Novel Mechanism of Action for Hydralazine
Induction of Hypoxia-Inducible Factor-1 α, Vascular Endothelial Growth Factor, and Angiogenesis by Inhibition of Prolyl Hydroxylases

Helen J. Knowles, Ya-Min Tian, David R. Mole, Adrian L. Harris

Abstract—The vasodilator hydralazine, used clinically in cardiovascular therapy, relaxes arterial smooth muscle by inhibiting accumulation of intracellular free Ca²⁺ via an unidentified primary target. Collagen prolyl hydroxylase is a known target of hydralazine. We therefore investigated whether inhibition of other members of this enzyme family, namely the hypoxia-inducible factor (HIF)-regulating O₂-dependent prolyl hydroxylase domain (PHD) enzymes, could represent a novel mechanism of action. Hydralazine induced rapid and transient expression of HIF-1α and downstream targets of HIF (endothelin-1, adrenomedullin, haem oxygenase 1, and vascular endothelial growth factor [VEGF]) in endothelial and smooth muscle cells and induced endothelial cell-specific proliferation. Hydralazine dose-dependently inhibited PHD activity and induced nonhydroxylated HIF-1α, evidence for HIF stabilization specifically by inhibition of PHD enzyme activity. In vivo, hydralazine induced HIF-1α and VEGF protein in tissue extracts and elevated plasma VEGF levels. In sponge angiogenesis assays, hydralazine increased stromal cell infiltration and blood vessel density versus control animals. Thus, hydralazine activates the HIF pathway through inhibition of PHD activity and initiates a pro-angiogenic phenotype. This represents a novel mechanism of action for hydralazine and presents HIF as a potential target for treatment of ischemic disease. (Circ Res. 2004;95:162-169.)

Key Words: cardiovascular disease ■ iron chelation ■ ischemia ■ endothelial cells
Methods

Cell Culture
Human umbilical vein EC (HUVEC), human dermal microvascular EC, and human vascular smooth muscle cells (HVSMC) (Cambrex Bioscience, Wokingham, UK) were maintained in MCDB with 20% fetal bovine serum, L-glutamine (2 mmol/L), heparin (5 IU/ml) and EC growth supplement (50 μg/ml). MDA 468 breast carcinoma cells were maintained in DMEM with 10% fetal bovine serum, L-glutamine, penicillin (50 IU/ml), and streptomycin sulfate (50 μg/ml). pVHL-deficient renal carcinoma cells (RCC4 VA) and VHL stable transfectants (RCC4 VHL) were cultured in DMEM and maintained in selection with 500 μg/ml G418. Hypoxic exposure (0.1% O₂, 5% CO₂, balance N₂) was in a Heto-Holten CellHouse 170 (RS Biotech, Irvine, Scotland). Reagents were hydralazine HCl, CoCl₂, DFO (Sigma, Poole, UK), and the proteasome inhibitor MG132 (Affiniti Research Products, Exeter, UK). Dimethylxalylglycine (MMOG) was a gift from C. Schofield (Dyson Perrins Laboratory, Oxford, UK).

Hydroxylated HIF-1α Antibody
Polyclonal antihydroxylated HIF-1α antiserum was raised in rabbit against the synthetic peptide CDLEMLAHypYIPMD (HIF-1α amino acids 558 to 569 with hydroxylated Pro564). Serum was tested for its ability to distinguish hydroxylated and native HIF-1α in RCC4 VHL cell extract under normoxia, hypoxia, or proteasomal inhibition.

Western Blotting
Cells were homogenized in lysis buffer (6.2 mol/L urea, 10% glycerol, 5 mmol/L DTT, 1% SDS, protease inhibitors), lysate separated by 8% SDS-PAGE, and transferred to PVDF membrane. Primary antibodies were monoclonal antihuman (BD Transduction Laboratories, Lexington, Ky) or antimouse (Novus Biologicals, Littleton, Col) HIF-1α and anti-β-tubulin (Sigma). Immunoreactivity was visualized with HRP-linked goat antimouse serum and chemiluminescence.

