Immunomodulator FTY720 Induces eNOS-Dependent Arterial Vasodilatation via the Lysophospholipid Receptor S1P3

Abstract—The novel immunomodulator FTY720 is effective in experimental models of transplantation and autoimmunity, and is currently undergoing Phase III clinical trials for prevention of kidney graft rejection. FTY720 is a structural analogue of sphingosine-1-phosphate (S1P) and activates several of the S1P receptors. We show that FTY720 induces endothelium-dependent arterial vasodilation in phenylephrine precontracted mouse aortae. Vasodilation did not occur in thoracic aortic rings from eNOS-deficient mice, implicating and effect dependent of activation of the eNOS/NO pathway. Accordingly, FTY720 induced NO release, Akt-dependent eNOS phosphorylation and activation in human endothelial cells. For biological efficacy, FTY720 required endogenous phosphorylation, since addition of the sphingosine kinase antagonist N,N-dimethylsphingosine (DMS) prevented activation of eNOS in vitro and inhibited vasodilation in isolated arteries. The endothelial phosphorylation of FTY720 was extremely rapid with almost complete conversion after 10 minutes as determined by mass spectrometry. Finally, we identified the lysophospholipid receptor S1P3 as the S1P receptor responsible for arterial vasodilation by FTY720, as the effect was completely abolished in arteries from S1P3-deficient mice. In summary, we have identified FTY720 as the first immunomodulator for prevention of organ graft rejection in clinical development that, in addition, positively affects the endothelium by stimulating NO production, and thus potentially displaying beneficial effects on transplant survival beyond classical T cell immunosuppression. (Circ Res. 2005;96:913-920.)

Key Words: FTY720 • eNOS • S1P receptor

The novel immunomodulator FTY720 is currently undergoing Phase III clinical trials for prevention of kidney graft rejection.1 FTY720 shares striking structural homology to sphingosine 1-phosphate (S1P),2 a natural lysophospholipid that is present at high nanomolar (nmol/L) concentrations in serum.3 Recent data show that FTY720 is phosphorylated in vivo by sphingosine-kinase-2 (SphK2),4 and that the FTY720-phosphate metabolite (FTY720-P) is a potent agonist of 4 of the 5 G protein–coupled receptors for S1P: S1P1, S1P2, S1P4, and S1P5.2,5 Recent studies show that the S1P1 receptor and its natural ligand S1P are pivotal to lymphocyte recirculation: mice with a specific deletion of S1P1 in hematopoietic cells showed that thymocytes selectively require S1P1 for egress from thymus, whereas both T and B cells require this receptor for egress from peripheral lymphoid organs.6 Thus, it was suggested that the efficacy of FTY720 in transplantation and autoimmunity may relate primarily to an inhibition of effector T cell recirculation from lymphoid organs to peripheral sites of inflammation.

SIP receptor agonists mediate a variety of physiological processes and stimulate multiple signaling pathways resulting in calcium mobilization from intracellular stores, polymerization of actin, chemotaxis/migration, and escape from apoptosis.7–10 S1P is released by platelets during inflammatory processes11 and can be found in significant amounts in serum as part of lipoproteins.3 The respective receptors S1P1, S1P2, and S1P3 are widely expressed, whereas S1P4 is restricted to lymphoid tissue and S1P5 is present in spleen and white-matter tracts of the central nervous system.8,12–14 In endothelial cells, we and others have demonstrated that S1P activates Akt and eNOS resulting in vasodilation.15–17

Correspondence to Prof Dr med Markus van der Giet, Charite–Campus Benjamin Franklin, Med. Klinik IV, Nephrologie, Hindenburgdamm 30-12200 Berlin, Germany. E-mail markus.vandergiet@charite.de

© 2005 American Heart Association, Inc.

