The Ca\(^{2+}\) movements that control many cellular functions, including contraction of striated and smooth muscle cells and vesicular secretion from endocrine cells and nerve terminals, are increasingly recognized to involve macromolecular Ca\(^{2+}\)-signaling complexes that, in addition to the key Ca\(^{2+}\)-transporting proteins, include large numbers of associated proteins that provide a variety of regulatory, structural and Ca\(^{2+}\)-sensing/buffering functions. The importance of working out the subtle interactions within these macromolecular complexes is underscored by the genetic diseases that have been associated with mutations of their constituent proteins.

In this issue, Terentyev et al\(^1\) use a spectrum of molecular and electrophysiological techniques to demonstrate that triadin (TRD) plays an unexpectedly important role in regulating the ryanodine receptors (RyRs), found primarily in dyadic junctions of cardiac sarcoplasmic reticulum (SR; Figure). It has been previously suggested that TRD and junctionin are integral membrane proteins of the junctional SR, and serve as linker proteins from the SR Ca release channel (RyR) to calsequestrin (CSQ) complexes, the major Ca\(^{2+}\)-buffer in the lumen of the SR (Figure).\(^2\) The large (≈4500 aa) cytoplasmic domain of RyR appears to have multiple binding sites for an ever-growing list of proteins that includes: calmodulin, PKA, FKBP 12.6.\(^3\) The major findings of the present communication are that overexpression of TRD leads to 3-fold increase in open probability of RyRs in bilayers, a 60% increase in spontaneous spark frequency with only minor decreases in spark amplitude (≈10%) and SR Ca\(^{2+}\) content (≈30%), as well as a marked alteration in the voltage dependence of Ca\(^{2+}\) release. The authors propose the activity of RyRs to be directly modulated by the level of expression of TRD, most likely mediated by amino acid residues 200 to 224 of TRD, associating with RyR in a manner similar to that of CSQ. They provide fairly clear evidence that these residues are critical for the described excitation-contraction (EC) coupling phenotype, as transfection of myocytes without this domain failed to alter the control EC coupling phenotype. Because a decrease of the Ca\(^{2+}\)-content of the SR by 30% would have a direct inhibitory effect on the frequency of occurrence of spontaneous sparks and the open probability of RyRs as previously proposed, the observed increases in frequency of sparks and open probability of single RyRs is even more impressive, suggesting that TRD may be a more critical regulator of RyR activity, perhaps even more than luminal SR Ca\(^{2+}\) concentrations.

Voltage-Dependence of CICR

In the present context of regulation of I\(_{Ca}\)-gated Ca\(^{2+}\) release (CICR) via interaction of TRD with RyRs, and the resultant significant change in the bell-shaped voltage-dependence of Ca\(^{2+}\) release (Figure 2 of Terentyev et al\(^1\)), it may be appropriate to consider the present understanding of cardiac Ca\(^{2+}\) signaling cascade, including the possible steric interactions between RyRs and the cytoplasmic tail of the \(\alpha_1\) subunit of the Ca\(^{2+}\) channel.

The dominant Ca\(^{2+}\)-signaling pathway that underlies cardiac EC coupling involves activation of the \(\alpha_1\) subunit of Ca\(^{2+}\) channel and mandatory influx of Ca\(^{2+}\) through the channel leading to release of Ca\(^{2+}\) from the RyR,\(^4\) which in turn inactivate the Ca\(^{2+}\) channel helping to terminate the release process.\(^5\) Deviations from a strict Ca\(^{2+}\)-dependent process, however, were recognized early when quantifying the gain of CICR. It was surprising to find that the gain of CICR was voltage-dependent, showing \(\approx10\times\) higher gain at negative voltages of \(-30\) to \(-40\) mV where \(I_{Ca}\) was minimally activated. Recent studies introducing small segments of the carboxyl tail (ie, LA peptide)\(^6\) of the Ca\(^{2+}\) channel \(\alpha_1\) subunit into atrial myocytes suggest that only the apocamulolin binding domain of the LA peptide was the critical domain required to enhance the spontaneous spark frequency and the gain factor of the Ca\(^{2+}\) channel (dihydropyridine receptors [DHPR]) uncoupled central release sites. The specific interaction of the LA peptide with the RyR at \(-30\) mV and \(-40\) mV, but not at \(+10\) mV, could provide for the voltage-dependence of CICR, as well as the \(4\times\) higher spontaneous frequency of peripheral Ca\(^{2+}\) sparks (where DHPR and RyRs are coexpressed), as compared with the DHPR-uncoupled central sites of atrial myocytes.\(^6\) These findings suggest that CICR mechanism maybe regulated also by molecular processes that could involve direct protein–protein interaction.