Polymerase Chain Reactions
Total RNA was extracted in TRI Reagent (Sigma), reverse-transcribed (1st Strand cDNA Synthesis Kit; Roche Diagnostics, Mannheim, Germany) and polymerase chain reaction (PCR) amplified within the linear range using the Expand High Fidelity PCR system (Roche). PCR primers were: adrenomedullin 5'-TCTCTGCTGTTTGTGG-3'; TCTCTGCTGTTTGTGG-3'; and haem oxygenase-1 5'-TCTACTTCCCAGAAGAGCTGCA-3' and 5'-AGACACCAGAGT-3'.

Vascular Endothelial Growth Factor and Endothelin-1 Enzyme-Linked Immunosorbent Assay
Culture medium and tissue extracts were assayed using the Quanti kinite human vascular endothelial growth factor (VEGF) immun assay or QuantiGlo human endothelin-1 immunassay (R&D Systems, Minneapolis, Minn).

PHD Enzyme Activity
In the HIF-VHL capture assay, RCC4 VA cell extract was assayed in the presence of hydralazine and 5 μmol/L FeCl₂ by measuring the interaction between a bead immunopurified Gal/HIF/VP16 fusion protein and 35S-methionine-labeled VHL-HA as previously described.16 The HIF peptide hydroxylation assay comprised 25 μg HUVEC cell extract pre-incubated with hydralazine (pH 7.0), then assayed for the radioactivity associated with succinate in the presence of 50,000 dpm [5-35S]C2-OG (Sigma Radiochemicals, St Louis, Mo) and 100 μmol/L Pro-564 peptide (LDLAPAPYPAD-DDFQLRS) as previously described.17

Cell Proliferation Assay
In the cell proliferation assay, 3×10⁴ cells were quiesced overnight in reduced media (2% fetal bovine serum, no EC growth supplement), then treated with hydralazine daily for 3 days. Viable cells were quantified using the CellTiter AQueous One Solution Cell Proliferation assay (Promega, Madison, Wis). VG76e was a gift from R. Bicknell (Cancer Research UK Angiogenesis Laboratory, Oxford, UK).

Hydralazine-Treated Mice
BALBc NuNu mice (n=44) treated with 5 mg/kg hydralazine intravenously or an equal volume of phosphate-buffered saline were euthanized after 30 minutes, 1 hour, or 2 hours. The heart, liver, kidney, spleen, leg muscle, and lungs were immediately excised on ice and snap-frozen in liquid N₂. At the time of euthanization, blood samples were taken into EDTA collection tubes and plasma stored at −80°C.

Tissue Extract Preparation
Frozen tissue was pulverized under liquid N₂, homogenized in 5-volume ice-cold RIPA buffer (50 mmol/L Tris [pH 8.0], 300 mmol/L NaCl, 0.1% SDS, 1% NP40, 0.5% Na deoxycholate, protease inhibitors) and incubated on ice for 40 minutes. Homogenate was centrifuged for 15 minutes at 14,000 g and frozen at −80°C.

Sponge Angiogenesis Assay
C57 black mice (n=28) were implanted subcutaneously with a sterile polyether sponge (15×5×5 mm; Caligen Foam Ltd, Accrington, UK) under the dorsal skin. Equal volumes of hydralazine (5 mg/kg) or phosphate-buffered saline were administered intravenously daily for 20 days. Mice were euthanized on days 6, 14, and 21, and sponges were removed and fixed in formalin. All procedures were performed under the British Home Office Animals (Scientific Procedures) Act 1986, license number 70/4949.

CD34 Immunostaining
Formalin-fixed sections were incubated in 20 μg/ml rat anti-CD34 monoclonal antibody (Abcam, Cambridge, UK). Staining was visualized with biotinylated antirat antibody (Dako) and the Vectastain Universal ABC-AP kit (Vector Laboratories, Burlingame, Calif), then counterstained with hematoxylin. CD34-positive blood vessels within a 10×10 square eyepiece grid were counted in the 3 most angiogenic areas of each section. Sponge infiltration was assessed on H&E stained sections (x4 objective).

