Nitrate Tolerance in Hypertension
New Insight Into a Century-Old Problem
Harm J. Knot

Nitrate tolerance to a vascular physiologist is the intriguing insensitivity or loss of responsiveness to drugs whose actions mimic the powerful endogenous vasodilator and platelet inhibitor nitric oxide (NO). To the clinician, it is a serious limitation in the use of an otherwise highly promising and widely used therapeutic class of drugs collectively referred to as nitrates. Nitroglycerin (NTG) and organic nitrates are used in the therapy of ischemic heart disease and heart failure. Clinical trials such as the ISIS-4 trial showed a 20% reduction in 24-hour postinfarct mortality with the use of an oral nitrate such as isosorbide mononitrate (ISMN). Sublingual NTG is the drug of choice for chest pain and acute angina attacks, and intravenous NTG is the drug of choice in acute coronary syndromes. Oral long-acting nitrates are effective in the treatment of chronic stable angina.

Brief History of Nitrate Use and Nitrate Tolerance
The promise for nitrates in medicine dates back to the initial observation by Sobrero in Turin in 1847 noting “violent headaches” produced by small quantities of NTG on the tongue. Brunton in Edinburgh recognized the clinical promise for the use of nitrate in angina in 1867. Almost concomitant with his recognition of the strong vasodilatory and other physiological effects of NTG are his poignant observations on its limitations. Brunton noted that if this remedy for relief of angina pain was used for a long time, “...the dose requires to be increased before the effect is produced,” perhaps the first reference to what we now refer to as nitrate tolerance. Marsh and Marsh elegantly compiled the explosive yet “nobel” history of NTG and NO in medicine.

Nitrate Tolerance: Underlying Mechanisms
Several mechanisms that may underlie the complex nitrate tolerance have been proposed. In a recent editorial, Horowitz proposed a theory that involves increased endothelial nitric oxide synthase activity, which reduces nitrate nitrosylation of the eNOS kinase, and hence decreases the levels of cyclic guanosine monophosphate (cGMP). This reduction in cGMP levels results in decreased cyclic adenosine monophosphate (cAMP) levels, which in turn inhibit the activity of the large-conductance Ca2+-dependent potassium channel (BK channel).

How Do Nitrates and NO Relax Blood Vessels?
In order to understand and appreciate the significance of the problem of nitrate tolerance, one has to consider the molecular mechanisms by which nitrates and NO dilate arteries. Although complex, there is general agreement on the following sequence of events related to the regulation of arterial membrane potential and hence the opening of the dihydropyridine-sensitive Ca2+ channels (DHPR), that are responsible for arterial constriction.

NO and nitrites increase levels of cGMP, which primarily activates cGMP-dependent kinase (cGK), and to a lesser extent, depending on the levels achieved, cAMP-dependent kinase (cAK). cGK has been shown to directly phosphorylate the large-conductance Ca2+-dependent potassium channel (BK channel). BK channels play a key role in the regulation of diameter of resistance arteries that exhibit myogenic tone where they act as a negative-feedback mechanism that opposes vasoconstriction and promotes vasodilation.

Molecularly, BK channels constitute the last signaling element in what is now referred to as the Ca2+ spark pathway in smooth muscle. Ca2+ sparks result from the coordinated opening of many tightly clustered ryanodine receptor Ca2+ release channels (RyR) in the sarcoplasmic reticulum (SR) of muscle cells. In smooth muscle and intact arteries, Ca2+ spark frequency is a key regulator of BK activity, driven by the Ca2+ filling state of the SR. The BK channel activity is “tuned” by the ancillary Ca2+-sensing β1 subunit of the channel that responds to the sparks. cGMP and cAMP via their respective kinases greatly increase BK channel activity.
Angiotensin-induced upregulation of the cGKI

A, Under normal conditions, cGKIα is the predominant isoform expressed in VSM. Nitrates and NO via guanylate cyclase (GC) and cGMP activate cGKIα to activate Ca2+ -activated (KCa or BK) K+ channels and together with cAMP-dependent kinase (cAK) elevate Ca2+ levels in the SR by the activation of the SR Ca2+ pump (SERCA) via phosphorylation of phospholamban (PLB). Ca2+ sparks activate the BK channel causing hyperpolarization and reduce the open probability of calcium channels (DHPR). B, In the condition of “nitrate tolerance,” even an increased dose of nitrates and presumably more cGMP is unable to efficaciously stimulate BK channels because of the angiotensin-induced upregulation of the cGKβ splice variant at the cost of cGKα levels. Although Ca2+ sparks may be unaffected, and the number of BK may be increased (perhaps partly uncoupled from their β1 Ca2+ sensor), reduced BK channel activity ensues, leading to reduced hyperpolarization, more opening of Ca2+ channels, and hence a VSM more prone to contraction.

