 The classical role of TIMP-3, as with the other TIMPs, is inhibition of a broad spectrum of MMPs.14 We have recently reported that TIMP-3 is a physiological
inhibitor of TACE/ADAM-17, and regulates TNFα levels in liver homeostasis and injury.15 Patients with DCM have significantly reduced levels of TIMP-3 levels,16 and elevated levels of TACE and TNFα.4,5,17 We have reported that mice deficient in timp-3 develop spontaneous DCM at 21 months of age.18 In the current study, we investigated the consequence of TIMP-3 deletion in progression of heart disease following pressure overload in young mice, and dissected the relationship between cardiac TIMP-3, TACE, TNFα, and MMPs. Our study uncovers the concurrent regulation of cytokine bioactivity and matrix remodeling by TIMP-3, as well as the mechanistic integration between these systems that have so far been studied independently in cardiovascular disease. We also demonstrate that deterioration of cardiac structure and function is prevented by simultaneously targeting both TNFα and MMP activities. This study forms the basis for anti-TNFα and MMP combination therapy for human heart disease, which individually provide only a partial rescue.

\section*{Materials and Methods}

\subsection*{Pressure Overload and Cardiac Function}
Eight-week-old wild-type (WT), timp-3+/−, or TNFα−/−/timp-3−/− mice were subjected to pressure overload by constriction of descending aorta. Sham-operated mice from each group served as controls. In vivo Cardiac function was monitored by echocardiographic imaging, and confirmed by hemodynamic measurements. All animals were cared for in accordance with the Toronto Community Care Assessment Centre (CCAC) guidelines. Complete Materials and Methods may be found in the online data supplement at http://circres.ahajournals.org.

\subsection*{Confocal and Electron Microscopy of Matrix Structure and Immunohistochemistry}
Picocircus red-stained sections were visualized using 2-photon confocal microscopy. Electron microscopy was performed with a FEI CM100 Biotwin electron microscope. Apoptosis was assessed by TUNEL. Neutrophils were stained using rat anti-neutrophil.

\subsection*{Protein Analysis and Enzymatic Activity}
Total gelatinase or collagenase activity was measured in myocardial homogenates using EnzChek assay kit using collagen type I as the substrate for collagenase activity. Pro- and active MMP-2 and MMP-9 were detected by gelatin zymography. TACE activity and Western blotting for TNFα was performed as described.15

\subsection*{TaqMan RT-PCR Analysis}
RNA levels for the indicated genes were quantified by Real-time TaqMan RT-PCR.13 18S rRNA was used as an endogenous control. Protein Analysis and Enzymatic Activity

\subsection*{In Vivo MMPi Treatment}
An MMP-specific inhibitor, PD166793 (Pfizer Inc) was administered daily by gavage. PD166793 treatment (15 mg/kg/d) began 1 week before aortic-banding and continued until mice were euthanized.

An expanded Materials and Methods section is provided in the online data supplement.

\section*{Statistical Analysis}
Survival between groups was compared by Kaplan-Meier survival analysis. All other comparisons were performed by ANOVA followed by multiple comparison testing (Student-Neuman Keuls). Values are reported as Mean±SEM. Statistical significance is recognized at \(P<0.05\).

\section*{Results}

\subsection*{Mortality Attributable to Heart Failure in TIMP-3-Deficient Mice}
Timp-3−/− mice were subjected to cardiac pressure overload by aortic-banding (AB). These mice were compared with 3 groups of control littermates throughout the study, aortic-banded WT, sham-operated WT, and sham-operated timp-3−/− mice. Aortic-banding generated comparable pressure gradient (59 to 64 mm Hg) independent of the genotype, but caused significantly higher mortality in timp-3−/− mice compared with WT (Figure 1A). Six weeks following AB timp-3−/− mice exhibited significant morbidity and had to be euthanized. Timp-3−/− hearts were grossly enlarged within 1 week after AB and had increased left ventricular (LV) chamber size (Figure 1B).

To characterize the effects of pressure overload on WT and timp-3−/− hearts, we analyzed the cardiac function by echocardiography (Table). In WT-AB mice, significant cardiac dysfunction was seen at 6 weeks. In contrast, as early as 1 week after AB we observed dramatic LV dilatation, reduced aortic outflow velocity, cardiac contractility, and velocity of circumferential fiber shortening in timp-3−/−-AB mice. These parameters deteriorated progressively over 6 weeks (Figure 1C and 1D; Table). Notably, the extent of cardiac dysfunction in timp-3−/− mice after 6 weeks was comparable to WT mice after 12 weeks of aortic-banding (Table). Cardiac dysfunction was confirmed by in vivo hemodynamic measurements. Timp-3−/−-AB mice had lower LV developed pressure (LVDP), higher end-diastolic pressure (LVEDP), and markedly reduced LV peak rates of pressure-rise and pressure-fall (\(\Delta P/\Delta t\)) compared with WT-AB (Figure 1E). Reduced \(-\Delta P/\Delta t\) and increased LVEDP suggest diastolic dysfunction in timp-3−/− mice. Terminal heart failure in patients is associated with pulmonary congestion. We also observed pulmonary edema and fibrosis in timp-3−/−-AB mice at 6 weeks (online Figure I). Altogether, advanced cardiac dysfunction as indicated by the extreme LV dilatation and suppressed function in combination with pulmonary congestion demonstrates that unlike the WT mice, timp-3−/− mice develop rapid CHF 6 weeks after pressure overload. These features of cardiac dysfunction are reminiscent of DCM in patients.

