Human Embryonic Stem Cells Develop Into Multiple Types of Cardiac Myocytes

Action Potential Characterization

Jia-Qiang He,* Yue Ma,* Youngsook Lee, James A. Thomson, Timothy J. Kamp

Abstract—Human embryonic stem (hES) cells can differentiate in vitro, forming embryoid bodies (EBs) composed of derivatives of all three embryonic germ layers. Spontaneously contracting outgrowths from these EBs contain cardiomyocytes (CMs); however, the types of human CMs and their functional properties are unknown. This study characterizes the contractions and action potentials (APs) from beating EB outgrowths cultured for 40 to 95 days. Spontaneous and electrical field–stimulated contractions were measured with video edge-detection microscopy. β-Adrenergic stimulation with 1.0 μmol/L isoproterenol resulted in a significant increase in contraction magnitude. Intracellular electrical recordings using sharp KCl microelectrodes in beating EB outgrowths revealed three distinct classes of APs: nodal-like, embryonic atrial-like, and embryonic ventricular-like. The APs were described as embryonic based on the relatively depolarized resting membrane potential and slow AP upstroke. Repeated impalements of an individual beating outgrowth revealed a reproducible AP morphology recorded from different cells, suggesting that each outgrowth is composed of a predominant cell type. Complex functional properties typical of cardiac muscle were observed in the hES cell–derived CMs including rate adaptation of AP duration and provoked early and delayed afterdepolarizations. Repolarization of the AP showed a significant role for I_{Kr} based on E-4031 induced prolongation of AP duration as anticipated for human CMs. In conclusion, hES cells can differentiate into multiple types of CMs displaying functional properties characteristic of embryonic human cardiac muscle. Thus, hES provide a renewable source of distinct types of human cardiac myocytes for basic research, pharmacological testing, and potentially therapeutic applications. (Circ Res. 2003;93:32-39.)

Key Words: human embryonic stem cells • action potential • cellular electrophysiology • pharmacology • cardiomyocytes

Recent studies have demonstrated that human embryonic stem (hES) cells in vitro can form embryoid bodies (EBs), some of which begin to spontaneously contract.1–3 These beating EBs contain cardiac myocytes (CMs) based on the expression of cardiac-specific genes, cellular ultrastructure, and extracellular electrical activity.1–3 Progress has been made in isolating cardiac myocytes from the mixed population of cells in the EB,2 but no studies have yet defined what types of cardiac myocytes exist in the differentiating human EBs. In comparison, multiple types of mouse embryonic stem (mES) cell–derived CMs have been identified and characterized including nodal, atrial, ventricular, and Purkinje cells. However, mES cells have significant differences from hES cells such as variations in the stage-specific antigens and in the ability of leukemia inhibitory factor (LIF) to maintain the undifferentiated state.4 Thus, differentiation of CMs from ES cells from the different species may be significantly different.

Defining the types of CMs that can be obtained from hES cells is essential for further research using this model system and for any potential utilization of these cells for cell-based therapies. A variety of techniques can be used to discriminate between different types of CMs including gene expression studies, immunochemistry, and perhaps most importantly, functional studies. The cardiac action potential (AP) is the result of multiple ion channels and Ca^{2+} cycling proteins interacting in concert, and so the AP provides a functional signature for the given type of CM.

The purpose of the present study is to characterize the contractions and APs in beating human EBs. These studies were performed in the intact EB outgrowths to avoid possible alterations produced by cell isolation or replating and culture of isolated cells. Because our focus was to determine if multiple types of cardiac myocytes can be obtained from hES cells, we chose to study a time window of 40 to 95 days of differentiation.
differentiation of the EBs, which we predicted would provide adequate time for distinct cell types to become clear. The results begin to define the populations of hES cell–derived CMs and lay the groundwork for future investigation using defined populations of human CMs. A preliminary report of these findings has been presented.5

