Hypercapnic Acidosis Activates K_{ATP} Channels in Vascular Smooth Muscles

Xueren Wang, Jianping Wu, Li Li, Fuxue Chen, Runping Wang, Chun Jiang

Abstract—ATP-sensitive K^+ channels (K_{ATP}) couple intermediary metabolism to cellular activity, and may play a role in the autoregulation of vascular tones. Such a regulation requires cellular mechanisms for sensing O_2, CO_2, and pH. Our recent studies have shown that the pancreatic K_{ATP} isoform (Kir6.2/SUR1) is regulated by CO_2/pH. To identify the vascular K_{ATP} isoform(s) and elucidate its response to hypercapnic acidosis, we performed these studies on vascular smooth myocytes (VSMs). Whole-cell and single-channel currents were studied on VSMs acutely dissociated from mesenteric arteries and HEK293 cells expressing Kir6.1/SUR2B. Hypercapnic acidosis activated an inward rectifier current that was K^+-selective and sensitive to levcromakalim and glibenclamide with unitary conductance of ~35 pS. The maximal activation occurred at pH 6.5 to 6.8, and the current was inhibited at pH 6.2 to 5.9. The cloned Kir6.1/SUR2B channel responded to hypercapnia and intracellular acidification in an almost identical pattern to the VSM current. In situ hybridization histochemistry revealed expression of Kir6.1/SUR2B mRNAs in mesenteric arteries. Hypercapnia produced vasodilation of the isolated and perfused mesenteric arteries. Pharmacological interference of the K_{ATP} channels greatly eliminated the hypercapnic vasodilation. These results thus indicate that the Kir6.1/SUR2B channel is a critical player in the regulation of vascular tones during hypercapnic acidosis. (Circ Res. 2003;92:1225-1232.)

Key Words: K_{ATP} ■ Kir6.1 ■ hypercapnia ■ ATP ■ vasodilation

K_{ATP} channels are expressed in various tissues including pancreatic β-cells, skeletal muscles, myocardium, vascular smooth myocytes, and central neurons where they couple the intermediary metabolism to cellular excitability.1,2 Although these K^+ channels are sensitive to ATP, studies have shown that they are also modulated by other nucleotides and phospholipids.$^{3-9}$ Previous studies have shown that K_{ATP} channels in myocardium and insulin-secreting cell line have shown that they are also modulated by other nucleotides and phospholipids.$^{3-9}$ Previous studies have shown that K_{ATP} channels in myocardium and insulin-secreting cell line have shown that they are also modulated by other nucleotides and phospholipids.$^{3-9}$

Because under most physiological and pathophysiological conditions, ATP levels may not readily drop to submillimolar concentrations in cells to activate K_{ATP} channels,1,2 demonstration of the CO_2/pH sensitivity of the K_{ATP} channels becomes critical for understanding the molecular basis of the autoregulation of vascular tones.

The vascular K_{ATP} channels are likely to be made of Kir6.1 and SUR2B. The heteromeric Kir6.1/SUR2B channel has several biophysical properties similar to the K_{ATP} channels described in mesenteric artery and portal vein.$^{22-24}$ Among these properties is the stimulation of channel activity by internal nucleoside diphosphates (NDP), which gave them the name K_{NDP} channel.22,23 The Kir6.1 is indeed involved in vascular functions, as mice with the Kir6.1-gene defect have a high rate of sudden death associated with spontaneous electrocardiographic ST elevation followed by atrioventricular block.25 To test the hypotheses that (1) the vascular K_{ATP} channel(s) is sensitive to CO_2/pH, and (2) its CO_2/pH sensitivity plays a crucial role in the vascular autoregulation, we performed these studies.

Materials and Methods

Cell Dissociation

Vascular smooth myocytes were freshly dissociated from rats (Sprague-Dawley, 200 to 400 g; Charles River Laboratories, Wil-
Expression Kir6.1 and SUR2B in Mammalian Cell Line

Rat Kir6.1 (GenBank No. D42145) and rat SUR2B cDNAs (GenBank No. D86038) were cloned into a eukaryotic expression vector (pcDNA3.1, Invitrogen Inc). The Kir6.1/SUR2B channel was expressed in the human embryonic kidney (HEK293) cells as we detailed previously.15,28 The cells were transfected using Lipofectamine 2000 (Invitrogen) with a 5-μg mixture of Kir6.1 and SUR2B cDNAs in a 1:2 ratio and split twice weekly. To facilitate the identification of positively transfected cells, 0.5 μg of green fluorescent protein (GFP) cDNA (pEGFP-N2, Clontech) were added to the cDNA mixture. Cells were disassociated from the monolayer using 0.01% trypsin 24 to 48 hours after transfection. A few drops of the cell suspension were added to a Petri dish, and then incubated at 37°C for at least 2 hours before experiments.