\subsection*{Excess Hypertrophy with Timp-3 Loss}
Next, we examined cardiomyocyte apoptosis that generally underlies LV dilatation. TIMP-3 deletion and overexpression are both linked to apoptosis.20,21 Apoptosis in timp-3−/−-AB LV was significantly higher than WT-AB at 6 weeks, suggesting that it is not responsible for the onset of LV dilatation in these mice (Figure 2A and 2B). Baseline apoptosis was not different between sham groups. We investigated if myocyte hypertrophy occurred as a compensatory response to biomechanical stress. Heart weight-to-tibial length ratio was far greater in timp-3−/−-AB than in WT-AB mice. We also measured myocyte cross-sectional area, length, and expression of prototypic markers of hypertrophy and heart disease (atrial natriuretic factor, ANF; brain natriuretic peptide, BNP). Although WT mice developed significant hypertrophy
over the 6-week period, timp-3^{−/−}-AB mice showed markedly greater hypertrophy as determined by higher levels of all hypertrophy parameters compared with WT-AB (Figure 2C through 2G). Increased myocyte cross-sectional area and length indicate a combination of eccentric and concentric hypertrophy in timp-3^{−/−}-AB hearts, whereas WT-AB hearts exhibit only concentric hypertrophy. This can explain LV dilation in timp-3^{−/−}-AB hearts in the absence of reduced LV wall thickness.

Excess TNFα and TACE Activity in Timp-3^{−/−}-AB Mice

In aged timp-3^{−/−} mice, we proposed involvement of TNFα in the development of spontaneous DCM. In a liver injury model, we have shown TIMP-3 is a physiological regulator of TNFα processing through inhibition of ADAM-17/TACE. In pursuit of the mechanism underlying the early onset of severe heart disease following pressure overload in young timp-3^{−/−} mice, we asked whether cardiac expression of the TIMP3-TACE-TNFα axis was affected. In WT hearts, TIMP-3 and TACE mRNA levels underwent parallel temporal changes after aortic-banding peaking at 3 weeks (Figure 3A and 3B). In contrast, in timp-3^{−/−} hearts, TACE expression increased immediately after AB (within 6 hours, ~1.5-fold, Figure 3B) concomitant with a 4-fold transient rise in TNFα mRNA (Figure 3C). TACE activity also increased within 6 hours (1.7-fold) in timp-3^{−/−}-AB hearts, whereas it rose much later (3 weeks) in WT-AB hearts (Figure 3D), temporally consistent with the increase in TACE expression. Addition of recombinant TIMP-3 (rTIMP-3), but not rTIMP-1 or a synthetic MMP-specific inhibitor (PD166793), inhibited the enhanced cardiac TACE activity in timp-3^{−/−}-AB compared with WT-AB hearts, leading to amplified activity of this pathway.

Activation of the MMP Axis Perturbs ECM in Timp-3^{−/−} Mice

TIMP-3 is known to inhibit a broad range of MMPs. We determined whether TIMP-3 loss allowed for altered MMP...
activity in response to pressure overload. Total gelatinase and collagenase activities markedly increased 1 week post-AB in timp-3+/− cardiac extracts compared with WT that displayed only collagenase induction (Figure 4A). The increased gelatinase activity in the timp-3+/−-AB group was reduced by rTIMP-3 and PD166793, although collagenase activity was additionally lowered by rTIMP-1 (Figure 4A). In search of specific candidates for the increased MMP activity, we detected active MMP-2 in timp-3+/− hearts beginning 1 week after AB, with both latent and active MMP-2 increasing over 6-week period (Figure 4B). Next, we investigated the molecular complex, comprised of MMP-2, TIMP-2, and MMP-14/MT1-MMP, typically required for MMP-2 activation.23 mRNA levels of MMP-2 and MT1-MMP were elevated in timp-3+/−-AB hearts (Figure 4C). In addition, we found a striking increase of MMP-13 in timp-3+/−-AB myocardium