Results

Hydralazine Induces HIF-1α in Vascular Cells
HIF-1α induction by hydralazine was first evaluated in the primary target cells of the vasculature. Fifty to 500 μmol/L hydralazine rapidly induced HIF-1α protein in HUVEC. The level of induction was concentration-dependent and decayed with time (Figure 1A), although doses >500 μmol/L were toxic (data not shown). After decay of the response, a repeat 100-μmol/L dose re-induced HIF-1α to a level comparable with the initial response (Figure 1B). This is consistent with instability of the active form of hydralazine in tissue culture media (Figure 1B), as also occurs in blood plasma. Presence of small amounts of the metabolizing enzyme N-acetyl transferase 2 may also contribute.19 All cell lines tested demonstrated a comparable time course for HIF-1α induction, including smooth muscle cells and several cancer cell lines. In all cases, 50 μmol/L hydralazine induced peak HIF-1α expression 1 to 2 hours after application, which returned to baseline by 16 to 24 hours (Figure 1C). Peak levels of induction were similar to that induced by hypoxia...
We therefore performed subsequent in vitro experiments with 50 μmol/L hydralazine, a nontoxic concentration that induces physiological levels of HIF-1α.

Hydralazine Induces HIF Target Genes in Culture

To determine whether hydralazine-induced HIF was transcriptionally active, we examined induction of downstream genes, focusing on those that modulate vascular tone and might be involved in vascular actions of hydralazine in vivo. In HUVEC, 50 μmol/L hydralazine induced adrenomedullin, haem oxygenase-1 (HO-1), and endothelin-1 (Et-1) mRNAs to a level approximating hypoxic induction (Figure 1D). Early expression peaked at 4 hours, complementing rapid induction of HIF-1α. Et-1 and HO-1 expression was maintained for ≥24 hours, suggesting potential positive feedback mechanisms regulating hydralazine-induced genes. At the protein level, significant Et-1 secretion was observed at 16 to 24 hours (Figure 1E, *P<0.01). 50 μmol/L hydralazine increased VEGF secretion from HVSMS and MDA468 (Figure 1F), although no effects were observed on either secreted or cell-bound VEGF in HUVEC (data not shown). This is consistent with reports that EC do not usually produce VEGF under normoxic or hypoxic conditions, either in culture or in vivo. Thus, hydralazine initiated rapid activation of the HIF transcriptional cascade in target cell lines in culture.

Hydralazine Inhibits PHD Enzyme Activity

Hydralazine (Figure 2A) complexes with free iron in solution and inhibits CPH activity by forming a putative labile complex with enzyme-bound iron at the active site. It might therefore inhibit the iron-dependent PHD enzymes via chelation of the active site iron moiety, stabilizing HIF in a similar manner to DFO. Indeed, exogenous free iron inhibited HIF-1α induction by equimolar concentrations of DFO and hydralazine (Figure 2B). We therefore assayed PHD activity in the presence of hydralazine. Dose-dependent inhibition of PHD enzyme activity was detected in HUVEC cell extract by analysis of HIF peptide-dependent degradation of 2-OG (Figure 2C, light bars). This dose-dependency complements the hydralazine-mediated induction of HIF-1α also observed in HUVEC (Figures 1A and 2C, lower panel). It is clear that 50 μmol/L hydralazine is an insufficient dose to maximally inhibit PHD enzyme activity or maximally induce HIF-1α protein. However, it is nontoxic.
and sufficient to induce physiological levels of HIF-1α in target vascular cells and induce downstream components of the pathway (Figure 1).

As further evidence that HIF-1α induction is caused by PHD inhibition, we analyzed the hydroxylation status of hydralazine-induced HIF-1α (Figure 2D). When PHDs are fully active, HIF-1α is hydroxylated and rapidly degraded. Any HIF-1α induced because of PHD inhibition should therefore be in the nonhydroxylated form. As shown in Figure 2D, hydralazine-induced HIF-1α was nonhydroxylated, demonstrating the same level of background antibody reactivity as in untreated control cells and during complete PHD inactivation (anoxia and MMOG). Also, hydralazine prevented hydroxylation of hypoxia-induced HIF-1α caused by PHD reactivation on reoxygenation (Figure 2D).

