Genome Informatics
Current Status and Future Prospects

Raimond L. Winslow, Mark S. Boguski

Abstract—This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. (Circ Res. 2003;92:953-961.)

Key Words: cardiovascular genomics • transcriptome • proteome • modeling

The amount and rate of accumulation of biological information is increasing exponentially. This information explosion is being driven by development of powerful new technologies for acquiring large-scale genomic and proteomic datasets. Efforts are well underway to enumerate the cellular “parts lists” (genes and gene products) and to map and measure their dynamic interactions. The importance of these achievements cannot be understated, as they have transformed the nature of both biology and medicine, and have led many to claim that biology has become an information science.

These new experimental approaches are enabling acquisition of a wealth of new information on the cardiovascular genome, transcriptome, and proteome, information that will ultimately enhance our understanding of cardiovascular health and disease. At the same time, there is growing recognition that emergent, integrative behaviors of biological systems arise from the complex dynamic interactions between system components, and that knowledge of each component, however detailed, is not sufficient by itself to understand integrative behavior. A quantitative understanding of biological function will only be achieved through development of structurally, biochemically, and biophysically detailed computational models based directly on experimental data. Once developed, these models can be simulated, analyzed, and understood through application of modern engineering and computational approaches, and the knowledge gained from these analyses can be applied to the design of additional experiments. In this review, we attempt to identify and describe the model systems, information resources, and computational tools that are being developed to address the new research paradigm of systems biology.

The Genome Information Landscape
The amount of genome sequence data now available is enormous, with only more to come. At the time of this
writing, the sequencing of more than 700 genomes is either finished or in progress, and results may be found in various public repositories (Table 1). The National Institutes of Health and six other US government agencies1 are currently supporting genome projects and hundreds of researchers are submitting white paper proposals for the sequencing of additional organisms.2 The following summary reviews those genome projects most pertinent to cardiovascular biology and medicine.

A “draft” sequence of the human genome has been available since June 2000, and the “finished” sequence was announced in April 2003, coinciding with the 50th anniversary of the determination of the double-helical structure of DNA.3 The first large-scale analyses of the 2.9-gigabase human genome sequence were published in February 2001.4,5 Of the many findings, the most surprising was that the human genome appears to contain roughly 30 000 protein-encoding genes, far fewer than the figure of 80 000 to 100 000 genes cited frequently in textbooks and only one and one-third to two times the number of genes in the fruit fly and the nematode worm. Comparative genomics studies have shown that many genes contributing to human disease are conserved among these genomes, underscoring the utility to biomedical research of studies in these organisms.6,7

A draft sequence of the mouse genome and comparative analyses with the human sequence has been published.8 Findings support the notion that there are only about 30 000 genes in a typical mammalian genome. It is believed, however, that due to alternative splicing and other posttranscriptional and posttranslational modifications, this number of genes may encode a much larger number of functional proteins.9,10 Comparative human and mouse sequence analyses have also confirmed that, on average, rodent and human genes are about 85% identical in their coding sequences.11,12

Although the mouse is the premier organism for studies of mammalian genetics and development, and is seeing increased use for cardiovascular research (for example, by the JAX PGA and the Alliance for Cellular Signaling), the rat has been used more frequently for physiological and pharmacological studies.13 A consortium led by the National Heart, Lung, and Blood Institute (NHLBI) launched a rat genome program in 1995,14 which has, to date, produced a plethora of genomic resources,13 including genetic linkage maps that have been used to correlate genotypes with quantitative cardiovascular traits (“physiological profiles”).15 Funding to sequence the rat genome was awarded in February 2001, and a draft sequence was released in November 2002.14

The zebrafish has become an important model organism for research in unraveling the molecular genetic basis of normal and abnormal cardiovascular form and function.16 Transparent embryos of this species have made possible large-scale screening of its genome for mutations with subsequent cloning of the affected genes.16 The availability of a genome sequence permits very rapid isolation of genes by “positional candidate” cloning17 once they are genetically mapped. The Sanger Center, funded by the Wellcome Trust, began zebrafish genome sequencing in February 2001.18 A very preliminary draft of the genome was released in July 2002.19

