Hepatitis C Virus Infection and Cardiomyopathies

Akira Matsumori

Cardiomyopathies may present as idiopathic dilated, hypertrophic, or restrictive disease, arrhythmogenic right ventricular cardiomyopathy (ARVC), and various other distinct disorders of the heart muscle. They constitute a heterogeneous group of myocardial diseases of multifactorial etiologies, including genetic anomalies and acquired immune factors, such as viral infections. The myocardium may be infected by a wide variety of viruses, although most commonly by enteroviruses, coxsackievirus B in particular. However, in many cases, when myocarditis has been diagnosed on the basis of clinical manifestations, a viral origin cannot be confirmed, despite extensive laboratory investigations.

The clinical presentation of viral myocarditis is variable. When myocardial necrosis is diffuse, congestive heart failure develops, and growing evidence now links viral myocarditis with dilated cardiomyopathy. Localized myocardial lesions may result in thinning or aneurysms of the ventricular wall which, in the case of ARVC, are complicated by arrhythmias. When myocardial necrosis is limited to the subendocardium, restrictive cardiomyopathy may develop. Finally, although it has not been established that hypertrophic cardiomyopathy is a complication of viral myocarditis, asymmetric septal hypertrophy has been observed in some patients with myocarditis.

A high prevalence of hepatitis C virus (HCV) infection has recently been noted in patients with hypertrophic cardiomyopathy, dilated cardiomyopathy, and myocarditis (Figure 1). In this issue of Circulation Research, Omura et al report that mice transgenic for the HCV-core gene develop ventricular dilatation, cardiac dysfunction, and myocardial fibrosis at 12 months, similar to the pathological manifestations observed in human dilated cardiomyopathy. Although HCV infection may be the cause of several phenotypically different cardiomyopathies, mild inflammation with mononuclear cell infiltration has also been observed with HCV infection in humans. However, no lymphocytic infiltration was observed in these HCV-core transgenic mice. Furthermore, cardiomyocyte hypertrophy and disarray of the myofibers are typical characteristics of human hypertrophic cardiomyopathy, but the wall thickness of the HCV-core mice was not increased. Therefore, although the HCV-core mice did not have all the phenotypical manifestations of human cardiomyopathies, the observations made by Omura et al are nevertheless relevant, because they show that the expression of the HCV-core is associated with the long-term development of myocardial disease. They also found that the expression of atrial and brain natriuretic polypeptide was enhanced, and that activator protein-1 (AP-1) was activated in the heart.

Phenotypes of HCV Cardiomyopathies

In a collaborative research project of the Committees for the Study of Idiopathic Cardiomyopathy in Japan, HCV antibodies were found in 74 of 697 patients (10.6%) with hypertrophic cardiomyopathy and in 42 of 633 patients (6.3%) with dilated cardiomyopathy, significantly more prevalent than the 2.4% observed in age-matched volunteer blood donors in Japan. In an initial study, we evaluated 31 patients with cardiomyopathy and myocarditis and found HCV RNA by polymerase chain reaction in the hearts of 6 patients (19.4%) with dilated cardiomyopathy. Over a 10-year period, we identified 19 among 191 patients with dilated cardiomyopathy (9.9%) who had evidence of HCV infection, in contrast to only 1 of 40 patients with ischemic heart disease (2.5%). No patient with dilated cardiomyopathy and positive HCV antibody had a history of blood transfusion or intravenous drug use, three had a history of hepatitis, mildly elevated serum amino-transferase were present in 10, and nine patients had normal liver function tests. The main clinical manifestations at initial presentation were heart failure and cardiac arrhythmias. Among these patients with HCV antibodies, 10 had HCV RNA in the serum, and six patients had type 1b HCV. HCV RNA was found in the heart of eight patients, and negative strands of HCV RNA were detected in the heart of 1 of 40 patients with ischemic heart disease. The main clinical manifestations at initial presentation were heart failure and cardiac arrhythmias. Among these patients with HCV antibodies, 10 had HCV RNA in the serum, and six patients had type 1b HCV. HCV RNA was found in the heart of eight patients, and negative strands of HCV RNA were detected in the heart of two patients. Because negative RNA molecules are intermediates in the replication of the HCV genome, we presume that HCV replicates in myocardial tissues.
During the same period, we identified 16 of 113 patients with hypertrophic cardiomyopathy (14.1%) with evidence of HCV infection. None of these 16 patients had a family history of hypertrophic cardiomyopathy. Seven patients had hepatitis, four had received blood transfusions, and 10 patients had mildly elevated serum amino-transferase. Apical hypertrophic cardiomyopathy was diagnosed in nine patients who had ace of spade–shaped deformities of the left ventricle, with an apical/mid anterior free wall thickness ratio >1.3. Histopathological studies showed mild to severe degrees of myocyte hypertrophy in the right or left ventricle, mild to moderate fibrosis, and mild cellular infiltration. Type 1b HCV RNA was detected in the serum of seven patients, HCV RNA in biopsy specimens of six, and negative strands of HCV RNA were recoverable in sera stored for 13 to 17 years and were higher than in our study. In their study, seven patients had type 1b, and five patients had type 2a HCV.