To eliminate other possible mechanisms of HIF-1α induction, we assayed effects of hydralazine in pVHL-deficient RCC4 VA cells that express HIF constitutively because of a defect in targeting the protein for degradation. Fifty micromoles per liter hydralazine did not increase basal HIF-1α levels (Figure 2E), indicating that it induces neither transcription nor translation but modulates HIF-1α degradation. Also, hydralazine did not interfere directly with the HIF–VHL interaction (data not shown). Together, these data suggest that hydralazine-mediated induction of HIF-1α can be explained directly by inhibition of PHD enzyme activity.

Figure 2. Hydralazine inhibits PHD enzyme activity. A, Hydralazine (1-hydrazinophthalazine). B, HIF-1α induction in MDA 468, after 4-hour incubation with 100 μmol/L FeCl3, hydralazine (Hy) or DFO. C, Graph: HIF peptide-specific degradation of [5-14C]2-OG by HUVEC extract in the presence of hydralazine compared with inhibition of PHD activity by 100 μmol/L DFO or the 2-OG analogue MMOG (1 mmol/L) (light bars). Quantified HIF-1α induction in HUVEC by densitometry against β-tubulin (dark bars). Each bar represents mean ± SD from 3 independent experiments. C, Lower panel: autoradiograph of 35S-methionine-labeled VHL after pull-down by a bead-bound HIF construct in the presence of hydralazine. D, HIF-1α induction (top panel) in RCC4 VHL cells by proteasomal inhibition (25 μmol/L MG132), hydralazine and MMOG (M, 1 mmol/L). D, Bottom panel: detection of hydroxylated HIF-1α. AOX indicates anoxia (HIF induced, PHDs inactive), ROX, reoxygenation plus proteasomal inhibition (HIF induced, PHDs active). E, Four hours of 50 μmol/L hydralazine induced HIF-1α in RCC4 VHL but not RCC4 VA cells.

Hydralazine Stimulates EC Proliferation

Considering the vascular functions of hydralazine-induced genes, we hypothesized that hydralazine might stimulate EC proliferation. Fifty to 100 μmol/L hydralazine induced significant proliferation of HUVEC and HDMEC (Figure 3). Higher concentrations resulted in toxicity. This pro-proliferative effect was EC-specific. Hydralazine-induced EC proliferation (but not endogenous growth) was inhibited by the NO synthase inhibitor L-NAME (Figure 3 and data not shown). Both HIF-2α and Et-1 induce NO release from EC. Although not itself a growth factor, NO mediates autocrine-positive feedback of Et-1 expression and induces HO-1 transcription and mRNA stabilization, possible explanations for its apparent pro-proliferative effect and the prolonged induction of these mRNAs (Figure 1D). In concordance with Figure 1 data, EC proliferation was not inhibited by anti-VEGF neutralizing antibody at concentrations that inhibit proliferation mediated by 10 ng/mL VEGF (Figure 3 and data not shown).
In agreement with reports on the selective toxicity of iron chelators toward cancer cells, 27 hydralazine concentrations that were pro-proliferative in EC and demonstrated no effect in HVSMC significantly inhibited MDA468 cell growth (Figure 3). Unexpectedly, higher concentrations did not produce this effect. It is possible that the 250-μmol/L dose induced sufficient HIF-1α to compensate in some manner for toxic effects of iron chelation; however, because lower doses were generally used, this effect was not pursued.

Hydralazine Induces HIF-1α and VEGF In Vivo

In vivo analyses of hydralazine-mediated vasodilation describe substantial effects on vascular tone, blood flow, and tissue perfusion parameters. 26–30 These effects show rapid onset after intravenous administration and are transient; for example, peak effects on normal murine tissue perfusion occur 1 to 2 hours after injection. 28 This rapid and transient vascular response is strikingly similar to the hydralazine-induced HIF response we observed in culture. We therefore sought to determine whether HIF, and its downstream targets, are activated at early time points in vivo. Five milligrams per kilogram IV hydralazine 28,29 stabilized HIF-1α protein in normal murine lung, heart, liver, and spleen (Figure 4A through 4F and Tables 1 and 2). This occurred 30 minutes after injection in lung and peaked at 1 hour in the majority of tissues tested. It is of note that we observed HIF-1α stabilization in organs of <50% of the mice. This was not caused by gender or age-related differences and may be a result of individual variation in response rate and/or to difficulties associated with preparation of tissue extracts for such a labile factor as HIF-1α. Despite this, significant HIF-1α induction was observed in 4 of 6 tissues (Table 1). We next assayed VEGF levels in tissue extracts and blood plasma. Combining all time points, VEGF was significantly increased in lung (P<0.03) and liver (P<0.04, Table 1), whereas VEGF induction in blood plasma was significant at 2 hours (P<0.05; Table 2). It was therefore evident that hydralazine rapidly activates the HIF pathway in normal tissues in vivo. In parallel with the extensively reported effects on vascular tone, this suggests a potential role for components of this pathway in mediating the physiological response to hydralazine.