Circulation Research is available at http://www.circresaha.org DOI: 10.1161/01.RES.0000164321.91452.00
In this study, we show that the immunomodulator and S1P receptor agonist FTY720 displays direct effects on the vascular endothelium. FTY720 potently induced vasodilation in mouse aortae by activating the Akt/eNOS/NO pathway through the S1P receptor. These findings suggest that, unlike conventional immunosuppressive drugs, FTY720 may preserve vascular structure and function and help prevent cardiovascular morbidity and mortality that often occurs in transplant recipients.18,19

Materials and Methods

Detailed methods are described in the expanded Methods and in the online data supplement available at http://circres.ahajournals.org.

Cell Culture

Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cords and cultured in RPMI 1640 supplemented with 15% calf serum, 0.4% bovine pituitary brain extract (GIBCO BRLy), 50 μg/mL heparin, and antibiotics as described previously.20

Arterial Tension Studies

The direct effects of FTY720 or FTY720-P on arterial relaxation and contraction were evaluated in 2-mm rings of thoracic aorta from 3-month-old female C57BL/J6 mice (Charles River Laboratories, Wilmington, Mass) and eNOS-null male mice and wild-type (WT) controls (Charles River Laboratories, Wilmington, Mass), as well as S1P-null mice and WT controls.21,22 The wall tension of the vessels was measured in mice aortae using established methodology.23,24 Arterial contraction studies were performed and presented as equilibration dose-response curves for phenylephrine (PE), FTY720, FTY720-P, AAL149 (chiral analogue of FTY720, R-form), AAL151 (chiral analogue form of FTY720, S-form), and AFD298 (phosphorylated form of AAL151. AAL151-P) in thoracic aortae from all mouse strains and deendothelialized aortae from WT-mice, respectively. In arterial relaxation studies, after equilibration and submaximal precontraction with PE (1 μmol/L), relaxation to 10 μmol/L acetylene was tested to confirm the integrity of the endothelium. After washing, rings were again contracted with PE and the direct effects of FTY720, FTY720-P, or its analogues were assessed. At the end of the experiment, the relaxation response to acetylcholine was confirmed. Selected studies were performed in rings treated with nitro-o-arginine methyl ester (L-NAME; 50 μmol/L), N,N-dimethylphosphinosine (DMS; 10 μmol/L), and indomethacin (Indo, 10 μmol/L). In some experiments, triton X-100 (5 seconds) was used to remove the endothelium, as described.25 The maintenance of functional smooth muscle cell integrity after manipulation was confirmed by measurement of different concentrations of saline stock solutions of authentic NO (kindly provided by Dr P. Kleinbongard, Institute of Physiology, University of Düsseldorf, Germany).

Quantification of Phosphorylation of FTY720 by Reverse-Phase Chromatography With Triethylammonium Phosphate and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS)

To quantify conversion of FTY720 to FTY720-P, endothelial cells or aortic rings were stimulated with FTY720 (1 μmol/L) for different times (0, 2, 5, and 10 minutes). Triethylammonium acetate (TEAA) was added to the supernatants of stimulated HUVECs and the aortic rings up to a final concentration of 40 mmol/L. Supernatants were concentrated on a monolithic reversed phase column (Chromolith SpeedROD, Merck). The retained substances were eluted with a stepwise gradient. The eluates of the reversed phase chromatography were lyophilized and analyzed by mass spectrometry. For calibration of the mass spectra, FTY720 and FTY720-P were used as external standard. The mass accuracy was in the range of 0.05%.

Statistics

All data expressed as mean±SEM. Comparisons between the groups were performed using nonparametric Wilcoxon-Mann-Whitney-Test. Two-sided probability values less than 0.05 were considered significant. Statistical analysis was performed using GraphPad Prism version 3.02 for Windows (GraphPad Software). If error bars do not appear on figure, the error was within the symbol size.