The dog has been a favored animal model for experimental medicine since the mid-19th century20 and has been important in a wide variety of cardiovascular research applications, including the determination of potential cardiotoxicity of new drugs. Indeed, search of the CRISP database21 indicates that the canine model is used in hundreds of NHLBI grants. An impressive collection of canine genome resources (including physical, genetic, and transcript maps) is already available, and the dog was recently added to the “high priority” list of organisms for complete genomic sequencing.22

Data Mining and Analysis

Since the advent of GenBank in 1982 and the Human Genome Project in 1990, bioinformatics has been synony-
mous with DNA and protein sequence data management and analysis, and with the deluge of new data, this role for bioinformatics is unlikely to abate soon. Although bioinformatics has expanded in new directions with the emergence of functional genomics data and “systems biology,” the ability to navigate and search through sequence databases and associated annotations remains an essential skill. A number of books and reviews address the issues involved in sequence database searching.26,27 The following discussion is therefore limited to a few important characteristics of genome sequence data and annotation and to describing some typical analyses that are supported by existing databases and software tools. A case study of cardiovascular discovery through comparative genomics is also provided.

Genome sequence data are continually released into the public domain even before it has been finished, and thus, one must be mindful of this fact when analyzing data and interpreting results. Details of the production and assembly processes that result in draft versions of various levels of quality and completeness are discussed elsewhere.28 Briefly, the accuracy of data are proportional to the number of times each nucleotide base in a particular sequence has been sampled, also known as “coverage.” For example, the preliminary draft of the zebrafish genome has only 2-fold coverage, whereas the rat genome is available at 6-fold coverage. Even 1-fold coverage data can be extremely useful for gene discovery, whereas 6-fold coverage data are of sufficient quality and continuity to justify and support detailed analysis and annotation.

Annotation of genome sequences is a complex process for which there is no real endpoint (see reference29 for an excellent review). Consensus approaches involve similarity matching to previously sequenced cDNAs and/or genes, plus the application of various gene prediction programs, but the major information providers (Table 1) differ in details and emphasis.28 Annotation “pipelines,” and the reliability of the resultant products, continue to evolve, and scientific interpretation of the genome will perpetually be subject to revisions as new discoveries are made. To increase the utility of these data for the nonspecialist, the National Human Genome Research Institute (NHGRI), in collaboration with the journal Nature Genetics, has produced “A User’s Guide to the Human Genome.”28 This tutorial consists of 13 Web-based exercises that illustrate how to solve a variety of common, but powerful and sophisticated tasks, such as in silico positional cloning, the analysis of gene families, and the identification of functional and structural domains in proteins.

To illustrate the power of comparative genomics, we cite the recent discovery of the apolipoprotein AV gene (APOAV) that encodes a previously unknown member of the well-studied apolipoprotein gene family, mostly closely related to APOAI, which was cloned nearly two decades ago. The APOAI, APOCIII, and APOAI genes are found within a 20-kb locus on human chromosome 11q32. Through comparative analysis of human and mouse genomic sequences, Pennacchio et al discovered a region of sequence conservation approximately 25 kb downstream from APOAI that proved to contain the APOAV gene. Because the AI/CHII/ AIV locus was well-known to influence plasma lipid levels in humans, Pennacchio et al studied lipid levels in knockout and transgenic mice and showed that APOAV has a strong inverse correlation with plasma triglyceride levels. Subsequent studies by this group demonstrated that genetic polymorphisms in the APOAV locus are significantly associated with plasma triglyceride levels in humans.

The Cardiovascular Transcriptome

Identification of the cardiac transcriptome is a critically important first step toward understanding how environmental factors and disease processes affect gene expression in the heart. No consensus cardiac transcriptome has yet been established for any organism, including human. Indeed, there are few publicly available resources describing gene expression in heart. Significance of the problem is well illustrated using the example of gene KCND3. KCND3 is known to be expressed in the cardiac ventricles and is thought to encode the major component of the voltage-dependent Ca++-independent transient outward current (Ito), a key contributor in shaping the early phase of the cardiac ventricular action potential. KCND3 mRNA transcript level is also known to be downregulated in end-stage heart failure. A search of GenBank using the string “Kv4.3 OR KCND3” indicates a total of 75 entries, 25 of which are from human and 8 of which have the designation “heart” in the tissue type field. KCND3 corresponds to Unigene cluster Hs.184889 and Locus Link id 3752. However, the heart tissue type annotation from the 8 GenBank entries is not carried forward to the Unigene cluster, and Locus Link reports do not contain a tissue type field. Indeed, the Unigene cluster summary indicates in the expression information field that KCND3 is expressed in neural tissue. This illustrates the difficulty of identifying genes expressed in heart.