by increasing spark frequency.12 They achieve this via phosphorylation of phospholamban, thus greatly increasing the pumping activity of the SR Ca2+ pump, and phosphorylation of the RyR channel and thus augmenting the release of Ca2+ from the SR as Ca2+ sparks. Because nitrates and NO are key regulators of cGMP levels and synergistically affect multiple signaling elements of the Ca2+ spark pathway, they are the most potent activators of the Ca2+ spark pathway.12

In this issue of Circulation Research, Gerzanich et al13 provide a new molecular insight into the problem of nitrate tolerance. Using the model of angiotensin II–induced hypertension, the authors show that as early as 4 days after the start of angiotensin infusion there is a significant upregulation of cGMP-dependent kinase type 1β (GKIβ). They further show a marked downregulation of the cGKIα isoform. Although GKIα is traditionally considered the principal mediator of cGMP-mediated vasodilation, both isoforms associate with the BK channel protein, and a clear 2-fold increase in BK-GKIβ association was measured by coimmunoprecipitation. So, where is the catch? As elegantly demonstrated by the authors in this study, using the BK channel activity as their marker, GKIβ is less efficacious in stimulating BK channel activity in vascular smooth muscle (VSM) cells. This is probably due to its lesser sensitivity for cGMP compared with the normally dominant GKIα isoforms. Further, the ability of the stable cGMP analogue 8-Br-cGMP to activate BK channels was significantly reduced, as were the effects of the direct NO donor sodium nitroprusside (SNP). The “normal” and “nitrate-tolerance” states after angiotensin-induced hypertension are illustrated in the Figure. Because this newly identified defect lies at the most “downstream” level of nitrate’s mechanism of action on VSM, their findings impact virtually all proposed forms of nitrate tolerance including those associated with the therapeutic use of NO donors such as SNP and NO itself.

Future Directions and Therapeutic Perspective

The findings by Gerzanich et al13 provide ample opportunity for further investigation into the mechanisms underlying the nitrate tolerance phenomenon and could have important clinical implications as well as provide new leads for treatment of this phenomenon. For example, can we extrapolate these findings to other types of hypertension or only to those associated with abnormalities in the renin-angiotensin system? The data in the present study implicate an important role for angiotensin II itself, since the observed effects on the presumed alternative splicing of the single cGK gene precede the onset of systemic angiotensin-induced hypertension. Other investigators have made a case for a more causal role of the renin-angiotensin system in nitrate tolerance in humans, and angiotensin-converting enzyme (ACE) inhibitors have shown some positive effects.14 Is a similar mechanism involved in the tolerance associated with increased endothelin-1 or catecholamines? Recent studies have also implicated Ca2+-activated potassium channels in the mechanisms of endothelial-mediated vasodilation and regulation of endothelial NO release. In nitrate tolerance, are we perhaps dealing with a dual/sequential endothelial/smooth muscle defect?

The findings from the present study, combined with the recent study by Amberg et al15 showing that in the same model of angiotensin-induced hypertension there is significant downregulation of the Ca2+-tuning β1 subunit of the BK channel,15 point to a key role for this channel not only in blood pressure regulation but also as a potential drug target for the treatment of hypertension and associated nitrate tolerance. As has been shown by Liu et al,16 the BK channel itself is upregulated in hypertension, yet does not seem to fulfill its promised effect.

In summary, the study by Gerzanich et al13 provides a novel insight into a possible mechanism underlying nitrate tolerance. The proposed mechanism for nitrate tolerance involves a shift in expression of splice variants of cGKI and points to a “defect” at the level of translation into vasodilation by the VSM cells. Clearly, for a complex problem as nitrate tolerance, more molecular studies are needed at the endothelial and the VSM level. Lastly, it may be possible to
reevaluate the potential benefits of use of ACE inhibitors and angiotensin II type 1 receptor blockers on this new therapeutic target and finally unleash the full therapeutic promise of this centuries-old class of drugs called nitrates.

Acknowledgments
Dr Knot is a fellow of the American Heart Association (AHA) and the recipient of an AHA Scientist Development Grant. The author thanks David Taylor and Stephen Baker for careful reading of the manuscript.

References

KEY WORDS: nitrates ■ Ca^{2+}-activated potassium channel ■ Ca^{2+} sparks
Nitrate Tolerance in Hypertension: New Insight Into a Century-Old Problem
Harm J. Knot

doi: 10.1161/01.RES.0000100846.76792.C2

_Circulation Research_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/93/9/799

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/