Results

FTY720 and FTY720-P Induce NO-Mediated Arterial Vasodilation

To examine the effects of FTY720 and FTY720-P on vascular tone, both substances were added to rings of mouse thoracic aorta at basal tone (Figure 1A). Neither FTY720 nor FTY-720-P exhibited any vasoactive effect. However, when FTY720 and FTY720-P were added to aortic rings precontracted with phenylephrine (PE) (maximal vasoconstriction 8.1±0.8 mN, n=16), both substances exhibited a marked vasodilatory effect in a dose-dependent manner (EC\textsubscript{50}[−log mol/L]: 7.1±0.1 for FTY720 and 7.0±0.1 for FTY720-P) (Figure 1B through 1D). Both substances were able to attenuate the vasoconstrictive effect of PE by ≈70% (Figure 1D). To test for involvement of eNOS in the FTY720-P– and
FTY720-induced vasodilatory effect, we pretreated the aortae with the eNOS antagonist L-NAME (50 μmol/L). This completely abolished the vasodilation induced by FTY720 and FTY720-P (Figure 2A and 2C). In addition, neither substance had any vasodilatory effect in eNOS-deficient mice compared with their wild-type controls (Figure 2B and 2C), suggesting that the vasodilatory actions of FTY720 and FTY720-P are completely mediated by eNOS. There was no vasodilation induced by either FTY720 or FTY720-P (Figure 2C) after endothelial denudation. In contrast, the vasodilatory effect of neither FTY720-P nor FTY720 was affected by indomethacin (10 μmol/L) (Figure 2C).

FTY720-P and FTY720 Induce NO Release and Stimulate eNOS Phosphorylation via Akt

In agreement with the organ studies, FTY720 (10 μmol/L) and FTY720-P (10 μmol/L) potently enhanced NO generation in human umbilical vein endothelial cells (HUVECs) in vitro, as measured by DAF-2DA–dependent fluorescence (Figure 3A). Pretreatment with 10 μmol/L L-NAME completely abolished the vasodilation induced by phenylephrine (PE, 1 μmol/L, arrow), and direct relaxation responses to cumulative doses of FTY720-P (1=1 nmol/L, 2=10 nmol/L, 3=100 nmol/L, 4=1 μmol/L, and 5=10 μmol/L), acetylcholine (ACH, 6=10 μmol/L), and sodium nitroprusside (SNP, 7=10 μmol/L) were evaluated. Shown is a representative tracing from 1 experiment out of 6.

Figure 1. FTY720 and FTY720-P induce vasodilation in isolated mouse aortae. A, Thoracic aortic rings at basal tone were stimulated with phenylephrine (PE, 1 μmol/L, arrow), and direct relaxation responses to cumulative doses of FTY720 (2=1 nmol/L, 3=10 nmol/L, 4=100 nmol/L, 5=1 μmol/L, and 6=10 μmol/L), and cumulative doses of FTY720-P (7=1 nmol/L, 8=10 nmol/L, 9=100 nmol/L, 10=1 μmol/L, and 11=10 μmol/L) were evaluated. Shown are representative tracings from 1 experiment of 7.

Figure 2. FTY720 and FTY720-P activate eNOS. A, Thoracic aortic rings from mice were precontracted with PE (10 μmol/L, arrow) in the presence of L-NAME (50 μmol/L, arrow) and direct relaxation responses to cumulative doses of FTY720-P (1=1 nmol/L, 2=10 nmol/L, 3=100 nmol/L, 4=1 μmol/L, and 5=10 μmol/L), acetylcholine (ACH, 6=10 μmol/L), and sodium nitroprusside (SNP, 7=10 μmol/L) were evaluated. Shown is a representative tracing from 1 experiment out of 5. B, Thoracic aortic rings from eNOS-knockout mice were precontracted with PE (10 μmol/L, arrow) and direct relaxation responses to cumulative doses of FTY720-P (1=1 nmol/L, 2=10 nmol/L, 3=100 nmol/L, 4=1 μmol/L, and 5=10 μmol/L), acetylcholine (ACH, 6=10 μmol/L), and sodium nitroprusside (SNP, 7=10 μmol/L) were evaluated. Shown is a representative tracing from 1 experiment out of 5. C, Vasodilative properties of FTY720 (10 μmol/L, filled column) and FTY720-P (10 μmol/L, open column) in wild-type mice (eNOS+/+) and eNOS knockout-mice (eNOS−/−) in the presence or absence (control) of indomethacin (Indo, 10 μmol/L), L-NAME (50 μmol/L), or after endothelium removal with triton X-100. *P<0.05 significant changes vs control, n=6 experiments.
Phosphorylation of FTY720 Is Required for eNOS Activation

