Another Role for the Celebrity
Akt and Insulin Resistance
Rong Tian

Insulin is the most potent anabolic hormone and is essential for tissue development, growth, and maintenance of whole-body glucose homeostasis. Failure of the target cells to respond to insulin stimulation, ie, insulin resistance, is commonly observed under acute stress conditions and in individuals with obesity, metabolic syndrome, or diabetes. Insulin resistance has been considered a major risk factor for the development and progression of cardiovascular disease. Although a well-documented phenomenon, the molecular mechanisms leading to insulin resistance remain elusive, attributable, in part, to the complexity of the insulin signaling pathway.

Circulating insulin binds to and activates its cell surface receptor to elicit its biological actions (Figure). The insulin receptor is a widely expressed transmembrane tyrosine kinase consisting of two α- and two β-subunits. The binding of insulin to the extracellular α-subunit results in a rapid configurational change in the receptor leading to the autophosphorylation of specific tyrosine residues of the intracellular region of the β-subunit. This process results in activation of the tyrosine kinase activity of the insulin receptor, which transmits the insulin signal by phosphorylating a number of substrate proteins. The insulin-receptor signaling involves two major pathways: the mitogen activated protein kinase (MAPK) pathway, mainly responsible for mitogenesis and cell growth, and the phosphatidylinositol-3-kinase (PI3-K) pathways, mainly account for the metabolic responses (Figure; although depicted as linear pathways, these two systems also interact under certain conditions). A critical player in the PI3-K pathway is the Ser/Thr dependent protein kinase Akt, which is the key for normal biological function.

An important issue raised here is the signal specificity that enables Akt to play the right role at the right time/place. The study by Morisco and colleagues suggests that the phosphorylation site dictates the specificity of Akt function. This is consistent with a previous observation that Thr 308 phosphorylation of Akt is necessary for increased glucose uptake, whereas Ser 473 phosphorylation is not. The present study shows that phosphorylation of either site can activate Akt, activated Akt by these two mechanisms apparently perform different tasks. Although Thr 308 phosphorylation of the Akt resulted in increased glucose uptake, Akt activated by Ser 473 phosphorylation acted as a negative regulator that phosphorylated a threonine on the insulin receptor β-subunit causing decreased autophosphorylation of the receptor.

It has been shown that insulin receptor tyrosine kinase activity can be inhibited by increased tyrosine phosphatase activity or enhanced Ser/Thr phosphorylation of the receptor. Previously, treatment of cells with insulin, PKC activators, or cAMP-dependent protein kinase was found to cause Ser/Thr phosphorylation of the receptor resulting in decreased receptor tyrosine kinase activity. In these studies, Akt has not been explicitly implicated as the kinase responsible for the Ser/Thr phosphorylation. However, there is emerging evidence showing prolonged activation of Akt leads to negative feedback of insulin signaling using transgenic mice overexpressing constitutively Akt. Importantly, their study demonstrated that activation of Akt by prolonged β-adrenergic stimulation, a pathophysiologically relevant signal, also yielded a similar outcome. It is interesting to note that this study also found a role of Akt in the feedback inhibition of insulin receptor tyrosine phosphorylation in insulin-induced insulin receptor desensitization (see the online data supplement that accompanies the article). Thus, it is likely that Akt, the propeller of the insulin signaling, also back-pedals from time to time. As it is true for almost any system, the balance of forward and backward motion is the key for normal biological function.

An important issue raised here is the signal specificity that enables Akt to play the right role at the right time/place. The study by Morisco and colleagues suggests that the phosphorylation site dictates the specificity of Akt function. This is consistent with a previous observation that Thr 308 phosphorylation of Akt is necessary for increased glucose uptake, whereas Ser 473 phosphorylation is not. The present study shows that phosphorylation of either site is mediated by PI3K but follows a different time course. Furthermore, insulin-induced Ser 473 phosphorylation occurs much sooner than β-adrenergic stimulation-induced phosphorylation of the same site. It is not clear, however, if the signal(s) upstream or downstream of PI3-K
showed that transfection of dominant-negative Akt rescued the observations of this study were made using neonatal cardiac myocytes, a preparation with a relatively immature system for insulin-regulated glucose transport. It should also be mentioned that the metabolic states in isolated myocytes are markedly different from that of the contracting hearts, which can profoundly influence glucose transport, the functional readout of insulin response in this study. Furthermore, insulin resistance in this study was observed in myocytes treated with a very high dose of isoproterenol (1 to 10 mmol/L) compared with the circulating catecholamine levels under most (patho)physiological conditions. Whether such an intense β-adrenergic stimulation actually occurs in vivo is in question. This is a difficult question, however, because it is not easy to quantify the amount of β-adrenergic ligands in the vicinity of cardiac myocytes, and it can be much higher than circulating levels. Clearly, future studies in integrated systems are critical for translating the present findings to in vivo settings. Let’s hope the excitement about our celebrity kinase continues.

Acknowledgments
The author is an Established Investigator of the American Heart Association and is also supported by grants from the National Institutes of Health (HL67970 and HL59246).

References

Key Words: insulin signaling □ Akt □ phosphorylation □ β-adrenergic stimulation
Another Role for the Celebrity: Akt and Insulin Resistance
Rong Tian

Circ Res. 2005;96:139-140
doi: 10.1161/01.RES.0000156076.17807.1F

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/96/2/139

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/