CaMKII Is a Pluripotent Signaling Molecule in Heart

The multifunctional Ca$^{2+}$ and calmodulin (CaM)-dependent protein kinase II (CaMKII) is a serine threonine kinase that is abundant in heart where it phosphorylates Ca$^{2+}$, homeostatic proteins. It seems likely that CaMKII plays an important role in cardiac physiology because these target proteins significantly overlap with the more extensively studied serine threonine kinase, protein kinase A (PKA), which is a key arbiter of catecholamine responses in heart. However, the physiological functions of CaMKII remain poorly understood, whereas the potential role of CaMKII in signaling myocardial dysfunction and arrhythmias has become an area of intense focus. CaMKII activity and expression are upregulated in failing human hearts and in many animal models of structural heart disease.1 CaMKII inhibitory drugs can prevent cardiac arrhythmias,2,3 and suppress afterdepolarizations4 that are a probable proximate focal cause of arrhythmias in heart failure. CaMKII inhibition in mice reduces left ventricular dilation and prevents disordered intracellular Ca$^{2+}$ (Ca$^{2+}$i) homeostasis after myocardial infarction.5 CaMKII overexpression in mouse heart causes severe cardiac hypertrophy, dysfunction, and sudden death that is heralded by increased SR Ca$^{2+}$ leak6; these findings go a long way to making a case for CaMKII as a causative signal in heart disease and arrhythmias but do not identify critical molecular targets or test the potential role of CaMKII in a large non-rodent animal model. The work by Ai et al in this issue of Circulation Research makes an important contribution by demonstrating CaMKII upregulation causes increased Ca$^{2+}$i leak from ryanodine receptor (RyR) Ca$^{2+}$ release channels in a clinically-relevant model of structural heart disease.7

Ryanodine Receptors Are Central
Ca$^{2+}$i release controls cardiac contraction, and most of the Ca$^{2+}$i, for contraction is released from the intracellular sarcoplasmic reticulum (SR) through ryanodine receptors (RyR). RyRs are huge proteins (565 kDa) that assemble with a fourfold symmetry to form a functional Ca$^{2+}$i release channel. Approximately 90% of the RyR is not directly required to form the pore but instead protrudes into the cytoplasm where it binds numerous proteins, including PKA, CaMKII, CaM, and PK12.6 (calstabin). Cardiac contraction is initiated when Ca$^{2+}$ current (I$_{Ca}$), through sarcolemmal L-type Ca$^{2+}$ channels (LTCC), triggers RyR opening by a Ca$^{2+}$-induced Ca$^{2+}$ release (CICR) mechanism. LTCCs “face off” with RyRs across a highly ordered cytoplasmic cleft that delineates a kind of Ca$^{2+}$ furnace during each CICR-initiated heart beat (Figure). CICR has an obvious need to function reliably, so it is astounding to consider how this feed forward process is intrinsically unstable. The increased instability of CICR in heart failure is directly relevant to arrhythmias initiated by afterdepolarizations. RyRs partly rely on a collaboration of Ca$^{2+}$-sensing proteins in the SR lumen to grade their opening probability and the amount of SR Ca$^{2+}$ release to a given I$_{Ca}$ stimulus. Thus the SR Ca$^{2+}$ content is an important parameter for setting the inotropic state, and heart failure is generally a condition of reduced SR Ca$^{2+}$ content and diminished myocardial contraction.

Kinases Facilitate Communication Between LTCCs and RyRs
LTCCs and RyRs form the protein machinery for initiating contraction in cardiac and skeletal muscle, but in cardiac muscle communication between these proteins occurs without a requirement for physical contact. PKA is preassociated with LTCCs and RyRs, and PKA-dependent phosphorylation increases LTCC5 and RyRi opening. The resultant increase in Ca$^{2+}$i is an important reason for the positive inotropic response to catecholamines. The multifunctional Ca$^{2+}$/calmodulin-dependent protein kinase II (CaMKII) is activated by increased Ca$^{2+}$i, and so catecholamine stimulation activates CaMKII in addition to PKA.5 In contrast to PKA, which is tightly linked to inotropy, CaMKII inhibition does not cause a reduction in fractional shortening during acute catecholamine stimulation in mice.5 Prolonged catecholamine exposure does reduce contractile function by uncertain mechanisms that require CaMKII.10 CaMKII colocalizes with LTCCs13 and RyRs12 and CaMKII can also increase LTCC13 and RyR13 opening probability in cardiac myocytes. The ultrastructural environment of LTCCs and RyRs is well-suited for a Ca$^{2+}$i-responsive kinase to serve as a coordinating signal between LTCCs and RyRs during CICR. The recently identified role of CaMKII in heart failure suggests the possibility that excessive CaMKII activity could cause or contribute to CICR defects present in heart failure.

Heart Failure Is a Disease of Disordered Ca$^{2+}$i Homeostasis
The key clinical phenotypes of contractile dysfunction and electrical instability in heart failure involve problems with Ca$^{2+}$i homeostasis. Broad changes in Ca$^{2+}$i-handling proteins
Is Heart Failure a Disease of Enzymatic Over-Activity?

