tie-ing the antiinflammatory effect of angiopoietin-1 to inhibition of NF-κB

Byeong Hwa Jeon, Firdous Khanday, Shailesh Deshpande, Azeb Haile, Michitaka Ozaki, Kaikobad Irani
latter, recent provocative evidence suggests that ABIN proteins share a sequence of homology with IKK-γ (inhibitor of kappa B kinase), a regulatory component of the IKK signalsome that is essential for phosphorylation and consequent degradation of IκB (inhibitor of kappa B), an indispensable step in NF-κB activation. This raises the interesting possibility that ABIN proteins act by binding to and competing for an upstream regulator of the IKK signalsome, thereby inhibiting its activity. One could then speculate that Ang1-stimulated recruitment of ABIN-2 in endothelial cells could facilitate this process (perhaps by leading to a conformational change in ABIN-2 or bringing it in proximity to proteins involved in IKK activation) (Figure).

In summary, the data offered by Hughes et al.21 show that the Tie2-ABIN-2 interaction is responsible for the inhibitory effects of Ang1 on stimulated NF-κB activity, implicating this novel interaction in mediating the antiinflammatory properties of Ang1. However, in addition to its role in inflammation, NF-κB has myriad effects, raising numerous questions as to how, if at all, the Tie2-ABIN-2 interaction modifies the other effects of Ang1 on endothelial cell survival26 and migration,15 both of which are critical in angiogenesis, and both of which in endothelial cells or other cellular systems involve NF-κB signaling in some fashion.27–29 Similar questions arise about the role of the Tie2-ABIN-2 interaction in molecular crosstalk with signaling pathways, such as PI3K-Akt, known to be activated by Ang1 (Figure), but that also modulate NF-κB activity.30 The answers to such questions will be crucial in determining the physiological relevance of the Tie2-ABIN-2 interaction and may provide important clues to the intricate process of blood vessel formation in normal physiology and disease states.

References

Key Words: angiopoietin-1 ■ Tie2 ■ nuclear factor-κB ■ endothelial cells ■ ABIN-2
Tie-ing the Antiinflammatory Effect of Angiopoietin-1 to Inhibition of NF-κB
Byeong Hwa Jeon, Firdous Khanday, Shailesh Deshpande, Azeb Haile, Michitaka Ozaki and Kaikobad Irani

Circ Res. 2003;92:586-588
doi: 10.1161/01.RES.0000066881.04116.45
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/92/6/586

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org/subscriptions/