Electrophysiology

Patch clamp experiments were performed at room temperature as described previously.12,15,26,27 In brief, fire-polished patch pipettes were made from 1.2 mm borosilicate capillary glass (Sutter Instruments). Giant inside-out patches were used to study macroscopic currents in a cell-free condition using recording pipettes of 0.5 to 1.0 MΩ. Current records were low-pass filtered (2 kHz, Bessel, 4-pole filter, −3 dB), digitized (20 kHz, 16-bit resolution), and stored on computer disk for later analysis (pCLAMP8, Axon Instruments). The bath solution contained in (mmol/L) 140 potassium gluconate, 10 KCl, 1 MgCl₂, 5 EGTA, 5 UDP, 10 d-glucose, and 10 HEPES (pH 7.4). The pipette was filled with the same solution. In ATP-containing solutions, pH was titrated to 7.4 after ATP (K⁺ salt) was added. All ATP-containing solutions were prepared immediately before experiments and used for less than 4 hours. For whole-cell studies, the bath solution contained in (mmol/L) 125 KCl, 1.2 MgSO₄, 5 CaCl₂, 10 HEPES (pH 7.4), 10 MgCl₂, 5 EGTA, and 10 NaHCO₃, with 0.5 mg/mL collagenase (Type F, Sigma). The tissues were allowed to equilibrate for ~30 minutes in this solution aerated with 5% CO₂–95% O₂. Baseline recordings were taken when the arteries were perfused and superfused (2 mL/min) with the modified Krebs-bicarbonate buffer bubbled with 5% CO₂–95% O₂ (pH 7.4). Hypercapnia was produced by switching the superfusate to a solution containing (in mmol/L) 96 NaCl, 5.0 KCl, 1.2 MgSO₄, 2.4 CaCl₂, 10 d-glucose, 48 NaHCO₃, and 0.1 EGTA. The tissue was allowed to equilibrate for ~30 minutes at 37°C and continually stirred for 45 minutes. The digested tissues will then be washed and triturated with a fire-polished glass Pasteur pipette to yield single smooth muscle cells.26,27

Results

Hypercapnia Activates K_{ATP} Currents in Acutely Dissociated Vascular Smooth Myocytes

To understand how the vascular K_{ATP} channels respond to PCO₂/pH, we performed patch clamp experiments on VSMs freshly dissociated from rat mesenteric arteries. These dissociated cells showed clear 3-dimensional morphology with smooth surface. Cells were rejected for further studies, if they (1) became flat and lost 3-dimensional structure, (2) had membrane blebs or rough surface, (3) showed the sign of swelling or shrinkage, and (4) failed to attach to the surface of the recording chamber. Figure 1A shows a few examples of the dissociated VSMs.

Whole-cell currents were studied in these freshly dissociated VSMs in the voltage clamp mode. These cells expressed K⁺ currents with weak inward rectification. These currents were activated by 10 μmol/L levcromakalim, a K_{ATP} channel activator, by 80.1±12.1% (n=4).

The inward rectifying currents were rather small at baseline. The current amplitude increased markedly when cells were exposed to 10% CO₂ (62.9±3.8%, n=15; Figure 1B). The current activation is reversible and dependent on CO₂ levels (Figure 1B). Complete recovery was seen in cells with a period (3 to 5 minutes) of washout. This effect was seen in most VSMs, whereas a small number of cells showed no response or was slightly inhibited during the CO₂ exposure. We assumed that they constituted distinct populations of VSMs, on which further studies were not attempted. Selective decrease in extracellular pH to 6.6 did not produce any evident increase in the current amplitude, suggesting that the current activation was mediated by intra- but not extracellular acidification. The current activation was almost completely abolished when there was 10 μmol/L glibenclamide, a K_{ATP} blocker.
channel blocker, in the perfusate bubbled with 10% CO2, (3.6±13.5%, n=7; P<0.01 in comparison with 10% CO2) (Figures 2B and 1C). In the presence of levcromakalim (10 μmol/L), the current amplitude was modestly augmented by 10% CO2 reaching a level (78.5±15.5%, n=7) that was not different from the effect of levcromakalim alone (P>0.05; Figures 1B and 1C). The currents activated by 10% CO2 were almost 80% of the total currents activated by 10 μmol/L levcromakalim, a concentration known to open most KATP channels (Figure 1B). The currents activated by CO2 showed weak inward rectification.