There have been limited efforts to organize information on the cardiac transcriptome. The BodyMap Database describes tissue-specific gene expression, including that in human left ventricle, right atria, and embryonic mouse heart. To obtain this database, a 3'-directed cDNA library was prepared from each tissue sample, and randomly selected clones were sequenced, compared, and organized into clusters. A representative sequence having the lowest content of ambiguous bases was selected from each cluster and compared against data in GenBank. Those with over 90% similarity to the 3' end of the mRNA entries or to the reported terminal exon of known genes were regarded as representing those genes. BodyMap lists 744 genes expressed in human heart (atria and ventricles) and 453 genes expressed in embryonic mouse heart. Updates of BodyMap entries are infrequent and database query capabilities are limited.

An additional resource is the Cardio Gene Expression (CaGE) Knowledgebase. In order for a gene to be included in CaGE, it must be present in NCBI’s Locus Link and have evidence confirming its expression in heart. Supporting evidence includes the designation of heart in the express field of a Unigene cluster, or the designation of heart in the tissue type field of a GenBank entry. Relationships can then be established between any individual GenBank clone assigned to a Unigene cluster and any Unigene cluster representing a unique Locus Link. Two additional
sources of human cardiac gene expression data accessed by CaGE are the Toronto Cardiac Gene Unit library and the BodyMap database. CaGE is rebuilt daily after accessing all of these sources. The last source of evidence for expression comes from gene expression profiling experiments conducted on normal and dilated cardiomyopathic failing human hearts. Currently, such data are limited to that collected at the Johns Hopkins University School of Medicine using oligonucleotide and cDNA microarrays. Plans are being developed to incorporate data from expression studies conducted as part of the NHLBI Programs in Genomic Applications, described later.

Interaction with CaGE is via a Web interface. Genes can be browsed by the first letter or number of their official gene name. Basic searches can be performed using either official or alias gene names, chromosome number or cytogenetic band, official or alias gene symbols, GenBank accession number, Unigene cluster, or Locus Link identifiers. Clinical synopses found within OMIM may be searched for genes known to be associated with a given human phenotype. The results of these queries generate a gene “home page” that displays all data stored within CaGE for that given locus link. Currently, CaGE contains 7349 Unigene clusters known to be expressed in human cardiac tissue. There are 676 human Locus Link entries in the BodyMap Atria library, 721 in the BodyMap Ventricle library, and 2618 in the Toronto Cardiac Gene Unit library. An additional 1800 human Locus Links are from the Johns Hopkins gene expression data. In total, CaGE tabulates 8085 unique Human Locus Link entries expressed in human cardiac tissue. This is just a fraction of the total number of genes estimated to be expressed in aorta, adult, and fetal heart.

Serial analysis of gene expression (SAGE) is a powerful method for the identification of gene expression patterns. Advantages over other methods such as use of oligo- or cDNA microarrays are that SAGE is not dependent on prior knowledge of transcript information and is able to detect transcripts expressed at low copy number. Results are reported in terms of absolute or relative numbers of tags, facilitating direct comparison of SAGE results obtained in different laboratories. NCBI has developed a public repository for SAGE transcriptome information from a number of different organisms and tissues called SAGEmap. Recently, Anisimov et al have used SAGE to produce the first quantitative expression profile of adult mouse heart and have made this transcriptome available at SAGEmap (GSM1681). This represents an important step forward in the quantitative determination of the cardiac transcriptome and is an approach that is likely to be extended to other species in the near future.