Materials and Methods

EB Formation and Cardiac Differentiation
The hES cell lines H1, H7, H9, and H14 were derived and maintained as previously described4 and as per the expanded Materials and Methods section in the online data supplement available at http://www.circresaha.org. For EB formation, ES cell colonies were dispersed into cell aggregates containing approximately 500 to 800 cells using 1 mg/mL dispase. The cell aggregates were then cultured in suspension in cell culture flasks (BD Bioscience) with ES cell medium without basic fibroblast growth factor for 6 days with media changed daily. To promote cardiac differentiation, 6-day-old EBs were transferred to the 6 well plates coated with 0.1% gelatin in media consisting of DMEM supplemented with 15% FBS (selected for cardiac differentiation), 2 mmol/L L-glutamine, and 1% nonessential amino acids. During differentiation, the media was changed daily. Spontaneously contracting cells appeared as clusters in outgrowths from the EBs. These beating EBs were maintained in long-term cultures for up to 95 days.

Immunostaining
Beating foci were isolated with Pasteur pipettes and digested with 0.05% trypsin for 20 minutes with intermittent vortexing. After cells were centrifuged and resuspended in DMEM containing 20% FCS and 0.5% chicken embryo extracts (GIBCO/BRL), cells were plated onto gelatin (0.3%-coated coverslips, and incubated in 10% FCS medium for two days. Immunostaining was done as described elsewhere and in the online data supplement.6

Contraction Measurements and Intracellular Electrophysiology
A single beating, microdissected EB outgrowth was cultured on a glass coverslip for 1 to 10 days, and the coverslip was then attached to the bottom of an experimental chamber mounted on an inverted microscope (Nikon Diaphot 200). The EBs were perfused with Tyrode’s solution consisting of (in mmol/L) 140 NaCl, 5.4 KCl, 1 MgCl₂, 10 HEPES, 10 glucose, 1.8 CaCl₂, pH 7.4 with NaOH at 37°C. Contractions were measured using video edge detection as described in the online data supplement. For intracellular electrophysiology experiments, sharp glass microelectrodes were fabricated with resistance of 30 to 100 MΩ when filled with 3 mol/L KCl. Spontaneously beating EBs were impaled with the microelectrodes and electrode capacitance was nulled. Intracellular recordings of membrane potential were made using an Axoclamp-2A amplifier in Bridge Mode (Axon Instruments), and recordings that showed a stable maximum diastolic potential (MDP) for at least 5 minutes were included in data analysis. In some experiments, the preparation underwent electrical field stimulation at rates from 1 to 3 Hz. Data were digitized at 20 kHz and filtered at 2 kHz. APs were analyzed using pClamp 8.02 (Axon Instruments) and Origin 6.0 software (Microcal Inc) to determine AP duration at 50% and 90% of repolarization (APD50 and APD90), AP amplitude (APA), MDP, and the maximum rate of rise of the AP upstroke (dV/dtmax). See the online data supplement for further details.

Statistical Analysis
All values are presented as mean±SD with n values representing the number of recordings in the data set. Statistical significance was evaluated by the Student’s paired or unpaired t test (two-tail). One-way ANOVA followed by Newman Keuls test was used for multiple comparisons. Differences with P<0.05 were considered statistically significant.

Results

Cardiac Differentiation in EBs
Our initial studies showed that H1, H7, H9, and H14 ES cell lines can form EBs with spontaneously contracting outgrowths. Beating EBs are first observed approximately 10 days into differentiation and after 30 days approximately 10% to 25% of EBs show spontaneous contractions. With daily gentle media changes and low EB density, the EBs continued to contract in culture for a period of observation of up to 95 days of differentiation. The remainder of the experiments then focused on EBs derived from H9 and H14 cell lines, and results from these two cell lines were indistinguishable. Immunostaining was performed to confirm the presence of CMs in the beating EB outgrowths and to examine contractile/sarcomeric protein organization (Figure 1). Beating foci were digested and plated as a monolayer for immunostaining using antibodies against α-actinin, sarcomeric myosin heavy chain (MHC), and cardiac troponin I (cTnI). Cells isolated from beating foci resumed spontaneous beating after 6 to 48 hours platting on coverslips.