Single-channel currents were studied in inside-out patches obtained from the dissociated VSMs. With equal concentrations of K+ (145 mmol/L) on both sides of patch membranes, inward rectifying currents were observed. These currents were K+ selective, and had unitary conductance of 35.0±1.2 pS (n=9) (Figure 2A). These currents showed rapid rundown after patch excision. Such rundown was alleviated in the presence of 5 mmol/L UDP and 1 mmol/L Mg2+ in the internal solution. Under such a condition, the currents were inhibited by ATP (Figure 2B) with IC50 0.6 mmol/L (Figure 2D). The current amplitude increased when the internal surface of patch membranes was exposed to acidic pH. The maximal activation occurred at pH 6.5 to 6.8, at which the inward rectifying currents increased by 103.0±17.7% (n=5). Further acidification caused inhibition of channel activity (Figures 2C and 2E), which was only partially reversible or even irreversible in some cells. Exposure of the intracellular patch membranes to isohydric hypercapnia (10% CO2, pH 7.4) did no have any significant effect on the currents (1.7±4.4%, n=4), suggesting that the effect is produced by pH rather than molecular CO2.

In addition to these acid-activated currents, we observed currents that were inhibited by acidic pH in a small number of patches. The acid-inhibited currents that were also K+-selective with inward rectification were insensitive to ATP and glibenclamide, suggesting that they are not recorded from KATP channels.

Kir6.1 and SUR2B Are Expressed in Vascular Smooth Muscles

The currents activated during hypercapnic acidosis showed several properties similar to the cloned Kir6.1 channel.22,23 To demonstrate the expression of the Kir6.1 and SUR2B in mesenteric arteries, we performed in situ hybridization experiments using antisense riboprobes labeled with digoxigenin. Distributions of the Kir6.1 and SUR2B mRNAs were revealed under bright-field microscope. Coexpression of Kir6.1/SUR2B mRNAs was observed in mesenteric arteries (Figure 3A). Control experiments were done in the renal tissue in which arteries but not veins nor the tubular epithelium were stained, indicating that the labeling with these riboprobes is specific (Figure 3B). Consistent results were obtained from 4 rats for each of these tissues. The sense riboprobes did not show any positive labeling in these tissues.
Similar Activation Is Seen in the Kir6.1/SUR2B Channel During Hypercapnic Acidosis

The Kir6.1/SUR2B channel was expressed in HEK293 cells. Inward rectifying currents with single-channel conductance of 35.7 ± 0.3 pS ($n=9$) were recorded from these cells in excised inside-out patches (Figure 4A). As reported previously, channel activity rapidly declined after excision. In the presence of 5 mM UDP and 1 mM Mg$^{2+}$, these channels remained active and were inhibited by ATP with IC$_{50}$ 0.5 mM/L (Figure 4D). They were also stimulated by 10 μmol/L levcromakalim and inhibited by 10 μmol/L glibenclamide (not shown).

The pH$_i$ sensitivity of the Kir6.1/SUR2B channel was studied in excised inside-out patches. Symmetrical concentrations of K$^+$ (145 mM/L) were applied to both sides of the patch membranes. Exposure of the internal surface of patch membranes to a perfusate with various pH levels produced concentration-dependent channel activation (Figure 4C). The open-state probability (P_o) reached maximal at pH 6.8 to 6.5. Further acidification caused channel inhibition, which resembled the channel rundown as washout led to poor recovery. The pH-P_o relationship for the Kir6.1/SUR2B channel was almost identical to that for the VSM K$_{ATP}$ currents shown in Figure 2E with pK$_{1}$ 7.20 the midpoint channel activation, $h_1=1.2$ the Hill coefficient for channel activation, pK$_{2}$ 6.20 the midpoint channel inhibition, and $h_2=3.4$ the Hill coefficient for channel inhibition. Evident increase in the current amplitude was seen at pH 7.1; maximal current activation occurred at pH 6.5; and the currents showed inhibition at pH 6.2 or lower. Note that and 3 superimposed traces are shown in A, and 6 in each panel of B and C. Data are presented as mean\pmSE ($n=4$ to 6).