<table>
<thead>
<tr>
<th>Echocardiographic and Morphometric Parameters in WT and t3+/− Mice After Aortic-Banding</th>
<th>WT-Sham</th>
<th>t3+/−-Sham</th>
<th>WT-AB</th>
<th>t3+/−-AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>553±11.4</td>
<td>527±836</td>
<td>534±10</td>
<td>543±7.8</td>
</tr>
<tr>
<td>PW</td>
<td>0.55±0.01</td>
<td>0.54±0.02</td>
<td>0.71±0.02</td>
<td>0.68±0.03</td>
</tr>
<tr>
<td>LVEDD</td>
<td>3.87±0.05</td>
<td>3.85±0.05</td>
<td>3.97±0.06</td>
<td>4.28±0.05†</td>
</tr>
<tr>
<td>LVESD</td>
<td>1.82±0.05</td>
<td>1.8±0.05</td>
<td>1.93±0.05</td>
<td>2.81±0.08†</td>
</tr>
<tr>
<td>FS</td>
<td>53.1±1.8</td>
<td>53.2±1.2</td>
<td>51.3±1.2</td>
<td>34.3±1.7†</td>
</tr>
<tr>
<td>VCFc</td>
<td>10.8±0.3</td>
<td>10.9±0.31</td>
<td>10.2±0.3</td>
<td>6.59±0.24†</td>
</tr>
<tr>
<td>PAVc</td>
<td>90.8±1.4</td>
<td>92.8±1.5</td>
<td>92.1±1.8</td>
<td>87.6±2.6</td>
</tr>
<tr>
<td>HW/TL</td>
<td>5.8±0.1</td>
<td>5.4±0.1</td>
<td>7.8±0.4*</td>
<td>7.1±0.3*</td>
</tr>
<tr>
<td>LVM/BW</td>
<td>0.32±0.01</td>
<td>0.34±0.01</td>
<td>0.45±0.04*</td>
<td>0.43±0.03*</td>
</tr>
<tr>
<td>3 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>527±11.2</td>
<td>532±8.5</td>
<td>531±5.1</td>
<td>524±8.2</td>
</tr>
<tr>
<td>PW</td>
<td>0.59±0.01</td>
<td>0.58±0.02</td>
<td>0.85±0.02‡</td>
<td>0.85±0.03*</td>
</tr>
<tr>
<td>LVEDD</td>
<td>3.91±0.06</td>
<td>3.92±0.05</td>
<td>3.78±0.07</td>
<td>4.79±0.08†</td>
</tr>
<tr>
<td>LVESD</td>
<td>1.90±0.05</td>
<td>1.88±0.04</td>
<td>1.83±0.05</td>
<td>3.58±0.17†</td>
</tr>
<tr>
<td>FS</td>
<td>51.5±0.9</td>
<td>52.2±1.1</td>
<td>50.8±1.3</td>
<td>25.5±2.6†</td>
</tr>
<tr>
<td>VCFc</td>
<td>10.1±0.3</td>
<td>10.2±0.31</td>
<td>9.72±0.26</td>
<td>4.58±0.46†</td>
</tr>
<tr>
<td>PAVc</td>
<td>95.7±1.2</td>
<td>95.4±1.7</td>
<td>94.5±1.3</td>
<td>72.2±2.1†</td>
</tr>
<tr>
<td>HW/TL</td>
<td>5.8±0.2</td>
<td>5.7±0.3</td>
<td>8.6±0.5*</td>
<td>10.4±0.7†</td>
</tr>
<tr>
<td>LVM/BW</td>
<td>0.31±0.02</td>
<td>0.33±0.02</td>
<td>0.48±0.05‡</td>
<td>0.66±0.06‡</td>
</tr>
<tr>
<td>6 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>545±8</td>
<td>538±11.5</td>
<td>542±9.1</td>
<td>535±15</td>
</tr>
<tr>
<td>PW</td>
<td>0.63±0.01</td>
<td>0.62±0.02</td>
<td>0.81±0.03*</td>
<td>0.88±0.05*</td>
</tr>
<tr>
<td>LVEDD</td>
<td>3.90±0.05</td>
<td>3.94±0.06</td>
<td>4.35±0.08*</td>
<td>5.38±0.11†</td>
</tr>
<tr>
<td>LVESD</td>
<td>1.86±0.05</td>
<td>1.87±0.05</td>
<td>2.57±0.08‡</td>
<td>4.31±0.21†</td>
</tr>
<tr>
<td>FS</td>
<td>52.2±1.1</td>
<td>52.5±0.7</td>
<td>40.8±1.6**</td>
<td>19.5±2.3†</td>
</tr>
<tr>
<td>VCFc</td>
<td>10.3±0.26</td>
<td>10.4±0.38</td>
<td>7.81±0.24†</td>
<td>3.9±0.3*</td>
</tr>
<tr>
<td>PAVc</td>
<td>96.4±2.6</td>
<td>95.9±1.8</td>
<td>84.8±2*</td>
<td>67.5±3.3†</td>
</tr>
<tr>
<td>HW/TL</td>
<td>6.6±0.1</td>
<td>5.4±0.3</td>
<td>9.2±0.5‡</td>
<td>14.3±1.0‡</td>
</tr>
<tr>
<td>LVM/BW</td>
<td>0.32±0.02</td>
<td>0.36±0.01</td>
<td>0.49±0.03*</td>
<td>0.81±0.10‡</td>
</tr>
<tr>
<td>12 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>540±7</td>
<td>N/A</td>
<td>539±10.2</td>
<td>N/A</td>
</tr>
<tr>
<td>PW</td>
<td>0.65±0.02</td>
<td>0.72±0.04</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LVEDD</td>
<td>3.95±0.04</td>
<td>5.43±0.15*</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LVESD</td>
<td>1.89±0.06</td>
<td>4.39±0.08‡</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>FS</td>
<td>52.6±1.5</td>
<td>18.8±2.9*</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>VCFc</td>
<td>10.8±0.3</td>
<td>3.78±0.23*</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PAVc</td>
<td>97.0±2.8</td>
<td>74.2±2.91*</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>HW/TL</td>
<td>6.45±0.05</td>
<td>10.6±1.1*</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LVM/BW</td>
<td>0.37±0.03</td>
<td>0.51±0.04*</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