In this issue, using adenoviral transfection of adult rat myocytes, Terentyev et al\(^1\) provide compelling evidence that overexpression of TRD leads to altered voltage-dependence of I\(_{Ca}\)-gated Ca\(^{2+}\) release, such that the small \(I_{Ca}\) activated at \(-30\) mV and \(-20\) mV produce the same amount of Ca\(^{2+}\) release as that at 0 mV to \(+60\) mV, making the voltage-dependence of Ca\(^{2+}\) release less bell-shaped. This more sigmoid voltage-dependence of peak Ca\(^{2+}\) release approxi-
This idea are in vitro data suggesting that CSQ binds to TRD, and that both proteins together may represent the sarcoplasmic Ca\(^{2+}\) sensor that regulates the intraluminal Ca\(^{2+}\) sensitivity of the RyR.\(^{12}\)

When comparing the voltage-dependence of the Ca\(^{2+}\) current of control and TRD overexpressing myocytes it becomes quite clear that even though there is no effect on \(I_{Ca}\), the ability of \(I_{Ca}\) to trigger Ca\(^{2+}\) release is strongly enhanced only when \(I_{Ca}\) is very small, suggesting either an increased sensitivity of RyRs to Ca\(^{2+}\) (easily testable from bilayer single RyRs studies), or that the gating of RyRs is fundamentally altered in TRD overexpressing myocytes. It is suprising to note that the Ca\(^{2+}\) release actually may precede \(I_{Ca}\) (Figure 2 of Terentyev et al), suggesting that the depolarization signal may directly regulate Ca\(^{2+}\) release process similar to the mechanism of skeletal muscle. It is intriguing to consider whether the level of expression of TRD in part determines the “purity” of the CICR mechanism. If that were the case, does the higher expression of TRD drive the reaction toward a less Ca\(^{2+}\)-dependent phenotype as found in skeletal muscle? In this respect it would be critical to determine the stoichiometry of TRD and RyR in control, and TRD-overexpressing myocytes, as well as in skeletal muscle. A cursory quantification of the gain of \(I_{Ca}\)-gated Ca\(^{2+}\) release, based on the data of their Figure 2, suggests orders of magnitude increase in the amplification factor at \(-30\) mV, \(-20\) mV and \(+60\) mV, allowing the \(I_{Ca}\)-induced Ca\(^{2+}\) release to behave more like the depolarization-induced Ca\(^{2+}\) release of skeletal muscle. Quantifying the gain of \(I_{Ca}\)-gated Ca\(^{2+}\) release corrected for the Ca\(^{2+}\) content of SR as a ratio of the extent of TRD overexpression may provide critical insight in determining how TRD amplifies Ca\(^{2+}\) release.

Adenovirus-Mediated Versus Transgenic TRD Overexpression

It should be noted that chronic overexpression of TRD in cardiac tissue via a transgenic approach resulted in a quite different EC coupling phenotype. Unlike the results from rat myocytes acutely overexpressing TRD presented by Terentyev et al in this current issue,\(^{1}\) chronic overexpression of TRD in mouse myocytes increased spark amplitude, and SR Ca\(^{2+}\) load, but did not change spark frequency.\(^{13}\) Inactivation of \(I_{Ca}\) was slowed, consistent with impaired CICR.\(^{13}\)

There are many possible reasons for the discrepancies between acute and chronic overexpression of TRD. For example, chronic overexpression of TRD causes down-regulation of the RyR and junctin,\(^{14}\) which may in turn contribute to the observed differences in the TRD transgenic Ca\(^{2+}\) signaling phenotype. On the other hand, keeping adult cardiomyocytes in culture for over 48 hours (necessary for the adenovirus transfection experiments) significantly changes myocyte structure and protein expression (ie, loss of t-tubules, down-regulation of K-channels). Furthermore, in neither model system the exact subcellular location of the overexpressed TRD is known. Depending on the degree of association of the overexpressed TRD molecules with the native RyRs and their stoichiometry, the resultant phenotype could be quite different. For example, rapid production of TRD protein driven by a highly active adenovirus promoter may lead to TRD that is