Hydralazine Is Proangiogenic In Vivo

Considering the pro-proliferative effect on EC, we hypothesized that hydralazine might induce angiogenesis in vivo. Daily 5 mg/kg hydralazine intravenously increased stromal cell infiltration into subcutaneously implanted sponges (8.9±1.4% infiltration versus 4.9±0.9% infiltration) in association with significantly increased blood vessel density (160±52 vessels/mm² versus 32±12, *P<0.02) at 6 days compared with controls (Figure 5A through 5C). No significant difference in either parameter was observed at 14 and 21 days (Figure 5D). The apparent reduced blood vessel density in the hydralazine-treated group at later time points was caused by 2 factors. First, the highest blood vessel concentration within the sponge always occurred at the leading edge of infiltration. As the degree of infiltration increased, the volume of the leading edge decreased, resulting in a reduced volume of tissue containing high-density vasculature. Second, at later time points, remodeling of the vasculature occurred to form fewer, larger vessels (compare Figure 5C and 5D). It was therefore evident that in this model, chronic administration of hydralazine accelerated the angiogenic response, resulting in an acute period of elevated tissue vascularization.

Discussion

We have demonstrated rapid and transient induction of HIF-1α by hydralazine in culture and in murine systems. No innate cell-type specificity was evident in hydralazine-mediated induction of HIF, although downstream consequences showed such effects. Hydralazine stimulated VEGF production in smooth muscle cells and cancer cell lines but not in EC. Conversely, it stimulated EC proliferation but not that of other cell types. It is recognized that EC do not generally induce VEGF, 20,21 but VEGF production from the adjacent smooth muscle cell layer and other cells in vivo could modify EC function. Additionally, activation of the HIF transcriptional cascade upregulated a series of EC growth factors. Adrenomedullin, 31 endothelin-1, 32 and VEGF 33 all induce EC proliferation and promote angiogenesis in
vivo. HO-1 protects EC function under oxidative stress by catalyzing conversion of haem to biliverdin, which is cytoprotective versus reactive oxygen species, and to CO, which mediates vasodilation.24 Additionally, all these molecules induce cGMP35–38 and are therefore candidates for the intermediate molecule(s) proposed to regulate the hydralazine-induced accumulation of cGMP initiating smooth muscle relaxation in vivo.7

We have demonstrated that rapid stabilization and activation of the HIF system also occurs in vivo using standard doses28,29 modeling the clinical effect.30,39 HIF levels were sufficient to elevate tissue and plasma VEGF significantly 2 hours after injection, in concordance with maximal effects of hydralazine. It is also of interest to consider whether rapid activation of the HIF system in vascular cells could mediate the clinical effects of hydralazine. We have obtained direct evidence of inhibition of PHD activity, induction of HIF-1α and downstream genes, and pro-proliferative effects of hydralazine on HUVEC. These effects were greater with doses >50 μmol/L, but these are not necessary for induction of HIF protein or proliferation. In vivo there is increasing evidence of an association between endothelial dysfunction, hypertension, and cardiovascular disease. Impaired EC-dependent vasorelaxation caused by loss of NO activity in vessel walls can be caused by factors including abnormal regulation of endothelial NOS and NO degradation by reactive oxygen species.42 There is no documented evidence linking hydralazine with endothelial NOS and, unlike other hydrazine derivatives, hydralazine cannot be oxidized to release NO directly.43 However, hydralazine-mediated HIF pathway activation in EC may release NO indirectly (eg, via Er-1) and genes such as VEGF also modulate vascular tone, potentially explaining its acute vasodilatory effect.