One of the most exciting new experimental technologies to emerge in recent years have been methods for obtaining genome-wide mRNA expression data using oligonucleotide and cDNA microarrays, a topic considered previously in this Review series. These approaches are likely to provide significant insights into changes of gene expression as well as mechanisms of gene regulation in a variety of cardiac disease processes. The National Heart, Lung, and Blood Institute (NHLBI) launched the Programs for Genomic Applications (PGAs) on September 30, 2000, funding a total of 11 projects (Table 2). This program is a major initiative to advance functional genomic research relating to heart, lung, blood, and sleep heart and disorders, with the majority of sites undertaking significant research efforts in large-scale studies of gene expression in human cardiovascular disease as well as in animal models. Specific goals of the PGAs include the following: (1) development of animal models and characterization of phenotype in these models; (2) measurement of gene expression, identification of regulated genes, and identification of single nucleotide polymorphisms (SNPs) in both animal models and human patients for a range of cardiopulmonary disorders; (3) development of new databases, data analysis procedures, and software tools for cardiovascular genomics. All information, reagents, and tools developed by the PGAs are mandated to be released in a timely manner to the research community. Microarray data are released 60 days after completion of the last hybridization of an individual experiment, and after the data passes quality control standards. Data are made available either in the form of text files (the Hopgenes PGA) or through database query (eg, chiperDB of the CardioGenomics PGA or GeneTraffic 2.1 of the Southwestern PGA). Distribution of microarray data will be facilitated greatly by adoption of MIAME (Minimal Information for Annotation of Microarray Experiments)-compliant data markup languages such as the Microarray Gene Expression Markup Language (MAGE-ML). Indeed, the Nature journals and The Lancet have announced recently that microarray data submitted for publication must be MIAME-compliant.

The Cardiovascular Proteome

Proteomics is the study of the full protein complement of the genome, and seeks to identify and characterize mechanisms regulating expression level, co- and posttranslational modifications, and interactions between all proteins in the cell. Applications of proteomics to the study of cardiovascular biology are described in several recent reviews. These efforts are presently focused on characterization of the cardiac cytoplasmic, mitochondrial, and myofilament subproteomes and characterization of myocyte response to ischemic injury. Research in cardiovascular proteomics is likely to develop rapidly, particularly in light of the recent funding of ten national proteomics centers as part of the NHLBI Proteomics Initiative. Similar in spirit to the Programs for Genomics Applications, the intent of this initiative is to establish a number of multidisciplinary centers focused on the development of innovative proteomic technologies, and the application of these technologies to enhancing our understanding of heart, lung, blood, and/or sleep disease. As with the PGA, all products of this effort including reagents, experimental and analytical techniques, and data will be made available to the scientific community. This initiative is sufficiently new that at the time of this writing, URLs for center Web sites are not yet available.

There are a number of well-known protein databases that make available summary information on general protein sequence and structure. Information in these databases is typically generated by expert annotators. Examples include the SWISS-PROT/TreMBL Protein Knowledgebase, the Protein Infor-
mation Resource, 78,79 and the Protein Data Bank.80,81 NCBI’s \textit{Entrez-Protein} (www.ncbi.nlm.nih.gov/Database/index.html) compiles and makes available information from many of these sources; information retrieval is via Boolean keyword search. A variety of other data analysis and retrieval tools, such as the BLAST program for sequence similarity searching, are also available (www.ncbi.nlm.nih.gov/Tools/index.html).

Databases supporting direct access to experimental data currently take the form of annotated flat-file images of 2-D gels. These databases include SWISS-2DPAGE as well as heart-specific 2-D gel databases (the Harefield Hospital Heart Science Center 2D Gel Protein Database HSC-2D PAGE82; the Heart High-Performance 2-DE Database at the Max Delbruck Center for Molecular Medicine83; the Human Myocardial Two-Dimensional Electrophoresis Protein Database Heart 2D-PAGE84; and the 2-dimensional polyacrylamide gel electrophoresis database of rat heart85). Creation of such databases is facilitated by the availability of open source software called “make2ddb” for generating 2-D gel databases.86

These data sources constitute a rich resource for the general proteomics community. However, the rapid pace of development of proteomics technologies and the resulting diversity and complexity of proteomics data poses special challenges.87 In particular, methods for structuring and searching proteomics databases to retrieve groups of proteins based on well-known pathways, functional classifications, and specific posttranslational modifications must be developed. Methods for annotating and differentiating posttranslational modifications predicted from protein motifs using computational algorithms versus those for which there is direct experimental evidence are required. Protein concentrations and other measured attributes should be compared with values determined in reference samples to enhance data quantification. With regard to protein identification based on mass spectrometry, annotations must provide meaningful statistical measures of the quality of match. An issue that will figure importantly in the development of the NIH Proteomics Centers is that data representation and dissemination must be facilitated by the adoption of standards for data description. As one example of such an effort, the Human Proteome Organization is promoting the development of standard formats for the representation and exchange of mass spectrometry and protein-protein interaction data and annotations.88,89 These formats are derivatives of XML (eXtensible Markup Language), a language that originated as a standard for document formatting, but which is now used as a format to support distributed network communication, has great potential as a tool for making both data and computational algorithms transparently available to other software applications, thus