The pH$_i$ sensitivity of Kir6.1/SUR2B was measured in another inside-out patch. Small currents were seen at pH 7.4. The current amplitude increased when the internal surface of the patch membrane was exposed to acidic pH. Maximal current activation occurred at pH 6.5. Further decrease in pH$_i$ caused channel inhibition. Dose-dependent current inhibition by ATP. Data were expressed using the Hill equation (line): $y=1/[1+(ATP/IC50)^h]$, where IC$_{50}$ is the midpoint channel inhibition, h the Hill coefficient. IC$_{50}$=0.6 mM/L; $h=1.0$. E, Dose-dependent response was studied under the same condition as shown in C, and is described using a sum of two Hill equations (line): $y=(1/[1+(pH/pK_1)^{h_1}]+[1/[1+(pK_2/pH)^{h_2}])]^{-1}$, where pK$_1$=7.20 the midpoint channel activation, $h_1=1.2$ the Hill coefficient for channel activation, pK$_2$=6.20 the midpoint channel inhibition, and $h_2=3.4$ the Hill coefficient for channel inhibition. Evident increase in the current amplitude was seen at pH 7.1; maximal current activation occurred at pH 6.5; and the currents showed inhibition at pH 6.2 or lower. Note that and 3 superimposed traces are shown in A, and 6 in each panel of B and C. Data are presented as mean\pmSE ($n=4$ to 6).

Figure 2. A, Single-channel currents were recorded from a VSM acutely dissociated from the mesenteric artery. Equal concentrations of K$^+$ (145 mM/L, in the presence of 5 mM UDP and 1 mM Mg$^{2+}$) were used on both sides of the inside-out patch membrane. Two active channels were recorded at pH 6.5 in an inside-out patch. Both of them were closed at pH 7.4. Acid-activated currents had a unitary slope conductance of 35 pS with inward rectification. B, With ramp command potentials from 100 to -100 mV at a holding potential of 0 mV, inward rectifying currents were recorded at baseline (pH 7.4). These macroscopic currents were reversibly inhibited by 1 mM ATP. C, pH$_i$ sensitivity was studied in another inside-out patch. Small currents were seen at pH 7.4. The current amplitude increased when the internal surface of the patch membrane was exposed to acidic pH. Maximal current activation occurred at pH 6.5. Further decrease in pH$_i$ caused channel inhibition. D, Dose-dependent current inhibition by ATP. Data were expressed using the Hill equation (line): $y=1/[1+(ATP/IC50)^h]$, where IC$_{50}$ is the midpoint channel inhibition, h the Hill coefficient. IC$_{50}$=0.6 mM/L; $h=1.0$. E, Dose-dependent response was studied under the same condition as shown in C, and is described using a sum of two Hill equations (line): $y=(1/[1+(pH/pK_1)^{h_1}]+[1/[1+(pK_2/pH)^{h_2}])]^{-1}$, where pK$_1$=7.20 the midpoint channel activation, $h_1=1.2$ the Hill coefficient for channel activation, pK$_2$=6.20 the midpoint channel inhibition, and $h_2=3.4$ the Hill coefficient for channel inhibition. Evident increase in the current amplitude was seen at pH 7.1; maximal current activation occurred at pH 6.5; and the currents showed inhibition at pH 6.2 or lower. Note that and 3 superimposed traces are shown in A, and 6 in each panel of B and C. Data are presented as mean\pmSE ($n=4$ to 6).
Hypercapnia Produces K\textsubscript{ATP} Channel–Dependent Vasodilation of the Isolated and Perfused Mesenteric Artery

If the vascular K\textsubscript{ATP} channels play a role in regulation of vascular tones, hypercapnia should lead to vasodilation by activation of this channel. To test this hypothesis, we performed experiments on isolated arteries. The third-order branches of the mesenteric artery were perfused and superfused with modified Krebs solutions. Under a given perfusion pressure (70 mm Hg), the perfusion solution was collected at the other end of the arteries every 5 minutes. The perfusate volume (PV) was accounted as an index of vasodilation caused by isohydric hypercapnia (note that extracellular acidification had no effect as shown above). The PV increased by 59.4/11006 19.3% (n=6) when the arteries were exposed to a superfusate bubbled with 8% CO\textsubscript{2} (with

Figure 3. Expression of Kir6.1 and SUR2B in vascular smooth muscles. In situ hybridization histochemistry was performed in mesenteric and renal tissues using antisense riboprobes labeled with digoxigenin. A, Positive stains of both Kir6.1 and SUR2B were seen in the mesenteric arteries. B, In the kidney, arteries (black arrow) but not veins (white arrow) neither tubular epithelium (arrowhead) were positively labeled. Calibration=50 \textmu mol/L for A and B and 125 \textmu mol/L for C.