Heart failure is marked by hyper-adrenergic tone, and beta adrenergic receptor antagonist drugs (beta blockers) are a mainstay of therapy for reducing mortality in heart failure patients. The Marks group pioneered the concept that RyRs are hyperphosphorylated by PKA in patients with heart failure and showed that successful therapies, ranging from beta blockers to left ventricular assist devices, reduce RyR phosphorylation in step with improved mechanical function. They have developed a large body of evidence in patients and in animal models that PKA phosphorylation of Ser2809 on cardiac RyRs destabilizes binding of FK12.6 to RyRs and promotes increased RyR opening that causes an insidious Ca\(^{2+}\) leak. This leak is potentially problematic because it can reduce SR Ca\(^{2+}\) content (to depress inotropy), engage pathological Ca\(^{2+}\)-dependent transcriptional programs (to promote myocyte hypertrophy), and activate arrhythmia-initiating afterdepolarizations (to cause sudden death). Indeed, RyR hyperphosphorylation can produce arrhythmias as well as mechanical dysfunction, whereas a drug that prevents FK12.6 dissociation from RyR also reduces or prevents arrhythmias.\(^\text{15}^\) Taken together these findings make a strong case that RyR hyperphosphorylation (a result of net excess kinase activity) is a central event in heart failure and sudden death.

Not all findings point to hyperphosphorylation of RyR by PKA and subsequent FK12.6 dissociation as critical determinants of heart failure\(^\text{16}^\) and arrhythmias.\(^\text{17}^\) For example, studies in isolated and permeabilized ventricular myocytes failed to show an increase in RyR openings, called sparks, which are monitored by photoemission of a Ca\(^{2+}\)-sensitive fluorescent dye.\(^\text{18}^\) FKBP12.6 dissociation is not universally reported to follow RyR phosphorylation by PKA.\(^\text{19}^\) Furthermore, FKBP12.6 binding to RyR is not affected during catecholamine stimulation that results in arrhythmias in a mouse model of catecholamine-induced ventricular tachycardia,\(^\text{20,21}^\) a genetic disorder of hypersensitive RyR Ca\(^{2+}\) release. These findings challenge the PKA hypothesis and make room, conceptually, to consider the role of additional signals for modulating RyR activity in heart disease.

Both PKA and CaMKII may phosphorylate Ser2809, but recently CaMKII was found to exclusively phosphorylate Ser2815 and this phosphorylation caused increased RyR opening.\(^\text{12}^\) However, the PKA and CaMKII responses may be mechanistically distinct because CaMKII evoked increased RyR opening in the absence of FK12.6 dissociation. These findings together with the fact that CaMKII activity is recruited under conditions of increased PKA activity suggest that CaMKII might also be important in regulating RyRs in heart failure.

The article by Ai et al shows that expression of a CaMKII splice variant that is resident in cytoplasm (CaMKII\(\text{c}\)) was increased, and there was enhanced phosphorylation of the recently identified CaMKII site (Ser2815) on RyR. Both Ser2815 and the PKA site (Ser2809) were hyperphosphorylated in failing hearts, but phosphorylation of the CaMKII site was greater than the PKA site. Because both Ser2809 and Ser2815 can increase RyR openings, it seemed likely that PKA and CaMKII would work together to increase Ca\(^{2+}\) leak. Surprisingly, CaMKII inhibition but not PKA inhibition suppressed the leak. These experiments were performed with meticulous attention to matching SR Ca\(^{2+}\) load, a technically difficult accomplishment that is not performed by most
groups evaluating SR Ca\(^{2+}\) release. Thus, differences in the SR intraluminal Ca\(^{2+}\) could not account for these findings. Although these experiments were carefully controlled, one potential limitation is that the experiments relied exclusively on CaMKII and PKA inhibitor drugs that are notorious for nonspecific actions at ion channel proteins. They also showed that the ratio of inositol tris phosphate receptors (IP3R) to RyRs was increased in failing left ventricular myocytes. IP3R are also a target for CaMKII, so mentally reordered in heart failure but leaves the impact of activity. Excessive SR Ca\(^{2+}\) (forward mode) Na\(^{+}\) leak in heart failure. Thus, differences in the ratio of inositol tris phosphate receptors (IP3R) to RyRs was increased in failing left ventricular myocytes. IP3R are also a target for CaMKII, so interesting questions remain about the potential role for this channel and CaMKII in heart failure, at least in this model.

What We Learned and What We Need to Know

CaMKII activity seems to be part and parcel of the adrenergic signaling seen in structural heart disease. This work shows us that CaMKII can contribute directly to increased SR Ca\(^{2+}\) leak in a clinically relevant model of heart failure that is marked by arrhythmias and sudden death. Acute experiments with CaMKII inhibitory drugs strongly suggest that SR Ca\(^{2+}\) leak is principally linked to CaMKII rather than PKA activity. Excessive SR Ca\(^{2+}\) release can activate inward (forward mode) Na\(^{+}\)-Ca\(^{2+}\) exchanger current to cause delayed afterdepolarizations and arrhythmias and CaMKII inhibition can prevent these inward Na\(^{+}\)-Ca\(^{2+}\) exchanger currents. An important next step toward translating these findings will be to evaluate the effects of chronic CaMKII inhibition in this model to see whether it reverses cardiac dysfunction, arrhythmias, and whether chronic CaMKII inhibitor therapy can stop the RyR leak to refill the SR. It will be necessary to have improved pharmacological agents with fewer nonspecific effects to convincingly perform these experiments. These future experiments will tell us whether CaMKII inhibition is a potentially viable therapy for structural heart disease and arrhythmias in a non-genetic non-mouse model. We need to know whether CaMKII inhibition is really a highly-specific form of beta blockade that can preserve inotropic responses to catecholamines while preventing the adverse consequences of catecholamines in heart failure.

Acknowledgments

This work was supported in part by grants from the National Institutes of Health (HL070250, HL62494, and HL046681). Dr Anderson is an Established Investigator of the American Heart Association.

References

Key Words: calmodulin kinase II ryanodine receptor heart failure arrhythmias
The Fire From Within: The Biggest Ca2+ Channel Erupts and Dribbles
Mark E. Anderson

Circ Res. 2005;97:1213-1215
doi: 10.1161/01.RES.0000196744.62327.36
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/97/12/1213

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/