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|}
\hline
Name & Project Title & Project Web Site & Resources \\
\hline
BayGenomics & The NHLBI-Bay Area Functional Genomics Consortium & http://baygenomics.ucsf.edu/ & Murine embryonic stem cell lines for use in cardiovascular and pulmonary research \\
\hline
\hline
CardioGenomics & Genomics of Cardiovascular Development, Adaptation and Remodeling & http://www.cardiogenomics.org & Expression profiles from murine models of cardiomyopathy; sarcomere protein gene mutation database; human gene mutation and SNP data \\
\hline
HopGenes & Applied Genomics in Cardiopulmonary Disease & http://www.hopkins-genomics.org & affynoRM A microarray analysis software; cardiopulmonary disease candidate genes list; expression profiles from rat and murine models of pulmonary disease \\
\hline
InnateImmunity & Innate Immunity in Heart, Lung, and Blood Disease & http://innateimmunity.net & Innate immunity gene list; SNP data analysis tools \\
\hline
JAX PGA & Mouse Models of Heart, Lung, and Blood Diseases & http://pga.jax.org & Murine models of heart, lung, blood, and sleep disorders, mouse phenome database \\
\hline
ParaBioSys & Genomic Analysis of Stress and Inflammation & http://pga.mgh.harvard.edu & ParaBioSys software tools for genomic searching and alignment; murine expression data in response to proinflammatory, metabolic, and pathogen stresses affecting the cardiovascular system and the lung \\
\hline
PhysGen & Physiogenomics of Stressors in Derived Consomic Rats & http://pga.mcw.edu & Consomic rats strains for investigating physiological mechanisms of homeostasis and response to stress; phenotypic, genotypic, and microarray data \\
\hline
Seattle SNPs & UW-FHCRC Variation Discovery Resource & http://pga.mbt.washington.edu & Human inflammatory response SNP database; PolyPhred SNP detection software; Genotype (VG2) and Haplotype (VH1) visualization software \\
\hline
Southwestern & Genomics and Proteomics of Cell Injury and Inflammation & http://pga.swmed.edu & Expression and SNP data on genes involved in the cellular response to injury an inflammation; GeneTraffic microarray database \\
\hline
TREX & Microarray Expression Profiling of Rodent Models of Human Disease & http://pga.tigr.org & TIGR Microarray Data Analysis System; expression profiles for murine and rat models of heart, lung, and blood disease \\
\hline
\end{tabular}
\caption{NHLBI Programs in Genomics Applications}
\end{table}
facilitating the machine discovery, communication, and analyses of proteomic as well as genomic data.

The data resources described above provide descriptions of the properties of individual genes and proteins. However, cellular behavior is regulated in a complex manner through a diversity of interacting gene expression, signal transduction, metabolic, and electrophysiological pathways. Pathway properties are themselves determined by factors such as the specific nature of molecular interactions, formation of multicomponent complexes, and by subcellular localization. Representation of information on biological pathways in a form that supports complex querying and modeling is an important goal of postgenomics biology.

There are emerging databases and bioinformatics tools that address this need. The most ambitious effort is that of The Alliance for Cellular Signaling (AFCS). The aim of the AFCS is to achieve a quantitative understanding of cellular G protein–mediated signaling. This will be done using the so-called protein databases. The BIND database has proven reproductive and predictive properties and is sufficiently rich that it permits description of interactions between proteins, nucleic acids, and small molecules, protein post-translational modifications, linkage to external data sources for annotation purposes, and organization of pairwise interactions into larger scale interaction networks. A BIND Interaction Viewer is available for visualization of network interactions. BIND is an Open Source software development project and is available for download from SourceForge.net. Both BIND and the AFCS Molecule Pages therefore represent important resources that could be extended and used for development of cardiac-specific protein interaction and pathway databases.