t3+/− indicates timp-3+/−; HR, heart rate (bpm); PW, posterior wall thickness (mm); LVEDD and LVESD, left ventricular end diastolic and systolic dimension (mm); FS, fractional shortening (%); VCFc, velocity of circumferential fiber shortening (circ/s); PAVc, peak aortic velocity corrected for HR (cm/s); HW/TL, heart weight-to-tibial length ratio (mg/mm); LVM/BW, LV mass-to-body wt ratio (%). n=6 per sham group, n=8 per AB group. *P<0.01 vs sham groups. †P<0.01 vs sham groups. ‡P<0.01 vs WT-AB group. *P<0.05 vs 1 week within WT. N/A: data not available as timp-3+/−-AB mice do not survive beyond 6 weeks.
MMP-7 and MMP-8 were expressed minimally and remained unchanged post-AB (data not shown). MMP-9 mRNA increased over 6 weeks with no significant difference between WT and timp-3/H11002/H11002 hearts. Hence, 3 key interstitial collagenases, MMP-2, MMP-13, and MT1-MMP, were elevated in response to pressure overload in timp-3/H11002/H11002 mice. Further, soluble myocardial TIMPs (TIMP-1, TIMP-2, or TIMP-4) were not elevated to compensate for the absence of ECM-bound TIMP-3 in sham-operated timp-3/H11002/H11002 hearts, although timp-1 expression increased significantly at 6 weeks post-AB (Figure 4C). Altogether, these data indicate that cardiac pressure overload in the absence of timp-3 leads to parallel but temporally differential activation of the 2 metalloproteinase axes, MMPs and ADAMs.

Figure 3. Absence of TIMP-3 results in increased activity of TACE/ADAM-17 and TNFα processing. A through C, mRNA levels of TIMP-3, TACE, and TNFα normalized to 18S post-AB in WT and timp-3/H11002/H11002 heart (n=8). D, Enzymatic activity of TACE in WT and timp-3/H11002/H11002 myocardium (n=5). E, Enhanced TACE activity in timp-3/H11002/H11002 hearts is blocked with 5 µmol/L recombinant TIMP-3 (rTIMP-3), but not rTIMP-1 or 100 µmol/L PD166793, a MMP-specific inhibitor. Gray columns represent the timp-3/H11002/H11002 group. F, Western blot showing membrane bound (26kDa) and cleaved (17kDa) TNFα protein before and after AB in WT and timp-3/H11002/H11002 hearts. rTNFα provided a positive control for cleaved TNFα, and protein loading was controlled for by silver-staining (bottom).
Next, we determined whether the enhanced MMP activity affected the myocardial matrix. Using confocal microscopy on Picocirius red-stained sections and scanning electron microscopy, we examined the integrity of the fibrillar component of myocardial ECM that provides normal structural support. It is primarily comprised of collagen types I and III.26
Intact ECM network and uniform collagen distribution were seen in WT-AB hearts (Figure 4D and 4F), whereas we found areas devoid of or with disrupted fibrillar collagens in timp-3−/− hearts (Figure 4E and 4G). Although WT-AB hearts showed interstitial fibrosis 6 weeks after AB, localized fibrotic areas were noticeably increased in timp-3−/− hearts (data not shown). These findings are consistent with the maladaptive ECM remodeling found in patients with LV dilation.27
Genetic Deletion of TNFα Attenuates Cardiac Disease in Timp-3−/−AB Hearts

To determine whether TNFα is a critical molecule for LV dilation and dysfunction in timp-3−/− mice, we generated timp-3−/−/tnfα−/− double mutants. After AB, disease was delayed and partially rescued (Figure 5), while survival was improved markedly (Figure 6A) in the double knock-outs compared with timp-3−/− AB mice. Specifically, after only 3 weeks LV chamber size increased and cardiac contractility declined in timp-3−/−/tnfα−/−-AB mice, but was significantly attenuated versus timp-3−/−-AB mice (Figure 5A through 5C). Cardiac hypertrophy in the double mutants also diverged from WT-AB group at 3 weeks, but remained far less pronounced than timp-3−/−-AB hearts until 6 weeks (Figure 5D and 5E). No myocyte apoptosis (Figure 5H) or pulmonary congestion (Figure 5F and 5G) was detected in double mutants. Hence, genetically coupling TNFα ablation with TIMP-3 loss prevented CHF and attenuated heart disease in timp-3−/−-AB mice.

Dependency of MMP Activity on TNFα

Because TNFα is a transcriptional inducer of MMPs,9,12,28 we explored the TNFα-dependency of MMP expression by comparing MMP activity and expression profiles between timp-3−/−/tnfα−/−-AB and timp-3−/−-AB myocardium. Surprisingly, collagenase but not gelatinase activity was significantly higher in timp-3−/−/tnfα−/−-AB than in timp-3−/−-AB hearts, with both activities remaining higher than WT-AB.
De Novo MMP-8 Induction in the Absence of TNFα and TIMP-3

Despite the reduced transcriptional induction of specific interstitial collagenases, total myocardial collagenase activity was still higher in timp-3^{−/−}/tnfα^{−/−}-AB than timp-3^{−/−}-AB. Screening additional MMPs revealed that expression of MMP-8, another interstitial collagenase, was elevated by 5-fold in timp-3^{−/−}/tnfα^{−/−}-AB compared with timp-3^{−/−}-AB and WT-AB hearts (Figure 5K). Timp-3^{−/−}/tnfα^{−/−}-AB myocardium had significantly higher numbers of neutrophils scattered throughout the LV compared with timp-3^{−/−}-AB and WT-AB myocardium (Figure 5L and 5 mol/L). Neutrophils are the primary source of MMP-8. The greater increase in MMP-8 RNA levels than in neutrophil numbers may be attributable to the activation state of the neutrophils present in the myocardium. Thus, neutrophil infiltration and de novo MMP-8 induction on loss of TNFα likely contributed to elevated collagenase activity in the double mutant mice following pressure overload. We found no increase in macrophage numbers in timp-3^{−/−}/tnfα^{−/−}-AB hearts by immunostaining with Mac3 or F4/80 (data not shown).