Staining with anti-α-actinin antibodies (Figure 1A) shows varying cytoplasmic patterns ranging from unorganized myofilaments to well-organized sarcomeric myofilaments with Z-lines (Figure 1J, at a higher magnification). Sarcomeric MHC staining shows an abundant signal distributed through-

Figure 1. Expression of cardiac specific proteins. Cells isolated from beating outgrowths of human EBs were incubated with primary antibodies against α-actinin (A), sarcomeric myosin heavy chain (D), and cardiac troponin I (G) followed by anti-mouse IgG coupled to Texas Red. All nuclei in the same field were stained with DAPI (B, E, and H). C, F, and I are double images of Texas Red and DAPI. Striated patterns of α-actinin (J) and cTnI (K) are shown at a higher magnification. Scale bar in A indicates 20 μm, and panels A to I are at the same magnification. Scale bar in panel J indicates 5 μm, and panels J and K are at the same magnification.
out cytoplasm, which is a typical staining pattern with this antibody (Figure 1D).

Immunostaining of cTnI shows well-organized parallel myofilament (Figure 1G) and a striated pattern of I bands in some cells (Figure 1K, at a higher magnification). Nuclear staining of the same field are shown in Figures 1B, 1E, and 1H. These data clearly indicate that cardiac myocytes are present in differentiating EBs and some CMs show significant sarcomeric organization. Although cells were from beating foci, there are non-CMs indicated by nuclear staining but lack of cardiac-specific protein immunostaining. The percentage of CMs isolated from beating foci varied widely, ranging from 2% to 70%.

Positive Inotropic Response to β-Adrenergic Stimulation

An increase in contractility of cardiac muscle in response to β-adrenergic stimulation requires appropriate surface membrane receptors coupled to a signaling pathway that stimulates a variety of ion channels, membrane transporters, and myofilament proteins. However, the responsiveness of cardiac contractility to β-adrenergic stimulation changes over the course of development with the earliest embryonic cardiac myocytes being unresponsive to β-adrenergic agonists. Therefore, we sought to determine if the beating EB outgrowths showed a change in contractile properties in response to the β-adrenergic agonist isoproterenol (Iso). Contractions of the EB outgrowths were measured using video edge-detection techniques during electrical field stimulation to control the beating rate. The magnitude of deflection of the edge of the outgrowth with each stimulated contraction gives a measure of contractility. Figure 2 demonstrates the contractile pattern of an EB stimulated at 1 Hz under basal conditions and then after superfusion with 1 μmol/L Iso. A clear increase in the magnitude of the contraction is observed, and on average 1 μmol/L Iso resulted in a 33±27% increase in the magnitude of the contraction (n=5, P=0.05). This measurement showed significant variability from EB to EB (see the online data supplement for the full data set) in part due to the distinct and complex geometry of each beating outgrowth. These results demonstrate that β-adrenergic receptors are present in hES cell-derived CMs and stimulation of these receptors produce a positive inotropic response.

Patterns of Spontaneous Electrical Activity

Observations of beating EBs in culture revealed at least two distinct patterns of beating, continuous beating or episodic beating. To investigate this beating pattern further, we made intracellular recordings of APs with sharp microelectrodes in twenty spontaneously contracting EBs. Continuous electrical activity was documented in 12/20 EBs as shown by the example in Figure 3A. EBs with continuous electrical activity had spontaneous AP rates that were relatively constant throughout the recording period and ranged between 38 and

![Figure 2](image-url) Effect on Iso on field-stimulated EB contraction. An EB is electrically field-stimulated at 1 Hz and contractions measured using video edge-detection before and after application of 1 μmol/L Iso.