Figure 4. Activation of Kir6.1/SUR2B currents by acidic pH. A, Single-channel recording was done in an inside-out patch obtained from an HEK cell transfected with Kir6.1/SUR2B. Symmetrical concentrations of K(+) (145 mmol/L, 5 mmol/L UDP) were applied to both sides of the patch membrane. Unitary conductance was measured with a ramp command potential from −100 to 100 mV at pH 7.4. Straight line indicates a slope conductance of 35 pS; Vm, membrane potential. B, Conductance retained 35 pS at pH 6.2. C, At membrane potential of −80 mV, an active channel was recorded in an inside-out patch at pH 7.4. Channel activity (P\textsubscript{o}) increased at pH 7.1. P\textsubscript{o} was almost doubled and plateaued at pH 6.8 and 6.5. C indicates closure; O, opening. Note that P\textsubscript{o} was measured from a 20 second stretch of data. D, Dose-dependent inhibition of currents by ATP. IC\textsubscript{50}=0.6 and 0.5 mmol/L, and h=1.0 and 1.2, for the VSM currents (triangle) and the Kir6.1/SUR2B (circle), respectively. E. Current-pH relationship is expressed as shown in Figure 2D. The relationship of Kir6.1/SUR2B channel with pH (circle) can be described with the same equation used for the VSM channel (triangle) (ie, pK\textsubscript{1}=7.20, pK\textsubscript{2}=6.20). Data are presented as mean±SE (n=4 to 5).
38.4 mmol/L HCO$_3^-$, pH 7.4). This effect was reversible and dependent on P$_{CO_2}$ levels, as 10% CO$_2$ (with 48 mmol/L HCO$_3^-$, pH 7.4) raised the perfusate volume by 119.7 ± 23.7% (n=9) (Figures 5A and 5B). Such a hypercapnia-induced vasodilation was abolished almost completely in the presence of 10$^{-6}$ mol/L glibenclamide in the perfusate and superfusate (4.3 ± 4.8%, n=4) (Figure 5D). Levcromakalim (10 μmol/L) enhanced the perfusate flow by 109.0 ± 23.7% (n=4). After the levcromakalim-induced vasodilation, 10% CO$_2$ did not produce any significant further increase in the PV (112.7 ± 25.5%, n=4; P>0.05 in comparison to levcromakalim exposure) (Figures 5C and 5D). Such a value was not different statistically from that with 10% CO$_2$ exposure alone, suggesting that activation of K$_{ATP}$ channels underscores the hypercapnic vasodilation in the mesenteric artery.

Discussion

Several lines of experimental evidence have suggested that the vascular K$_{ATP}$ channels are pH sensitive. The cerebral circulation is automatically regulated according to local neuronal activity, P$_O_2$ and P$_CO_2$ levels. Such a regulation can be attenuated by K$_{ATP}$ channel blockers. Similar regulation of vascular tones has been reported in several peripheral tissues such as the coronary, renal, pulmonary, and skeletal muscular circulations. However, these previous studies on the K$_{ATP}$ channels are suggestive but not conclusive, because they depended on pharmacological agents that are known to affect other ion channels as well. The fact that there are a large number of ion channels expressed in the VSMs has greatly limited the further understanding of the pH sensitivity with the pharmacological approach. Indeed, we observe that certain K$^+$ channels are inhibited by acidic pH in the present study. Therefore, the information about the molecular identity of the acid-activated channels becomes crucial for any further investigations on the pH-dependent regulation of vascular tones.