MMPi Treatment Attenuates LV Dilation and Dysfunction in Timp-3^{−/−}-AB Mice

Because total gelatinase and collagenase activities were elevated in timp-3^{−/−} mice following pressure overload, we determined the contribution of this increased MMP activity toward DCM and heart failure, by using a broad-spectrum MMP-specific inhibitor (PD166793, MMPi) that does not inhibit the soluble TNFα receptor (P75) levels were enhanced and its receptor (P75) levels were enhanced and its receptor (P75) levels were enhanced. The current study is an in-depth investigation of the relationship between TIMP-3, TACE, TNFα, and MMPs in a pressure overload model of heart disease. TIMP-3 is the most highly expressed TIMP in the murine heart and is the only known physiological inhibitor of ADAM-17/TACE. TACE and TIMP-3 have parallel baseline expression patterns in murine organs during development. We show that on pressure overload, TACE and TIMP-3 undergo parallel temporal inductions in WT hearts, a pattern suggesting that TIMP-3 normally serves to counteract increased TACE levels. In TIMP-3-deficient hearts, not only is there a dramatic immediate increase in the transcriptions of both TACE and TNFα, but their increased activities go unchecked in the absence of TIMP-3. TNFα feeds back positively on its own expression as well as that of TACE. TNFα also induces TIMP-1 but downregulates TIMP-3 expression in myocardium. Such downregulation facilitates TNFα processing through increased TACE activity. Hence, the TIMP-3-TACE-TNFα system provides an inherent regulatory mechanism for controlling TNFα bioactivity following cardiac biomechanical stress.

Combination of MMPi Treatment and TNFα Ablation Completely Prevents Heart Disease

We found that TNFα ablation or MMP inhibition individually resulted in partial prevention of DCM in timp-3^{−/−}-AB mice. Therefore, we reasoned that limiting MMP activity in addition to TNFα elimination should completely prevent heart disease in these mice. Treatment of timp-3^{−/−}/tnfα^{−/−}-AB mice with 15 mg/kg/d of MMPi strikingly improved the survival (Figure 6A), completely rescued LV dilation and cardiac dysfunction as indicated by echocardiography and in vivo hemodynamics (Figure 6B and 6C), and hypertrophy (Figure 6D and 6E) up to 6 weeks after AB. These data demonstrate that excessive concomitant activity of both TNFα and MMPs are responsible for the cardiac dysfunction and heart failure in timp-3^{−/−}-AB mice.

Discussion

Dysregulations in proinflammatory cytokines and structural ECM underlie human heart disease. TNFα has pleiotropic functions in cardiovascular diseases. Maladaptive matrix remodeling is equally well recognized in promoting abnormal cardiac structure and function. These distinct disciplines have been studied extensively, but mostly independent of each other. We show here that timp-3 provides regulatory crosstalk for these distinct fields. TIMP-3 serves a dual inhibitory system that provides an inherent regulatory mechanism for controlling TNFα bioactivity following cardiac biomechanical stress.

Our earlier study suggested involvement of TNFα in the development of spontaneous DCM in aged timp-3^{−/−} mice as the soluble TNFα and its receptor (P75) levels were enhanced in coronary effluent from aged hearts. The current study is an in-depth investigation of the relationship between TIMP-3, TACE, TNFα, and MMPs in a pressure overload model of heart disease. TIMP-3 is the most highly expressed TIMP in the murine heart and is the only known physiological inhibitor of ADAM-17/TACE. TACE and TIMP-3 have parallel baseline expression patterns in murine organs during development.

We show that on pressure overload, TACE and TIMP-3 undergo parallel temporal inductions in WT hearts, a pattern suggesting that TIMP-3 normally serves to counteract increased TACE levels. In TIMP-3-deficient hearts, not only is there a dramatic immediate increase in the transcriptions of both TACE and TNFα, but their increased activities go unchecked in the absence of TIMP-3. TNFα feeds back positively on its own expression as well as that of TACE. TNFα also induces TIMP-1 but downregulates TIMP-3 expression in myocardium. Such downregulation facilitates TNFα processing through increased TACE activity. Hence, the TIMP-3-TACE-TNFα system provides an inherent regulatory mechanism for controlling TNFα bioactivity following cardiac biomechanical stress.