Diagram Description:

- **t-tubular lumen:** Shown as a blue tube within the cytoplasm, indicating the location of t-tubules.
- **t-tubular membrane:** An orange membrane structure surrounding the t-tubular lumen.
- **cytoplasm:** The green area surrounding the t-tubular membrane, representing the cellular matrix.
- **SR membrane:** A yellow membrane structure, excluding the t-tubular membrane, representing the sarcoplasmic reticulum.
- **SR lumen:** The dark blue area within the SR membrane, indicating the lumen of the sarcoplasmic reticulum.
- **Ca\(^{2+}\) Channel:** An orange channel structure on the t-tubular membrane, indicating the location of the Ca\(^{2+}\) channel.
- **RyR:** A purple channel structure on the SR membrane, indicating the location of the Ryanodine Receptor (RyR).
- **FKBP:** A pink binding protein on the SR membrane, indicating the location of FKBP (FK506 binding protein).
- **PKA:** A yellow protein on the SR membrane, indicating the location of PKA (Protein Kinase A).
- **CaM:** A purple protein on the SR membrane, indicating the location of CaM (Calmodulin).
- **CSQ:** A green protein on the SR membrane, indicating the location of CSQ (Calcium Sensing Protein).
- **TRD:** A red protein on the SR membrane, indicating the location of TRD (Tubular Releasing Domain).
not coupled to the native RyRs. The excess TRD would still bind to the more ubiquitous CSQ and possibly disrupt the Ca\(^{2+}\) binding of CSQ, resulting in increased free luminal Ca\(^{2+}\) and decreased SR Ca\(^{2+}\) buffering capacity.

Arrhythmia and TRD

If indeed TRD is an important regulator of the SR Ca\(^{2+}\) release channel (RyR, Figure), as the data of Terentyev et al\(^1\) suggest, it may not be surprising that TRD overexpression also would increase the proclivity for arrhythmogenesis in a manner similar the abnormalities of expression of other SR associated Ca\(^{2+}\)-signaling proteins. Specifically, recent clinical data\(^{15,16}\) strongly suggest that mutations that render cardiac CSQ or RyR dysfunctional can cause a syndrome of catecholamine-induced polymorphic ventricular tachycardia (CPVT). The finding of catecholamine-induced Ca\(^{2+}\) waves that trigger delayed after-depolarizations in TRD overexpressing myocytes reported here\(^1\) resembles results obtained in myocytes that have decreased levels of functional CSQ17 or harbor CPVT-linked RyR mutations.18 Together, this raises the exciting possibility that mutations in or increased expression of TRD may represent a novel mechanism that could be responsible for the CPVT syndrome in humans. However, the data from transgenic mice with cardiac-targeted overexpression of TRD appear to suggest otherwise. It has been reported that chronic overexpression of TRD in mouse myocytes was not accompanied by catecholamine-induced arrhythmia, and Ca\(^{2+}\) release was less sensitive to catecholamines.13 Finally, TRD transgenic mice appeared to develop cardiac hypertrophy,14 not a usual feature of the clinical CPVT syndrome.

What can we conclude? The data given by Terentyev et al\(^1\) demonstrate that TRD plays a critical role in the regulation of EC coupling, clearly a major step forward. On the other hand, the large discrepancies of the experimental results between the adenovirus-based increased TRD expression levels reported here and TRD transgenic mice reported previously\(^13,14\) suggests that the function of TRD in regulation of CICR and cardiac pathophysiology maybe more complex than what might be predicted from the available data.

References

Key Words: triadin overexpression ■ cardiac Ca\(^{2+}\) signaling ■ cardiac EC coupling ■ ryanodine receptors ■ calsequestrin ■ arrhythmia
Triadin: The New Player on Excitation-Contraction Coupling Block
Martin Morad, Lars Cleemann and Björn C. Knollmann

doi: 10.1161/01.RES.0000162162.97722.38

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/96/6/607

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/