Prolonged Persistence of Hepatitis C Virus Genomes in Paraffin-Embedded Hearts

A multicenter study was conducted by the Scientific Council on Cardiomyopathies of the World Heart Federation (Bernhard Maisch, MD, Chairman) to test the reproducibility of detection of viral genomes, such as enteroviruses, adenovirus, cytomegalovirus, and HCV in formalin-fixed tissues. The autopsy and biopsy materials were analyzed blindly. We have recently performed an apical/mid anterior free wall thickness ratio >1.3. Histopathological studies showed mild to severe degrees of myocyte hypertrophy in the right or left ventricle, mild to moderate fibrosis, and mild cellular infiltration. Type 1b HCV RNA was detected in the serum of seven patients, HCV RNA in biopsy specimens of six, and negative strands of HCV RNA were recoverable in sera stored for 13 to 17 years and were higher than in our study. In their study, seven patients had type 1b, and five patients had type 2a HCV.

Figure 1. Hepatitis C virus causes various heart diseases.

Hepatitis C Virus

Figure 1. Hepatitis C virus causes various heart diseases.

Hepatitis C Virus

During the same period, we identified 16 of 113 patients with hypertrophic cardiomyopathy (14.1%) with evidence of HCV infection. None of these 16 patients had a family history of hypertrophic cardiomyopathy. Seven patients had hepatitis, four had received blood transfusions, and 10 patients had mildly elevated serum amino-transferase. Apical hypertrophic cardiomyopathy was diagnosed in nine patients who had ace of spade–shaped deformities of the left ventricle, with an apical/mid anterior free wall thickness ratio >1.3. Histopathological studies showed mild to severe degrees of myocyte hypertrophy in the right or left ventricle, mild to moderate fibrosis, and mild cellular infiltration. Type 1b HCV RNA was detected in the serum of seven patients, HCV RNA in biopsy specimens of six, and negative strands of HCV RNA were recoverable in sera stored for 13 to 17 years and were higher than in our study. In their study, seven patients had type 1b, and five patients had type 2a HCV.

Prolonged Persistence of Hepatitis C Virus Genomes in Paraffin-Embedded Hearts

A multicenter study was conducted by the Scientific Council on Cardiomyopathies of the World Heart Federation (Bernhard Maisch, MD, Chairman) to test the reproducibility of detection of viral genomes, such as enteroviruses, adenovirus, cytomegalovirus, and HCV in formalin-fixed tissues. The autopsy and biopsy materials were analyzed blindly. We have recently performed an apical/mid anterior free wall thickness ratio >1.3. Histopathological studies showed mild to severe degrees of myocyte hypertrophy in the right or left ventricle, mild to moderate fibrosis, and mild cellular infiltration. Type 1b HCV RNA was detected in the serum of seven patients, HCV RNA in biopsy specimens of six, and negative strands of HCV RNA were recoverable in sera stored for 13 to 17 years and were higher than in our study. In their study, seven patients had type 1b, and five patients had type 2a HCV.