TIMP-3 is classically known to inhibit MMP activity responsible for ECM turnover. Total gelatinase and collagenase activities rise markedly in timp-3^{−/−} compared with WT hearts following aortic-banding. Screening of multiple MMPs reveals higher MMP-2, MMP-13 and MT1-MMP mRNA levels and higher MMP-2 activity. MMP-2 degrades several ECM proteins, whereas MMP-2, MMP-13, and MT1-MMP are established interstitial collagenases. MT1-MMP is also a key molecule for pro-MMP-2 and pro-
MMP-13 activation.24,37 MMP-2, MMP-13, and MT1-MMP are elevated in patients with heart disease,38,39 and MMP-2 polymorphisms in human have been linked to CHF.40 Thus, interstitial collagenases, MMP-2, MMP-13, and MT1-MMP appear to be intimately involved in myocardial ECM remodeling following biomechanical stress.

TNFα is well recognized for its pathophysiological importance in human heart disease.4,17 It reduces cardiac contractility,41 induces hypertrophy42 and apoptosis.43 In patients with DCM, both TACE and TNFα levels are significantly elevated4 as in our aortic-banded timp-3−/− mice. Membrane-bound TNFα mediates cardiac hypertrophy whereas cleaved TNFα can induce DCM,44 both detected in timp-3−/−AB mice. TNFα is also a key transcriptional inducer of several MMPs in vitro.9,12 Our in vivo comparison of MMP expression in timp-3−/−AB and timp-3+/−/tnf−/−AB hearts provides evidence that TNFα induces MMP-2 and MMP-13, but minimally affects MMP-9 and MT1-MMP transcription. The de novo induction of MMP-8 in timp-3−/−/tnf−/−AB hearts is consistent with increased neutrophil infiltration in these mice, which intriguingly occurred without an increase in MMP-9, also known to be produced by neutrophils. MMP-8 is found decreased in human heart disease,45 and its role as an interstitial collagenase in the myocardium needs to be further understood. Our data illustrate that TNFα bioactivity is intertwined with the amplification of MMP activity. The complete lack of myocardial apoptosis in double mutants suggests a proapoptotic role of TNFα in this model of heart disease. Understanding the multiple functions of TNFα in timp-3−/− myocardium will help us better understand its roles patients with DCM.

We demonstrate that treatment with MMPi in combination with TNFα loss completely prevents LV dilation and dysfunction, and heart failure in aortic-banded timp-3−/− mice, although only partial rescue is achieved with the individual interventions. This indicates that matrix degradation and cytokines are together responsible for heart disease. The anti-TNFα therapy in patients with class III and IV heart failure has so far proven unsuccessful.6,7 Based on our findings, the lack of success with anti-TNFα therapy6,7 may be attributable to application at too late a stage or the requirement for concomitant targeting of MMPs. Because TIMP-3 lies upstream of these 2 systems, and is commonly reduced in patients with cardiomyopathy, we propose that a therapeutic strategy that mimics TIMP-3 function in targeting both the MMPs and TNFα will be useful in producing an effective cardiac response to mechanical stress. Our findings provide a basis for anti-TNFα and MMPi combination therapy in heart disease.

Acknowledgments

Z.K. is supported by Heart and Stroke Foundation of Canada post-doctoral fellowship. This research was supported by Canadian Institutes of Health Research and Heart and Stroke Foundation of Canada to R.K. G.Y.O. is a clinician/scientist supported by Canadian Institutes of Health Research and Tailored Advanced Collaborative Training in Cardiovascular Science fellowships and P.P.L. is a H&Si/Polo Chair. The authors thank Geoffrey Woods for critical reading of this manuscript.

References

Combination of Tumor Necrosis Factor-α Ablation and Matrix Metalloproteinase Inhibition Prevents Heart Failure After Pressure Overload in Tissue Inhibitor of Metalloproteinase-3 Knock-Out Mice
Zamaneh Kassiri, Gavin Y. Oudit, Otto Sanchez, Fayez Dawood, Fazilat F. Mohammed, Robert K. Nuttall, Dylan R. Edwards, Peter P. Liu, Peter H. Backx and Rama Khokha

Circ Res. 2005;97:380-390; originally published online July 21, 2005; doi: 10.1161/01.RES.0000178789.16929.cf

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/97/4/380

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2005/07/25/01.RES.0000178789.16929.cf.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/
Supplementary Materials and Methods

Animal Models

Timp-3-/- mice were generated as described\(^1\). *Tnf\(\alpha\)-/- mice were obtained from Jackson Laboratories. The *tnf\(\alpha\)-/-*/*timp-3*-/- double mutant mice generated were in the C57/Bl6 background.

In Vivo Pressure Overload

Eight weeks old wild type (WT), *timp-3*-/- or *tnf\(\alpha\)-/-/*timp-3*-/- mice were subjected to pressure overload by aortic-banding through constriction of descending aorta. Two days following aortic banding, non-invasive tail-cuff (indirect) systolic blood pressure was recorded simultaneously with invasive proximal aortic pressures in anesthesized mice. Systolic pressure gradient was calculated as the difference between proximal aortic systolic pressure and distal tail-cuff systolic pressure. Tail-cuff measurements (Life Science Instruments, Woodlands Hills, California) were carried out as described\(^2,3\) with three separate tail-cuff measurements taken and the average value used. Sham-operated mice from each group served as controls. Systolic pressure gradient was comparable among all genotypes (WT, 62±6.1 mmHg; *timp-3*-/-, 59.6±4.9 mmHg; *timp-3*-/-/*tnf\(\alpha\)-/-, 64.3±5.2 mmHg, n=6 mice per genotype). This information has been added to the revised manuscript. All animal procedures were performed in accordance with the guidelines of the Animal Care and Use Committee of the Ontario Cancer Institute, Princess Margaret Hospital.
In Vivo Cardiac Function Measurements