In our experiments, FTY720 and FTY720-P had comparable effects although several studies have demonstrated that FTY720 becomes biologically active only after phosphorylation.29 In vivo, this phosphorylation is initiated by sphingosine-1-phosphate kinases.4 To test whether the effect of FTY720 we observed is due to phosphorylation by endogenous SPK, we performed the vasodilatation studies with FTY720 and FTY720-P, respectively, in the presence of the SPK inhibitor N,N-dimethylsphingosine (DMS, 10 μmol/L). DMS completely abolished the vasodilatory effect of FTY720, whereas the potent vasodilatory effect of FTY720-P was preserved (Figure 4A and 4B). We then tested the effect of SPK inhibition on Akt and eNOS phosphorylation by FTY720 in HUVECs in vitro. DMS potently inhibited both Akt and eNOS phosphorylation (Figure 4B) by FTY720, suggesting that endogenous phosphorylation of FTY720 by the endothelial SPK is necessary for its activatory effect on Akt and eNOS. Inhibition of phosphorylation of FTY720 by DMS prevented production of NO as measured by the [3H]arginine/citrulline assay (Figure 3B). This was closely associated with an increase in eNOS phosphorylation at Ser1177 by FTY720 and FTY720-P (Figure 3B). LY294002, as a selective inhibitor of Akt activation by PI-3K, completely abolished Akt and eNOS phosphorylation. In the presence of LY294002, NO formation by FTY720-P (1 μmol/L) was completely reduced to control levels in the [3H]arginine/citrulline assay (control: 68±13 fmol/well; FTY720-P, 1 μmol/L: 212±23 fmol/well; FTY720-P+LY294002: 42±18 fmol/well; n=3). eNOS-phosphorylation status at Thr195 was not affected by FTY720-P (data not shown).

Conversion of FTY720 to FTY720-P as Measured by MALDI-MS

To determine the kinetics and extent of endogenous FTY720 phosphorylation and conversion to active FTY720-P, we analyzed the FTY720 and FTY720-P content in supernatants of HUVECs and whole aortae preparations using mass spectrometry (Figure 5A and 5B). Two minutes after incubation of HUVECs or aortae with FTY720, more than 70% of FTY720 was phosphorylated (Figure 5A and 5B). Ten minutes after incubation, more than 90% was phosphorylated. These data indicate an extremely rapid and efficient conversion of FTY720 to its active metabolite. Time course experiments using maximal doses of FTY720 and FTY720-P allowed the detection of a slightly earlier onset of the vasodilative effect of FTY720-P in comparison to FTY720 (Figure 5C).

AAL 151 and AFD298 but not AAL 151 Can Activate eNOS

To investigate the specificity of FTY720-P to activate eNOS, we performed experiments with AAL 151 (chiral analogue of
FTY720, R-form, which can be phosphorylated), AFD298 (phosphorylated AAL151), and AAL149 (chiral analogue of FTY720, S-form, which cannot be phosphorylated) in rings of mouse thoracic aortae precontracted with phenylephrine (PE). AAL151 and AFD298 exhibited a marked vasodilatory effect in a dose-dependent manner (EC50: 6.9 ± 0.3 for AAL151 and 7.3 ± 0.3 for AFD298) (Figure 6A). In eNOS-deficient mice, AAL151 and AFD298 had no vasodilatory effect compared with their wild-type controls (Figure 6A and 6B). The nonphosphorylatable FTY720 analogue AAL149 did not show any significant vasodilatory properties (Figure 6A). None of these substances had any effect on basal arterial tone (data not shown). In cultured endothelial cells, AAL151 (1 μmol/L) and AFD298 (1 μmol/L) induced a marked Akt activation in a time-dependent manner (Figure 7C). This was closely associated with an increase in eNOS phosphorylation at Ser1177 (Figure 7C). Again, AAL149 did not show any effect on Akt or eNOS phosphorylation (Figure 6C).

