In an article by Silva and Rudy (Circ Res. 2003;92:261–263), “Mechanism of Pacemaking in Ik1-Downregulated Myocytes,” simulations of β-adrenergic effects on genetically engineered biological pacemaker cells did not take into account changes in $[\text{Ca}^{2+}]_i$ due to $I_{\text{Ca,L}}$ increase under β-adrenergic stimulation (βAS). Such changes were fully accounted for during pacemaking in the absence of βAS (intrinsic pacemaker rate of 101 bpm). When βAS-induced changes in $[\text{Ca}^{2+}]_i$ were accounted for, a steady state could not be achieved with a 300% $I_{\text{Ca,L}}$ increase. We repeated the simulations with a βAS-induced 100% increase of $I_{\text{Ca,L}}$, taking into account the dynamic $[\text{Ca}^{2+}]_i$ changes. The pacemaking rate increased transiently (110 bpm after 27.2 seconds) and then reached a steady state at a rate slightly below control (73 bpm). The long-term decrease in rate was a result of $[\text{Na}^+]_i$, accumulation that acted to increase outward I_{NaK} and reduce inward I_{NaCa} and I_{Na}, thus reducing net depolarizing current. As in the original publication, upregulation of I_{NaCa} by 100% increased sensitivity to βAS, resulting in a maximum transient increase of pacemaking rate to 139 bpm after 17.9 seconds. The new simulations that account for $[\text{Ca}^{2+}]_i$ changes confirm the original finding that responsiveness to βAS depends on the level of I_{NaCa} expression and that even for high expression levels the responsiveness is very limited, much smaller than that of native sinus-node cells.

For reference, all simulations used the current version of the Luo-Rudy cell model, which can be found online at http://www.cwru.edu/med/CBRTC/LRdOnline/. $[\text{Na}^+]_o$ was set to 132 mmol/L and $[\text{K}^-]_o$, to 5.4 mmol/L.
Correction ARTICLE

Circ Res. 2003;93:e48
doi: 10.1161/01.RES.0000090281.31683.7E

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/93/4/e48

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/