Cardiac function was monitored non-invasively by echocardiographic imaging at 1, 3 and 6 weeks (and 12 weeks for WT-AB) after aortic-banding. Echocardiographic imaging was performed using light anesthesia with isoflurane as described\(^4\). In vivo Hemodynamic measurements were performed under isoflurane anesthesia in close-chested animals using a 1.4 French Millar catheter (Millar Inc., Houston), and measurements were made as described\(^4\). Heart rates were in the physiological range (530-590 bpm) and comparable among all groups. Hemodynamic measurements were performed at 3 weeks post-AB to confirm cardiac dysfunction at this time point.

Immunohistochemistry

Hearts were fixed in 10% formaldehyde, paraffin embedded and cut in 5 µm sections for immunostaining. Apoptosis was assessed by the terminal deoxynucleotidyl transferase mediated dNTP end-labeling (TUNEL) using the ApopTag Plus kit (Intergen, Purchase, NY). Positively stained myocytes were counted in 6-8 fields per heart and values expressed as percentage of total number of cells/field to quantify apoptosis. Neutrophils were stained using rat anti-neutrophil antibody (Serotec), and macrophage using F4/80 and MAC3 antibodies.

Confocal and Electron Microscopy of Matrix Structure

Ten micrometer sections from fixed hearts were stained with Picocirius Red and
visualized using two-photon confocal microscopy (Zeiss LSM 510 META NLO). For electron microscopy, LV tissue samples were fixed in Universal fixing buffer, a buffered sodium cacodylate solution containing 2% paraformaldehyde, 2% glutaraldehyde and 0.1% ruthenium red, post-fixed for 1 h in 1% osmium tetroxide and embedded in Spurr’s resin (Ladd, VT). The cationic dye ruthenium red was used to stabilize the polyanionic collagen latticework. Thin sections were stained with uranyl acetate and lead citrate and examined with a FEI CM100 Biotwin transmission electron microscope. For scanning electron microscopy, LV myocardium samples were fixed as above, dehydrated, critical point dried, sputter coated with gold, and examined in an FEI XL30 SEM at 20 kV.

Myocyte Cross-Sectional Area and Length
Left ventricular myocyte cross-sectional area was determined by tracing the outlines of myocyte cross-sections in H&E-stained sections using Northern Eclips software (version 6.0, Empix imaging Inc.). Measurements were converted to µm2 following calibration of the system. Fifty cells from each sham group and at least 75 cells from WT-AB and $\text{timp-3}^{-/-}$-AB groups were measured in total. Five hearts were used per genotype at each time point (1, 3 and 6 week post-AB). To measure myocyte lengths, LV myocytes were isolated using the langendorff system as described previously5, and myocyte lengths were measured as described4. Myocytes were isolated from three hearts in each genotype, and more than a 100 cells were measured in sham treated or after 3 weeks-AB.
Protein Analysis and Enzymatic Activity

Tissue for protein analysis was flash-frozen and stored at –80°C. To measure gelatinase, collagenase and TACE activity, total protein was extracted using extraction buffer containing 1% triton X-100, 10 mM TRIS (pH=7.6), 5 mM EDTA, 50 mM NaCl, 1mM PMSF, 5µg/mL aprotinin, 1µg/mL pepstatin, and 2µg/mL leupeptin. Total gelatinase or collagenase activity was measured in myocardial homogenates using EnzChek assay kit (Molecular probe) according to manufacturer’s instruction manual. Collagen type I was used as the substrate in the collagenase activity assay. TACE activity was measured by a fluorometric assay using a fluorogenic TACE peptide substrate6. For gelatin Zymography, total protein was extracted using RIPA buffer (50 mM Tris-HCl (pH=7.4), 150 mM NaCl, 0.1% SDS, 1% deoxycholate-sodium, 1% tetra-sodium-pyrophosphate, 1% Triton X-100, 1% nonidet P40, 1mM PMSF, 5µg/mL aprotinin, 1µg/mL pepstatin, and 2µg/mL leupeptin). Pro- and active MMP-2 and MMP-9 were detected by gelatin zymography7. Western blotting for TNFα was performed using anti-TNFα from Endogen6, with silver-staining used as loading control.

TaqMan RT-PCR Analysis

For RNA analysis, freshly isolated tissue was flash-frozen and stored at –80°C. RNA levels for the reported genes were quantified by Real-time TaqMan RT-PCR using ABI Prism 7700 sequence detection system as described8, using 18S rRNA as an endogenous control. Taqman primer and probe sequences for murine MMPs, TIMPs8,9 and ANFα10 have been described. We designed the
following sequences:

BNP, forward primer: 5'-CTGCTGGAGCTGATAAGAGA-3',
reverse primer: 5'-TGC CCAAACCGTCTTGAGAT-3',
and probe: 5'-FAM-CTCAAGGCAGCACCCTCCG-GG-TAMRA-3';

TNFα, forward primer: 5'-ACAAGGCTGCCCGACTAC-3',
reverse primer: 5'-TTTCTCCTGGTATGAGATCAATC-3',
and probe: 5'-FAM-TGCTCCTCACCAC ACCGTCAGC-TAMRA-3'.