![Figure 3](image-url) Electrical activity of spontaneous contracting human EBs. Intracellular APs were recorded by impaling sharp microelectrodes into beating EBs. Twelve of 20 EBs demonstrated a continuous activity (A) and 8 EBs showed episodic activity (B). For episodic EBs, the durations of the active periods and interspersed silent intervals are plotted for each EB with a letter denoting a given EB in C. In D, the rate of spontaneous activity for each EB studied as a function of days in culture is plotted. There was a general decrease in the spontaneous rate with time in culture for ventricular-like EBs. Linear regression R = −0.72, P<0.01.
Characteristics of AP in hES Cell–Derived Beating EBs

<table>
<thead>
<tr>
<th>Type of AP</th>
<th>n (EB#)</th>
<th>Rate, bpm</th>
<th>APD50, ms</th>
<th>APD90, ms</th>
<th>dV/dt_{max}, V/s</th>
<th>APA, mV</th>
<th>MDP, mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodal-like</td>
<td>26 (5)</td>
<td>70.0 ± 23.2*</td>
<td>133.4 ± 20.7¥</td>
<td>168.6 ± 23.0†</td>
<td>6.9 ± 3.1</td>
<td>68.5 ± 11.7‡</td>
<td>−49.2 ± 6.7†</td>
</tr>
<tr>
<td>Embryonic atrial-like</td>
<td>19 (5)</td>
<td>69.1 ± 23.6*</td>
<td>101.4 ± 24.8§</td>
<td>131.1 ± 31.8</td>
<td>11.5 ± 4.2§</td>
<td>78.5 ± 9.4</td>
<td>−52.6 ± 8.3</td>
</tr>
<tr>
<td>Embryonic ventricular-like</td>
<td>60 (11)</td>
<td>47.1 ± 23.3</td>
<td>208.2 ± 60.3‡</td>
<td>247.2 ± 66.7†</td>
<td>13.2 ± 6.2§</td>
<td>85.3 ± 9.3</td>
<td>−53.9 ± 8.6</td>
</tr>
</tbody>
</table>

Data are mean ± SD. n indicates the cell number; EB#, number of EBs; APD50/APD90, AP duration measured at 50% or 90% repolarization; dV/dt_{max}, maximum rate of rise of AP; APA, AP amplitude; and MDP, maximum diastolic potential.

*P<0.001 and ¥P<0.01 compared with ventricular-like; †P<0.001 compared with each other; and §P<0.001 compared with nodal-like.
AP evident at the different stimulation rates tested. These results demonstrate that embryonic ventricular-like cardiac myocytes present in beating EBs have the necessary ion channels and regulatory properties to exhibit rate adaptation. Similar results were also observed for embryonic atrial-like myocytes (data not shown).

hES Cell–Derived CMs Have Significant \(I_{Kr} \)

Repolarization of the cardiac AP is due to multiple ionic currents with an important role played by voltage-gated \(K^+ \) channels; however, there is significant species variability of the exact type of \(K^+ \) channels present. In human heart, current through HERG potassium channels (KCNH2), \(I_{Kr} \), plays a major role in repolarization of the AP. HERG channels are also important in drug development as they represent a promiscuous target for drug block that can result in AP prolongation and the potentially lethal ventricular arrhythmias torsades de pointes. Therefore, we examined the contribution of \(I_{Kr} \) to repolarization of APs in hES-derived CMs using the HERG-specific channel blocker E-4031. Application of 500 nmol/L E-4031 resulted in AP prolongation in both embryonic atrial and embryonic ventricular-like CMs (see Figures 7A and 7B). Prolongation of the AP was most evident for terminal repolarization (phase 3) where HERG current is maximal. In embryonic atrial-like CMs, APD90 but not APD50 was significantly prolonged, and in embryonic ventricular-like CMs significant prolongation of both APD50 and APD90 was produced by E-4031 with a larger effect on APD90. There were not statistically significant effects by E-4031 on APA or MDP. These results suggest that HERG channels are expressed in both embryonic atrial-like and embryonic ventricular-like CMs and that \(I_{Kr} \) contributes significantly to repolarization of the APs in these cells types.