Discussion

There is increasing evidence that the natural serum lysophospholipid S1P regulates vascular tone and endothelial barrier function, and that this process involves G protein-coupled receptors from the lysophospholipid receptor family. Earlier studies with S1P receptor–transfected CHO cells and antisense oligonucleotides have suggested a potential involvement of S1P1 and/or S1P3 in these biological functions. However, both endothelial and smooth muscle cells, which act in concert to regulate vessel tone, express several of the S1P receptors, and the distinctive role of individual S1P receptor subtypes in the vasculature in respect to the regulation of vasomotion remains elusive.

There is recent evidence that, similar to S1P, the immunomodulatory drug FTY720 may affect vascular permeability. To our knowledge, the data presented here are the first to show that FTY720 induces endothelium-dependent arterial vasodilation in PE-precontracted isolated arteries. Vasodilation did not occur in thoracic aortic rings from eNOS-deficient or S1P3-deficient mice, demonstrating a critical role of the eNOS/NO pathway and an involvement of the S1P3 receptor. Phosphorylation of eNOS by FTY720 occurred at Ser1177 and coincided with activation of Akt. Phosphorylation of eNOS at Thr495 was not affected by Akt activation, which is in line with earlier observations. Moreover, the activation of eNOS was attenuated by the PI3K inhibitor Ly294002, confirming involvement of Akt in eNOS phosphorylation. In this respect, FTY720 closely resembles the vasodilatory action of S1P in PE-precontracted arteries. Similar to S1P, FTY720 also activates eNOS by Akt-induced phosphorylation and induces Ca2+ mobilization in vitro, and both S1P and FTY720 induce vasodilation via the S1P3 receptor in isolated arteries. However, there are also substantial differences between S1P and FTY720 in respect to their vasoactive functions: whereas S1P has a vasoconstrictor effect on basal arterial tone in isolated arteries and decreases myocardial contractility, FTY720 induces a marked increase in coronary blood flow and myocardial contractility.
FTY720 has no effect on basal arterial tone in isolated arteries as shown in our study. This vasoconstrictive effect of S1P on basal arterial tone is independent of S1P3 in isolated arteries and appears to depend on S1P2 in human coronary smooth muscle cells in vitro. Interestingly, FTY720 has no affinity to S1P2, leaving this as a possible explanation for the difference between the effects of S1P and FTY720 on basal arterial tone ex vivo. All activities of FTY720 required its phosphorylation, because addition of the sphingosine-kinase antagonist DMS prevented activation of eNOS by FTY720 but did not affect vasodilation by synthetic FTY720-P. To exclude receptor-independent effects and confirm the necessity of endogenous phosphorylation of FTY720, we performed experiments with several of its stereoisomers: the phosphorylatable chiral analogue of FTY720, AAL151, and its phosphorylated form, AFD298. Both activated eNOS and induced vasodilation. Accordingly, the nonphosphorylatable chiral analogue of FTY720, AAL149, had no effect. This is in line with the earlier observation that only FTY720-P targets S1P receptors and displays biological activity. A pertinent review of the literature has shown that FTY720 is assumed to be phosphorylated by sphingosine-kinase type 1 and 2, with sphingosine-kinase type 2 being favored. However, we cannot differentiate between the actions of these enzymes in our system. Neither can we exclude that other enzymes are involved in the phosphorylation of FTY720. No matter which enzyme is responsible, our MALDI-MS data on the conversion of FTY720 revealed that it must be extremely efficient with 70% conversion already after 2 minutes. To our knowledge, this is the first report of FTY720 conversion to FTY720-P in HUVECs and whole aorta. Shown is the ratio of FTY720/FTY720-P as measured by mass spectrometry. Thoracic aortic rings from mice were precontracted with PE (10 μmol/L, arrow) and direct time-dependent relaxation responses to FTY720 (1 μmol/L, top panel) and FTY720-P (10 μmol/L, bottom panel) were evaluated. Vertical line indicates the time of FTY720 and FTY720-P application and allows comparison of the beginning of the arterial vasodilation. Shown is a representative tracing from 1 experiment out of 3.