In Vivo MMPi Treatment

An MMP-specific inhibitor, PD16679311,12 (Pfizer Inc.) was administered orally by daily gavage. According to the vendor’s recommendation, the inhibitor was first tested at two doses, 30 and 15 mg/kg/day. Mice receiving 30 mg/kg/day, but not those receiving 15 mg/kg/day, exhibited weight loss by 1 week, hence we chose the lower dose for our treatment regiment. Due to the rapid onset of DCM in timp-3−/− mice following pressure overload, PD166793 treatment (15 mg/kg/day) began one week prior to aortic-banding and continued until mice were sacrificed. Plasma levels of PD166793 were measured using gas chromatography mass spectrometry as described13.
Supplementary Results

Pulmonary congestion Secondary to Cardiac Dysfunction

Terminal heart failure in humans is associated with pulmonary congestion. Consistently, 6 weeks after aortic-banding when cardiac function in $\text{timp-3}^{-/-}$ mice was most deteriorated, $\text{timp-3}^{-/-}$ lungs showed focal consolidation particularly in sub-pleural areas with marked decrease of alveolar air space (Supplementary Figure 1B). At higher magnification, we observed marked intra-alveolar hemorrhage, interstitial fibrosis and moderate to severe inflammatory reaction (Supplementary Figure 1B, inset). Pulmonary edema and fibrosis were confirmed by ~2-fold increase in wet and dry lung weight in $\text{timp-3}^{-/-}$-AB mice at 6 weeks, while dry-to-wet weight ratio remained unchanged. Similar, but less severe, pulmonary congestion was observed in WT-AB mice only after 12 weeks of aortic-banding (Supplementary Figure 1C and 1D) when LV dysfunction in these mice had progressed to a level comparable to 6 weeks post-AB $\text{timp-3}^{-/-}$ mice (Table 1). As such, $\text{timp-3}^{-/-}$ lungs appear to be more susceptible to pulmonary congestion secondary to heart disease. No pulmonary pathology was observed in sham-operated $\text{timp-3}^{-/-}$ mice up to 12 weeks, or up to 3 weeks after aortic-banding (Supplementary Figure 1). Altogether, advanced cardiac dysfunction as indicated by the extreme LV dilation and more than 60% reduction in fractional shortening, in combination with pulmonary edema and fibrosis demonstrates that unlike the WT mice, $\text{timp-3}^{-/-}$ mice develop rapid congestive heart failure 6 weeks after pressure overload.
Dependency of MMP Activity on TNFα

Since TNFα is a transcriptional inducer of MMPs 14-16, we explored the dependency of MMP expression on TNFα in this model by comparing the MMP activity and expression profiles between *timp-3−/−/tnfα−/−-AB* and *timp-3−/−-AB* myocardial tissue. Surprisingly, collagenase but not gelatinase activity was significantly higher in *timp-3−/−/tnfα−/−-AB* than in *timp-3−/−-AB* hearts, with both activities remaining higher than in WT-AB (Fig. 6I and 6J). We confirmed the lack of increase in gelatinase activity in *timp-3−/−/tnfα−/−-AB* myocardium by gelatin zymography (data not shown) as well as Taqman RT-PCR of MMP-2 and MMP-9 (Supplementary Figure 2A and 2D). Expression of the collagenases MMP-13 and MT1-MMP in *timp-3−/−/tnfα−/−-AB* hearts declined compared to *timp-3−/−-AB* hearts, but remained significantly higher than WT-AB (Supplementary Figure 2B and 2C). Overall, MMP-2 activation was abrogated with the loss of TNFα, but the expression of MMP-13 and MT1-MMP were only partially affected.
Supplementary Figure Legends

Supplementary Figure 1
Pulmonary fibrosis secondary to LV dilation and dysfunction in \(\text{timp-3}^{-/-} \)-AB mice. A-C, Histological analysis of Masson Trichrome-stained \(\text{timp-3}^{-/-} \) and WT lung tissue at indicated times after AB. Insets show the corresponding sham groups (A) or higher magnification (B). D, Wet and dry lung weight-to-tibial length ratio in sham (n=5) and AB (n=10) WT and \(\text{timp-3}^{-/-} \) mice at the indicated times. Gray columns represent the \(\text{timp-3}^{-/-} \) group. *\(P<0.05 \) compared to all groups. Scale bar=100 µm in A, inset, B (left), and C; 25 µm in B inset.

Supplementary Figure 2
Alterations in MMP expression upon genetic deletion of TNF\(\alpha \) in \(\text{timp-3}^{-/-} \) hearts following pressure overload. A-D, mRNA levels of MMP-2, MMP-13, MMP-14/MT1-MMP, and MMP-9 normalized to 18S in WT, \(\text{timp-3}^{-/-} \) and \(\text{timp-3}^{-/-}/\text{tnf}\alpha^{-/-} \) hearts post-AB. * \(P<0.05 \) compared to WT, ** \(P<0.05 \) compared to all other groups.
References

Kassiri et al, Supplementary Figure 1

A

3 wk - AB

6 wk - AB

12 wk - AB

B

C

D

WT

t3⁻⁻⁻~-~-~~
Kassiri et al, Supplementary Figure 2