Provoked Early and Delayed Afterdepolarizations

A major mechanism underlying certain types of cardiac arrhythmias is triggered activity, which results from afterdepolarizations. These can be divided into early afterdepolarizations (EADs), which occur during the repolarization of the AP, or delayed afterdepolarizations (DADs), which occur after full repolarization. EADs and DADs result from different cellular mechanisms, but both require a specific and complex set of interacting ion channels and \(Ca^{2+} \) cycling proteins present in cardiac myocytes. Therefore, we examined embryonic ventricular-like CMs for the ability to develop EADs and DADs. EADs typically occur in the setting of a prolonged AP. Figure 7C demonstrates an example of an EAD after treatment with E-4031. EADs were defined as

Figure 5. Each EB outgrowth characterized by a predominant AP morphology. A, Up to 14 repeated impalements of the same EB demonstrate reproducible AP morphologies as shown for 3 consecutive EBs studied by multiple impalements. EB#4 demonstrates embryonic atrial-like APs, EB#5 shows nodal-like APs, and EB#6 reveals embryonic ventricular-like APs. B, Plot of APD90 measured for each impalement in 20 consecutive EBs demonstrating clustering of APD in a given EB.

Figure 6. Rate adaptation of APs of hES cell–derived CMs. A, Field-stimulated embryonic ventricular-like APs were measured in an EB at 3 different stimulation rates: 1, 2, and 3 Hz. B, Overlapped APs at extended time scale with a clear decrease in APD with increasing frequency of stimulation. C, Average data for 4 to 7 experiments. **\(P<0.01 \) compared with 1 Hz.
depolarizations occurring near the AP plateau and were observed in 3/5 embryonic ventricular-like CMs treated with E-4031. EADs were never observed in the absence of E-4031. DADs typically occur during Ca\(^{2+}\) overload such as produced by injury or digoxin toxicity. Figure 7D shows an example of an EB recording with DADs after each AP. DADs were observed to occur spontaneously in a small number of cells immediately after microelectrode impalement presumably due to injury associated with impalement and associated Ca\(^{2+}\) overload. These cells were not used for characterization of AP properties, but they demonstrate the ability of the hES-derived CMs to exhibit DADs.

Discussion

The results provide the first description of the functional heterogeneity of CMs obtained from hES cells using the EB system. AP analysis demonstrated the presence of nodal-like, embryonic atrial-like, and embryonic ventricular-like CMs. The CMs also exhibited the complex functional properties present in native cardiac myocytes including a positive inotropic response to \(\beta\)-adrenergic stimulation, AP rate adaptation, and the ability to exhibit afterdepolarizations. The finding of both functional atrial and ventricular-related cells agrees with previous RT-PCR detection of atrial and ventricular specific proteins, MLC2a and MLC2v in EBs.\(^1\)

AP Properties and Cardiomyogenesis

The development of the heart from precardiac mesoderm involves a complex series of cellular differentiation steps and morphogenetic changes that are reflected by changes in the electrical activity of the differentiating cardiac myocytes. Spontaneous electrical and mechanical activity is first observed in the developing heart after the formation of the linear heart tube or primary myocardium. Pacemaker type APs have been described using optical methods for the earliest contracting CMs in embryonic chick heart and rat heart.\(^11\) The earliest microelectrode recordings were done on the 2-day chick embryo and revealed pacemaker-type APs characterized by a relatively depolarized MDP in the range of \(-35\) mV, prominent automaticity with a strong phase 4 depolarization, slow Ca\(^{2+}\)-dependent AP upstrokes, and small APA.\(^12\) An in vitro model using mES cells was found to recapitulate this developmental stage as the earliest contracting cardiac myocytes found at 9 to 11 days of differentiation had homogenous pacemaker type APs.\(^13\) L-type Ca\(^{2+}\) channels appear to be one of the earliest ion channels expressed in the CMs and play a critical role in the Ca\(^{2+}\)-dependent APs.\(^14,15\) As cardiac differentiation proceeds, specialization of different types of cardiac myocytes beginning with the clear distinction between the atrial and ventricular chambers become evident. The resting membrane potential becomes progressively more negative in the developing atrial and ventricular myocytes, which correlates with an increasing presence of \(I_{K1}\).\(^12,14\) In addition, there is a gradual appearance of a more rapid upstroke of the APs in both ventricular and atrial myocytes corresponding to an increasing density of \(I_{K1}\).\(^12,16\) Ultimately, the fetal atrial and ventricular myocytes exhibit stable resting membrane potentials approaching \(E_K\) with little automaticity and very rapid AP upstrokes. Similarly, the mouse EB system has identified intermediate stage CMs, which begin to show AP heterogeneity and exhibit intermediate MDPs and increasingly rapid AP upstrokes from days 12 to 15. This is followed on days 16 to 25 by terminal stage APs described as atrial-like, ventricular-like, and nodal-like.\(^13,17\) Thus, there is an orderly progression of ion channel expression and AP morphologies during the course of heart development that has been recapitulated in the murine EB system.