Prolonged Persistence of Hepatitis C Virus Genomes in Paraffin-Embedded Hearts

A multicenter study was conducted by the Scientific Council on Cardiomyopathies of the World Heart Federation (Bernhard Maisch, MD, Chairman) to test the reproducibility of detection of viral genomes, such as enteroviruses, adenovirus, cytomegalovirus, and HCV in formalin-fixed tissues. The autopsy and biopsy materials were analyzed blindly. We have recently performed an apical/mid anterior free wall thickness ratio >1.3. Histopathological studies showed mild to severe degrees of myocyte hypertrophy in the right or left ventricle, mild to moderate fibrosis, and mild cellular infiltration. Type 1b HCV RNA was detected in the serum of seven patients, HCV RNA in biopsy specimens of six, and negative strands of HCV RNA were recoverable in sera stored for 13 to 17 years and were higher than in our study. In their study, seven patients had type 1b, and five patients had type 2a HCV.

Prolonged Persistence of Hepatitis C Virus Genomes in Paraffin-Embedded Hearts

A multicenter study was conducted by the Scientific Council on Cardiomyopathies of the World Heart Federation (Bernhard Maisch, MD, Chairman) to test the reproducibility of detection of viral genomes, such as enteroviruses, adenovirus, cytomegalovirus, and HCV in formalin-fixed tissues. The autopsy and biopsy materials were analyzed blindly. We have recently performed an apical/mid anterior free wall thickness ratio >1.3. Histopathological studies showed mild to severe degrees of myocyte hypertrophy in the right or left ventricle, mild to moderate fibrosis, and mild cellular infiltration. Type 1b HCV RNA was detected in the serum of seven patients, HCV RNA in biopsy specimens of six, and negative strands of HCV RNA were recoverable in sera stored for 13 to 17 years and were higher than in our study. In their study, seven patients had type 1b, and five patients had type 2a HCV.

Prolonged Persistence of Hepatitis C Virus Genomes in Paraffin-Embedded Hearts

A multicenter study was conducted by the Scientific Council on Cardiomyopathies of the World Heart Federation (Bernhard Maisch, MD, Chairman) to test the reproducibility of detection of viral genomes, such as enteroviruses, adenovirus, cytomegalovirus, and HCV in formalin-fixed tissues. The autopsy and biopsy materials were analyzed blindly. We have recently performed an apical/mid anterior free wall thickness ratio >1.3. Histopathological studies showed mild to severe degrees of myocyte hypertrophy in the right or left ventricle, mild to moderate fibrosis, and mild cellular infiltration. Type 1b HCV RNA was detected in the serum of seven patients, HCV RNA in biopsy specimens of six, and negative strands of HCV RNA were recoverable in sera stored for 13 to 17 years and were higher than in our study. In their study, seven patients had type 1b, and five patients had type 2a HCV.

Prolonged Persistence of Hepatitis C Virus Genomes in Paraffin-Embedded Hearts

A multicenter study was conducted by the Scientific Council on Cardiomyopathies of the World Heart Federation (Bernhard Maisch, MD, Chairman) to test the reproducibility of detection of viral genomes, such as enteroviruses, adenovirus, cytomegalovirus, and HCV in formalin-fixed tissues. The autopsy and biopsy materials were analyzed blindly. We have recently performed an apical/mid anterior free wall thickness ratio >1.3. Histopathological studies showed mild to severe degrees of myocyte hypertrophy in the right or left ventricle, mild to moderate fibrosis, and mild cellular infiltration. Type 1b HCV RNA was detected in the serum of seven patients, HCV RNA in biopsy specimens of six, and negative strands of HCV RNA were recoverable in sera stored for 13 to 17 years and were higher than in our study. In their study, seven patients had type 1b, and five patients had type 2a HCV.