Gene MicroArray Pathway Profiler is a free software tool for viewing and analyzing gene expression data superimposed on drawings of gene interaction networks with hyperlinks to annotation data. The software consists of several components. The GenMAPP Drafting Board software, in conjunction with Drafting Tools and the Object Toolbox, enable users to create new pathway representations as well as edit existing pathways, and to store these pathways in a file format known as MAPPs. The Expression Data Manager software is used to import and layer expression data onto these MAPPs. The GenMAPP Database is a library of all the genes used by the GenMAPP software. The GenMAPP Database stores information for linking expression data to objects in a MAPP, and also stores annotations for each MAPP object.

The PathDB software suite from National Center for Genome Research is an alternative system for building, visualizing, and querying cellular networks. Using client-side components (QueryTool and PathwayViewer), users may view and query pathway models stored in the PathDB relational database. Users may also download the software suite in order to run it locally to create and store pathway models.

New Directions in Bioinformatics: Computational Modeling

Integrative modeling of the cardiac myocyte has been advanced to a greater breadth and depth than that achieved in any other discipline of biological modeling. Development of myocyte models began in the early 1960s with publication of Purkinje fiber action potential models based on the Hodgkin-Huxley model of the squid action potential. Subsequent elaboration of these and other models led to development of the first biophysically based cell model describing interactions between voltage-gated membrane currents, pumps and exchangers, and intracellular calcium cycling processes in the cardiac myocyte. The so-called DiFrancesco-Noble model of the Purkinje fiber. This landmark model established the conceptual framework from which all subsequent models of the myocyte have been derived. Models of the myocyte now include descriptions of (1) voltage-dependent membrane currents, in some instances based on formulation of Markov state models of ion channels; (2) membrane pump and transporter function; (3) intracellular calcium cycling; (4) excitation-contraction coupling and isometric force generation; and (5) energy production via the tricarboxylic acid cycle and oxidative phosphorylation. These models have proven reproductive and predictive properties and have been applied to advance our understanding of myocyte function in both health and disease.

Source code is now available for at least three models of the ventricular myocyte action potential (the Luo-Rudy Dynamic model of the mammalian action potential, the Winslow-Rice-Jafri model of the canine ventricular myocyte, and the Jafri-Rice-Winslow model of the guinea pig ventricular action potential). In addition, there are Web-based simulation resources that facilitate model dissemination and use. These include the following: (1) the Virtual Cell system of the National Resource for Cell Analysis and Modeling at the University of Connecticut; (2) the Java-Based Integrative Model Simulation and Analysis Environment (JSIM)—an Open Source software develop-
opment project of the National Simulation Resource at
University of Washington, Seattle; and (3) iCell"—a
collection of myocyte models implemented as Java
applets.

The complexity of biological models, including those of
the cardiac myocyte, is increasing rapidly. This complexity
makes the reliable publication and exchange of models
difficult. XML-based markup languages such as CellML\(^\text{118}\)
and the Systems Biology Markup Language (SBML)\(^\text{119}\) are
being developed to support the error-free exchange of models
independently of the hardware and software architectures on
which these models will run. An application programming
interface for CellML is being developed, and several groups
are developing software for automated source code genera-
tion from CellML files.

Future Directions

A national infrastructure supporting the acquisition, distribu-
tion, and analysis of cardiovascular genomic and proteomic
data is now in the formative stage. We will, without question,
witness dramatic growth of the quantity, quality, and avail-
ability of cardiovascular data and models relating to health
and disease over the next five years. However, the value of
these data and models will depend to a great extent on quality
of the annotation provided. In the case of experimental data,
it is necessary that investigators undertake critical review and
quality control before public release, and provide careful
annotation to assure that animal model phenotype, clinical
information relevant to the interpretation of samples from
human tissue, and all aspects of sample preparation and
analysis are described fully. Data must be organized within
databases having a sufficiently rich schema to permit com-
plex queries based on underlying data attributes. Annotations
describing data processing methods applied to any archived
data must be available. In the case of computational models,
anotation must include documentation as to how model
parameters are determined, and evidence of model reprod-
uctive and predictive capabilities. Finally, data and models
must be exportable/accessible using standards agreed on by
the research community so as to facilitate error-free machine
exchange. If these challenges are met, we will have the
opportunity to create a truly integrated cardiovascular re-
search community, the whole of which is far greater than the
sum of its parts.