The present study using hES cells examined EBs maintained in culture 40 to 95 days and found heterogeneity of AP morphologies. Although APs with characteristics of atrial and ventricular myocytes were observed, the relatively positive MDP (\(-50\) to \(-60\) mV) and the slow AP upstroke (5 to 30 V/sec) contrasts with neonatal and adult human atrial and ventricular CMs, which have resting membrane potentials in the range of \(-80\) mV and dV/dt\(_{max}\) ranging from 150 to 350 V/s.\(^18\) The hES cell–derived CMs likely correlate with the “intermediate” stage described for the mES cell system.\(^13,19\) The limited data available describing the AP in human embryonic and fetal hearts suggests that by 7 to 8 weeks of development the resting membrane potential and dV/dt\(_{max}\) of
atrial and ventricular myocytes reaches that of adult cells.8,20 Thus, we referred to the atrial and ventricular APs observed in this study as embryonic because they have properties of APs anticipated in human embryos before 7 weeks of development. The nodal type APs observed were simply described as nodal because this AP morphology shows little change during development. This strikingly slow in vitro development of AP properties compared with the mouse system is likely related to the markedly different gestational periods comparing mice and man.

The adult human heart contains a much greater heterogeneity of distinct functional types of cardiomyocytes than the human EB model observed to date. For example, there is heterogeneity in atrial AP morphology in different regions of the atria,18 and likewise there is a well-described transmural heterogeneity of the ventricular AP.21 Multiple specialized cell populations exist in the sinoatrial and atrioventricular nodes that all have their own signature APs.22 Potentially, some approaches in the in vitro EB differentiation model will be able to favor development of more mature and specialized cells. For example, in mouse EBs, treatment with endothelin-1 favors differentiation of Purkinje type CMs.23

EB Outgrowth Composition

It has been assumed that because enzymatic dissociation of a collection of EB outgrowths has yielded diverse CM cell types, that each outgrowth is composed of a heterogeneous mix of CMs perhaps in part mimicking the heterogeneous collection of myocytes in the developing heart.19 However, the current intracellular recoding of APs with sharp microelectrodes were unique in that repeated distinct cellular measurements were made from individual outgrowths, and we found that each outgrowth is populated by a predominant cell type. This finding was also suggested in more recent studies using the ventricular-specific MLC2V promoter to drive the expression of GFP in mouse EBs.24 Thus, we postulate that each outgrowth responds to its unique microenvironment resulting in differentiation and proliferation of one predominant type of CM.

Despite our finding of a predominant AP morphology in the EB outgrowth, these structures are complex and do not contain an absolutely uniform population of cardiac myocytes. Extracellular electrical mapping studies using multielectrode arrays of beating human EB outgrowths have previously demonstrated that the CMs form a functional electrical syncytium connected by gap junctions, which typically have a stable focal origin for activation.3 Examination of the majority of the intracellular APs made in this study confirms the suggestion that excitation spreads rapidly from adjacent cells based on the minimal phase 4 depolarization measured followed by the sudden upstroke of the AP, saltatory conduction. Thus, some areas of the outgrowth exhibit greater automaticity and behave as the pacemaker for the outgrowth. This could be due to the presence of a distinct cell type or just an extreme of the predominant cell type of the EB, such as an embryonic ventricular-like cell with a more rapid phase 4 depolarization. Future efforts will be needed to better define the cellular composition of individual outgrowths and define the factors that favor differentiation to particular CM cell lineages.