We have also identified a novel effect of hydralazine that could explain the chronic benefits of long-term administration. Hydralazine induced EC proliferation in vitro and in vivo, where chronic systemic administration at doses modeling the clinical administration initiated a pro-angiogenic phenotype. In myocardial ischemia patients, recombinant VEGF has been shown to improve perfusion and coronary vessel density.44 Similarly, adrenomedullin infusion enhances coronary blood flow and cardiac function.45 It also promotes re-endothelialization and is antiapoptotic and cardioprotective in transgenic mice.46 Although we have only measured VEGF levels in vivo, it is likely that this angiogenic effect is mediated by several different growth factors. This is supported by data that mice overexpressing VEGF alone develop inflammation and vascular leakage, in contrast to the leakage-resis-

<table>
<thead>
<tr>
<th>Time Point</th>
<th>Plasma</th>
<th>½ Hour (n=4)</th>
<th>1 Hour (n=9)</th>
<th>2 Hours (n=9)</th>
<th>All Timepoints (n=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF (pg/mL)</td>
<td>Hydralazine</td>
<td>79.1±9.1</td>
<td>86.0±20.7</td>
<td>85.3±14.9</td>
<td>84.4±16.3</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>74.3±6.4</td>
<td>78.3±9.0</td>
<td>71.3±14.0</td>
<td>74.7±11.0</td>
</tr>
<tr>
<td>Significance</td>
<td>NS</td>
<td>NS</td>
<td>P<0.05</td>
<td>P<0.03</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS indicates not significant.
Hydroxyinduced overexpression. Induction of an angiogenic phenotype may therefore represent a novel mechanism whereby chronic hydralazine administration reduces mortality in congestive heart failure.

Hypoxia is fundamental to many ischemic diseases including stroke, pulmonary hypertension, cancer, myocardial ischemia, and chronic lung disease. HIF mediates the pathophysiological response to hypoxia in several such conditions and modulation of its activity has been proposed as a therapeutic approach. Such a strategy raises questions regarding possible effects of systemic activation of the HIF system, which may enhance erythropoiesis and elevate glycolytic and angiogenic capacity in areas besides the target organ. None of these side effects is described for hydralazine. This may be due to the transient nature of hydralazine effects, because of rapid metabolism of the active drug, making it difficult to detect and determine pharmacokinetic properties clinically. One side effect of hydralazine is a lupus erythematosus-like syndrome characterized by antinuclear autoantibodies and connective tissue lesions. This could possibly represent activation of HIF downstream genes, such as collagen and fibronectin, but is rare at the lower doses of hydralazine currently used. Target specificity and low chronic toxicity are key in the design of novel agents activating HIF. We have demonstrated that an agent acting through rapid, short-term activation of the HIF pathway is clinically viable, suggesting that intermittent activation of HIF with rapid metabolism of the activator can result in vascular specificity.

In summary, we have identified a potential novel mechanism for the therapeutic effect of hydralazine in cardiovascular therapy. First, that hydralazine transiently activates the HIF system by inhibiting PHD enzyme activity. Second, that hydralazine promotes angiogenesis. Development of novel agents activating HIF could therefore be feasible for treatment of ischemic disease, with the potential to monitor target specificity through plasma markers of HIF such as VEGF and endothelin-1.

Acknowledgments

The work was supported by the Wellcome Trust and Cancer Research (UK). The authors are grateful to Professor Peter J. Ratcliffe for many helpful discussions.

References

Hydralazine Induces HIF-1α, VEGF, and Angiogenesis

Novel Mechanism of Action for Hydralazine: Induction of Hypoxia-Inducible Factor-1 α, Vascular Endothelial Growth Factor, and Angiogenesis by Inhibition of Prolyl Hydroxylases

Helen J. Knowles, Ya-Min Tian, David R. Mole and Adrian L. Harris

Circ Res. 2004;95:162-169; originally published online June 10, 2004; doi: 10.1161/01.RES.0000134924.89412.70

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/95/2/162

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/