Prolonged Persistence of Hepatitis C Virus Genomes in Paraffin-Embedded Hearts

A multicenter study was conducted by the Scientific Council on Cardiomyopathies of the World Heart Federation (Bernhard Maisch, MD, Chairman) to test the reproducibility of detection of viral genomes, such as enteroviruses, adenovirus, cytomegalovirus, and HCV in formalin-fixed tissues. The autopsy and biopsy materials were analyzed blindly. We have recently performed an apical/mid anterior free wall thickness ratio >1.3. Histopathological studies showed mild to severe degrees of myocyte hypertrophy in the right or left ventricle, mild to moderate fibrosis, and mild cellular infiltration. Type 1b HCV RNA was detected in the serum of seven patients, HCV RNA in biopsy specimens of six, and negative strands of HCV RNA were recoverable in sera stored for 13 to 17 years and were higher than in our study. In their study, seven patients had type 1b, and five patients had type 2a HCV.

Prolonged Persistence of Hepatitis C Virus Genomes in Paraffin-Embedded Hearts

A multicenter study was conducted by the Scientific Council on Cardiomyopathies of the World Heart Federation (Bernhard Maisch, MD, Chairman) to test the reproducibility of detection of viral genomes, such as enteroviruses, adenovirus, cytomegalovirus, and HCV in formalin-fixed tissues. The autopsy and biopsy materials were analyzed blindly. We have recently performed an apical/mid anterior free wall thickness ratio >1.3. Histopathological studies showed mild to severe degrees of myocyte hypertrophy in the right or left ventricle, mild to moderate fibrosis, and mild cellular infiltration. Type 1b HCV RNA was detected in the serum of seven patients, HCV RNA in biopsy specimens of six, and negative strands of HCV RNA were recoverable in sera stored for 13 to 17 years and were higher than in our study. In their study, seven patients had type 1b, and five patients had type 2a HCV.
patients with hypertrophic cardiomyopathy. In contrast, there was no increase in either allele in patients experiencing dilated cardiomyopathy. HLA-DRB1*1201 was slightly increased in patients with dilated cardiomyopathy, but not in patients with hypertrophic disease (Figure 2).\(^{15}\) MHC class II genes may play a role in the clearance of, and susceptibility to HCV infection, and may influence the development of different phenotypes of cardiomyopathy.

Treatment of HCV Cardiomyopathies

In patients with HCV hepatitis, the success of treatment can be measured by the biochemical and virological responses. However, therapeutic markers have not been introduced in clinical practice to follow HCV cardiomyopathies. We have examined the effects of interferon on myocardial injury associated with active HCV hepatitis in collaboration with colleagues from Shimane University.\(^{11}\) We used TL-201-SPECT, because it is more sensitive than electrocardiography or echocardiography to detect myocardial injury induced by HCV. The SPECT scores decreased in 8 of 15 patients (53%) in whom interferon treatment was completed. Circulating HCV disappeared after interferon therapy in all patients who had a decrease or no change in SPECT scores, and HCV genomes persisted in the blood of two patients whose interferon guided by serial measurements of serum HCV RNA and cardiac troponin T in a patient presenting with dilated cardiomyopathy and striated myopathy attributable to HCV infection.\(^{12}\)

The pathogeneses of HCV hepatitis and cardiomyopathies are compared in Figure 3. In HCV liver disease, most patients develop chronic hepatitis and, years later, liver cirrhosis, hepatic failure, or hepatocellular carcinoma. In HCV heart disease, most patients develop chronic inflammation of the myocardium and, later, dilated cardiomyopathy attributable to necrosis and loss of myocytes. However, because myocytes do not replicate, proliferative stimuli induced by HCV infection may promote myocyte hypertrophy and hypertrophic cardiomyopathy.

We would like to propose a collaborative study of myocarditis cardiomyopathies, based on a global network, to clarify the prevalence of cardiac involvement in HCV infection and to conduct a therapeutic trial.

Acknowledgments

I thank M. Ozone for preparing the manuscript.

References

KEY WORDS: hepatitis C virus / cardiomyopathy / myocarditis / heart failure / interferon
Hepatitis C Virus Infection and Cardiomyopathies
Akira Matsumori

Circ Res. 2005;96:144-147
doi: 10.1161/01.RES.0000156077.54903.67
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/96/2/144

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the
Editorial Office. Once the online version of the published article for which permission is being requested is
located, click Request Permissions in the middle column of the Web page under Services. Further information
about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/