Spontaneous Electrical Activity Patterns

Distinct beating patterns observed in the EB outgrowths suggest further functional and structural complexity of the EBs. In the simplest case, a regular pattern of spontaneous electrical activity was likely due to regular activation emanating from a focal pacemaker and spreading throughout the electrically coupled CMs as observed in a previous study making extracellular recordings with multielectrode arrays.3 However, some EBs display a more complex rhythmicity with episodic beating as has been observed in the mouse EB system using multielectrode array mapping studies.25 In that mouse EB study, intermittent failure of AP propagation was clearly documented and was concluded to be due to impedance mismatch from structural discontinuities in the network of interconnected CMs. Studies using 2-dimensional culture systems of neonatal myocytes have also pointed to the importance of tissue geometry and branching to produce current-load mismatches that can slow conduction and produce conduction blocks.26 Other mechanisms can also contribute to the failure of AP propagation such as impaired cell-to-cell coupling (gap junctions) and reduced cellular excitability (upstroke of AP).27–29 The complex pattern of impulse propagation seen in these episodically beating EBs provides a potential model for understanding areas of localized slow conduction present in the intact heart, such as the AV node,30 and also for pathological conditions such as reentrant arrhythmias or certain forms of heart block.

Future Implications and Uses of hES Cells

Efforts at further defining and isolating the distinct CM cell populations will be an important focus of future research and may use genetic selection strategies that have proved effective for mES cells.24,31,32 A major challenge will be to produce more specialized and mature hES cell–derived CMs. Nevertheless, the present system provides an in vitro model for human cardiac development and basic research studies. This system may also provide a model for heart failure as CMs from failing hearts typically revert to a more fetal or embryonic gene expression pattern. Ultimately, the hES cell model allows research studies focusing on human-specific proteins and functional properties. For example, $I\text{\textsubscript{K}}$ is found at very low levels in mouse CMs, whereas it provides a major current for repolarization of the human heart and hES cell–derived CMs. Finally, given the ability of hES cells to differentiate into cardiomyocytes, there is long-term promise for hES cells in cell-based therapies for heart disease.

Acknowledgments

This work was supported by NIH grants PO1 HL47053 (T.J.K.), R21 HL72089 (T.J.K., J.A.T.), R01 HL67050 (Y.L.), a grant from the University of Wisconsin Cardiovascular Research Center (T.J.K., J.A.T.), and the WiCell Research Institute, a nonprofit subsidiary of the Wisconsin Alumni Research Foundation. Human ES cells are made available to research by the WiCell Research Institute to academic/nonprofit researchers on a cost-recovery basis under the terms of a Memorandum of Understanding and Simple Letter Agreement. We gratefully acknowledge the invaluable suggestions from Dr Craig T. January.
References

Human Embryonic Stem Cells Develop Into Multiple Types of Cardiac Myocytes: Action Potential Characterization
Jia-Qiang He, Yue Ma, Youngsook Lee, James A. Thomson and Timothy J. Kamp

Circ Res. 2003;93:32-39; originally published online June 5, 2003;
doi: 10.1161/01.RES.0000080317.92718.99

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/93/1/32

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2003/07/08/93.1.32.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Supplemental Methods

Human embryonic stem cell culture

Briefly, human embryonic stem (hES) cells were maintained as undifferentiated cells by co-culture with irradiated mouse embryonic fibroblast (MEF) cells in media consisting of DMEM/F12 (GIBCO/BRL) supplemented with 15% KnockOut SR serum replacer (GIBCO/BRL), 2 mmol/L L-glutamine, 0.1 mmol/L β-mercaptoethanol, 1% nonessential amino acids (all from GIBCO/BRL), and 4 ng/ml basic fibroblast growth factor (R & D Systems). ES cells were passaged approximately weekly to maintain undifferentiated growth.

Immunostaining

Following digestion of outgrowths, isolated cells were replated for two days and then fixed in 4% formaldehyde for 15 min, washed in PBS/0.1% NP40, and blocked in 0.5% bovine serum albumin. Fixed cells were incubated with primary antibodies against α-actinin (x 800 dilution, Sigma), sarcomeric myosin heavy chain (MF20 hybridoma supernatant), and cardiac Troponin I (x 300 dilution, Advanced Immunochemical) overnight at 4°C. Cells were visualized by incubation with anti-mouse IgG coupled to Texas Red (Amersham) for one hour. Nuclei were stained with DAPI staining before mounting. Cells were observed under a Carl Zeiss epifluorescence microscope.