Figure 5. FTY720 is rapidly converted to FTY720-P in HUVECs and whole aorta. A, MALDI mass spectra of desalted thoracic aortic rings supernatants after incubation with FTY720 in dependence of the incubation time (0, 2, 5, and 10 minutes). An aliquot (1/10) of the desalted supernatant was co-crystallised with 1 μL of the matrix solution of 2,5-dihydroxybenzoic acid (DHB; 20mmol/L in water/acetonitril 50/50-vol-%) on the MALDI target. Mass signal at 308 Da is caused by FTY720, and the mass signal at 388 Da is caused by FTY720-P. Quantification of the FTY720 / FTY720-P ratio is given in Figure 6C. B, Time-dependent conversion of FTY720 to FTY720-P in HUVECs and whole mice aorta. Shown is the ratio of FTY720/FTY720-P as measured by mass spectrometry. C, Thoracic aortic rings from mice were precontracted with PE (10 μmol/L, arrow) and direct time-dependent relaxation responses to FTY720 (1 μmol/L, top panel) and FTY720-P (10 μmol/L, bottom panel) were evaluated. Vertical line indicates the time of FTY720 and FTY720-P application and allows comparison of the beginning of the arterial vasodilation.

Figure 6. FTY720 stereoisomers AAL151 and AFD298 activate eNOS and induce vasodilation, whereas nonphosphorylatable chiral analogue AAL149 had no effect. A, Dose-response curves of the vasodilatory effects of AAL151, AFD298, and AAL149 in PE (1 μmol/L)-precontracted aortic rings from wild-type mice (n=6). Values are shown as mean±SEM. B, Dose-response curves of the vasodilatory effects of AAL151, AFD298, and AAL149 in PE (1 μmol/L)-precontracted aortic rings from eNOS−/− mice (n=4). Values are shown as mean±SEM. C, HUVECs were stimulated with 1 μmol/L AAL151, AFD298, and AAL149 for 10, 20, and 30 minutes. Cell lysates were analyzed for Akt and eNOS phosphorylation by Western blotting. All results are representative of 1 experiment of 3.
ever, caution should be applied when discussing potential beneficial effects of FTY720 on kidney graft rejection for which it is currently undergoing Phase III clinical trials may depend not only on its immunosuppressive function but also on its vasoactive, NO-generating potential in the endothelium we have characterized in our study. Accordingly, optimal efficacy of FTY720 in models of transplantation required at least 5-fold higher concentrations than those needed for maximal lymphocyte trapping in lymphoid organs. However, caution should be applied when discussing potential benefits of agonism at S1P3 receptors such as S1P itself, which was reported to be rapidly fatal to mice when administered by bolus IV injection in wild-type but not S1P3−/− mice. It appears that not only dose but also modus of application of S1P may be important: whereas IV bolus administration of high doses of 1 mg/kg in mice are fatal, slow continuous infusion has no cardiac side effects.

FTY720 was reported to be fatal for mice at doses of 10 mg/kg, and pFTY720 was toxic at doses above 1.0 mg/kg. It is important to be aware of these experimental data, especially with FTY720 currently undergoing Phase III clinical trials and being close to clinical approval for kidney graft rejection.

In summary, we have identified FTY720 as the first immunomodulator for prevention of organ graft rejection in clinical development that, in addition, positively affects the endothelium by affecting NO production and thus possibly displaying beneficial effects in patients beyond classical T cell immunosuppression.

Acknowledgments
This work was supported in part by the Dr H.-H. Deichmann Foundation for Atherosclerosis Research and the Deutsche Forshungsgemeinschaft (GI339/3-1). We gratefully acknowledge the technical assistance of K. Kloké and S. Mersmann.

References
Immunomodulator FTY720 Induces eNOS-Dependent Arterial Vasodilatation via the Lysophospholipid Receptor S1P₃

Circ Res. 2005;96:913-920; originally published online March 31, 2005;
doi: 10.1161/01.RES.0000164321.91452.00

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/96/8/913

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/