Acknowledgments

This work is supported by grants from the NIH (RO1 HL-61711,
RO1 HL-60133, RO1 HL-72488, P50 HL-52307, N01 HV-28180),
The Falk Medical Trust, and The Whitaker Foundation.

References

1. National Human Genome Research Institute. Online research resources:
other federal projects in genomics. Available at: http://www.
genome.gov/page.cfm?pageID=10003899
2. National Human Genome Research Institute. Sequences, maps and BAC
libraries: genome sequencing prioritization list. Available at: http://
www.genome.gov/page.cfm?pageID=10002154
1953;171:737.
Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and
5. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith
HO, Yandell M, Evans CA, Holt RA, et al. The sequence of the human
6. Wheeler SJ, Boguski MP, Duret L, Makalowski W. Human and
nematode orthologs—lessons from the analysis of 1800 human genes and
7. Fortini ME, Skupski MP, Boguski MS, Harharan IK. A survey of human
2002;150:F23–F30
sequencing and comprehensive analysis of the mouse genome. Nature.
9. Maniatis T, Tasic B. Alternative pre-mRNA splicing and proteome
10. Roberts GC, Smith CW. Alternative splicing: combinatorial output from
orthologous mouse and human full-length mRNA and protein
12. Makalowski W, Boguski MS. Evolutionary parameters of the tran-
scribed mammalian genome: an analysis of 2,820 orthologous rodent
13. Jacob HJ, Kwitek AE. Rat genetics: attaching physiology and pharma-
14. NIH Rat Genomics and Genetics Web site. Available at: http://
www.nih.gov/science/dbrat/
15. Stoll M, Cowley AW Jr, Tonellato PJ, Greene AS, Kaldunski ML,
Roman RJ, Dunas P, Schork NJ, Wang Z, Jacob HJ. A genomic-
systems biology map for cardiovascular function. Science. 2001;294:
1723–1726.
16. Shin JT, Fishman MC. From zebrafish to human: modular medical
17. Collins FS. Positional cloning moves from perditional to traditional.
18. The Wellcome Trust Sanger Institute. The Danio rerio sequencing
project. Available at: http://www.sanger.ac.uk/Projects/D_rerio/
19. The Wellcome Trust Sanger Institute. First assembly of the zebrafish
genome released: The Danio rerio sequencing project. Available at: http://
www.sanger.ac.uk/Projects/D_rerio/assembly_information.shtml
New York, NY: Dover; 1957.
21. ERA Commons: Computer Retrieval of Information on Scientific Proj-
cets. Available at: http://crisp.cit.nih.gov/
22. National Human Genome Research Institute. Sequences, maps and BAC
Libraries: Genome Sequencing Prioritization List. Available at: http://
www.genome.gov/page.cfm?pageID=10002154
1662–1664.
27. Pickeral O, Boguski MS. The bioinformatics bookshelf: teach yourself
28. Wollfsberg TG, Wetterstrand KA, Guyer MS, Collins FS, Baxevanis AD.
JCA, Krauss RM, Rubin EM. An apolipoprotein influencing triglycerides
31. Boguski MS, Elshourbagy N, Taylor JM, Gordon JL. Rat apolipoprotein
A-IV contains 13 tandem repetitions of a 22-amino acid segment with
amphipathic helical potential. Proc Natl Acad Sci U S A. 1998;81:
5021–5025.
32. Elshourbagy NA, Walker DW, Boguski MS, Gordon JL, Taylor JM. The
nucleotide and derived amino acid sequence of human apolipoprotein
A-IV mRNA and the close linkage of its gene to the genes of apoli-
33. Li G-R, Feng J, Yue L, Carrier M. Transmural heterogeneity of action
potentials and Ito1 in myocytes isolated from the human right ventricle.
79. Protein Information Resource. Available at: http://pir.georgetown.edu/
Genome Informatics: Current Status and Future Prospects
Raimond L. Winslow and Mark S. Boguski

Circ Res. 2003;92:953-961
doi: 10.1161/01.RES.0000072475.04373.07
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/92/9/953

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/