Contraction measurements with video edge-detector

A single beating embryoid body (EB) outgrowth cultured on a glass coverslip was attached to the bottom of an experimental chamber mounted on an inverted microscope (Nikon Diaphot 200). The preparation was continuously perfused with Tyrodes solution containing
(mmol/L): 140 NaCl, 1 MgCl$_2$, 10 HEPES, 10 Glucose, 1.8 CaCl$_2$, pH 7.4 with NaOH with additional drugs as indicated. Electrical field stimulation with Grass SD-9 stimulator (Quincy, MA) was carried out with two platinum electrodes along opposite walls of the 200-µl experimental chamber (Warner Instrument Corp). The stimulation protocol was from 1 to 3 Hz, 10-ms duration, and 30 to 50 V at 37°C. Individual beating EBs were monitored with Video Edge Detector VED 105 (Crescent Electronics) through CCD BW Camera NL-2332 (National Electronic) and Sony BW Video Monitor PVM-97 (Sony Corp). The twitch responses at sharp edge of beating EB outgrowth were recorded at 1 kHz through DigiData 1200 A/D converter with pClamp 8.2 acquisition software (both from Axon Instrument, Foster City, CA). The contractile responses are normalized to basal levels. The experimental chamber temperature was controlled at 37±0.5°C by Dual Automatic Temperature Controller TC-344B (Warner Instrument Corp).

Electrophysiology

A single beating EB outgrowth on a glass coverslip was attached on the bottom of experimental chamber mounted on the stage of an inverted microscope (Nikon Diaphot 200). The EBs were perfused with Tyrodes solution as described above. Sharp microelectrodes were fabricated from Borosilicate glass (1B120F-4, World Precision Instruments, Inc., FL) with Flaming/Brown Micropipette Puller Model 87 (Sutter Instruments, CA). The microelectrode resistances were 30-100 MΩ when filled with 3 mol/L KCl. The potential of electrode was adjusted to a zero current between the microelectrode solution and bath solution and the series resistance as well as microelectrodes capacitance were compensated using the Axoclamp-2A amplifier (Axon Instrument, Foster City, CA) before impalements. Spontaneous or field stimulated (see Twitch Measurements) APs were recorded at 37±0.5°C with an Axoclamp-2A amplifier in Bridge Mode driven by pClamp 8.2 acquisition software.
Sources of Drugs and Media
DMEM, DMEM/F12, 15% Knockout SR serum replacer, L-glutamine, β-mercaptoethanol, nonessential amino acids, and Dispase were purchased from GIBCO/BRL (Carlsbad, CA). Fetal bovine serum was from Hyclone (Logan, UT). Basic fibroblast growth factor was from R & D Systems (Minneapolis, MN). Gelatin and E-4031 were from Sigma (St. Louis, MO).

Supplemental Results

Positive inotropic response to β-adrenergic stimulation

Edge-detection measurements of contraction in EB outgrowths were made as described in the Methods and in the article. Each beating EB outgrowth had a unique geometry and contraction pattern. Table displays the absolute amplitude of the edge deflection for each contracting EB, which ranged between 40-72 μm. On average, 1 μmol/L ISO resulted in a significant 33±27% increase in the contraction magnitude (p<0.05).
Table: Effects of Iso on Contraction of hES Cell-derived Beating EBs (µm)

<table>
<thead>
<tr>
<th>EB</th>
<th>Basal Contraction (µm)</th>
<th>Iso Contraction (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>72.2</td>
<td>76.9</td>
</tr>
<tr>
<td>b</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>c</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>d</td>
<td>44.9</td>
<td>52</td>
</tr>
<tr>
<td>e</td>
<td>50</td>
<td>64.7</td>
</tr>
</tbody>
</table>

Mean ±SD 51.4±12.3 66.7±9.2*

Contraction of beating EBs was recorded at 37°C in Tyrodes solution without (basal) and with 1 µmol/L isoproterenol (Iso). * p<0.05 compared with Basal.

References