Previous studies using RT-PCR and Northern blot have suggested that Kir6.1 and SUR2B may form K$_{ATP}$ channels in blood vessels, based on the logical reasoning that they are expressed in all tissues. Better evidence was found by Yamada et al., who demonstrated a K$_{ATP}$ channel by coexpression of Kir6.1 and SUR2B with all features of the vascular KNDP channel described in mesenteric artery and portal veins. This vascular K$_{ATP}$ channel is observed in our current studies in the VSMs. We compare this channel with the Kir6.1/SUR2B channel expressed in mammalian cell line.
Our results support the idea that this vascular KATP channel is equivalent to the Kir6.1/SUR2B channel for the following reasons: (1) Kir6.1 and SUR2B are coexpressed in mesenteric arteries as shown in our in situ hybridization studies; (2) we have recorded functional KATP currents from the VSMs dissociated from these arteries; (3) the acid-activated currents in the VSMs can be blocked in the presence of KATP channel blocker, and largely eliminated with prior activation of KATP channels by the channel activator; (4) the acid-activated currents in VSMs show single-channel properties and nucleotide sensitivity similar to the Kir6.1/SUR2B channel; (5) the pH sensitivity of the vascular KATP channel is the same as the Kir6.1/SUR2B. The CO2 effect on cloned Kir6.1 channels is greater than on vascular KATP, because the percentage effect shown appears to be exaggerated by the high density of Kir6.1 channels over the low levels of background currents in the HEK293 expression system. Therefore, the KATP channel that we showed in mesenteric arteries appears to be the Kir6.1/SUR2B isomorph.

Using cloned KATP channels, we have recently shown that the Kir6.2 channel can detect intracellular pH.12–15 Similar to the Kir6.1/SUR2B shown in the present study, the pancreatic KATP isomorph (Kir6.2/SUR1) is activated during hypercapnia.12–15 Such channel activation is independent of ATP and relies on a histidine residue in the C terminus.12–14 With pK 7.1, the pH sensitivity allows the channel to be activated in most physiological and pathophysiological conditions.12 These studies as well as our current observations indicate that both Kir6.1 and Kir6.2 are activated by intracellular protons, making a clear contrast to all other Kir channels that are inhibited by intracellular protons.43

Our results show that the CO2/pH sensitivity does allow the vascular KATP channel to regulate vascular tones. In the isolated and perfused mesenteric arteries, CO2 produces concentration-dependent vasodilation. The hypercapnia-induced vasodilation is abolished in the presence of 10 μmol/L glibenclamide. Levrcromakalim enhances the perfusate flow and attenuates CO2-induced further vasodilation. All these are consistent with our patch clamp studies in the mesenteric VSMs. In addition, we find that the maximal vasodilation is reached by 10% CO2 (Figure 5D) with ~80% of the KATP channel activation (Figure 1B), suggesting that the vascular KATP channel is regulated by physiological levels of pCO2.

The phenomenon that vascular tones are regulated according to metabolic state has been known for a long time, although the molecular basis was rather poorly understood.29 Such an autoregulation depends on sensors in local tissues for the detection of metabolic products/substrates, effectors for the control of vascular smooth muscle contractility, and certain coupling mechanisms between the sensors and effectors. Our observations in the present study indicate that the KATP channel plays a key role in this process. KATP channels are widely known to control membrane potential and cellular excitability.1,2 With the CO2/pH sensitivity, this vascular KATP channel is therefore capable of coupling the Pco2/pH levels to cellular excitability. Our results obtained from the isolated and perfused arteries show that such a property indeed enables the KATP channel to regulate vascular tones according to the ambient Pco2 levels. Therefore, our studies on tissue expression, comparison of channel biophysical properties, and functional relevance to vascular tones have begun to shed insight into the molecular basis of vascular regulation during hypercapnia. We believe that the demonstration of KATP channel activation by hypercapnic acidosis is not only a remarkable finding but also has profound impact on the understanding of circulatory physiology and the design of therapeutical modalities for several cardiovascular diseases, as the manipulation of this KATP channel by changing Pco2 or intracellular pH may provide an intervention to vascular tones in various tissues during metabolic stress. Thus, the identification of a specific membrane protein coupling hypercapnic acidosis to arterial tones contributes significantly to the understanding of the vascular regulation under physiology and pathophysiological conditions.

In conclusion, our studies have shown that hypercapnia and intracellular acidification activate a K+ current in the mesenteric VSMs that is sensitive to KATP channel blocker and activator. The channel is stimulated by millimolar concentrations of UDP and inhibited by ATP in the presence of UDP with unitary conductance of 35 pS. All these properties are also observed in the Kir6.1/SUR2B channel under the same experimental condition. In isolated and perfused mesenteric arteries, inhibition of the KATP channel eliminated vasodilation during hypercapnia. These as well as the coexpression of Kir6.1 and SUR2B mRNAs in the arteries indicate that the channel activated during hypercapnic acidosis in the mesenteric VSMs is likely to be made of the Kir6.1 and SUR2B and plays an important role in vascular regulation during hypercapnic acidosis.

Acknowledgments
This work is supported by the NIH (HL58410) and the American Diabetes Association (1-01-RA-12). C.J. is a Career Investigator of the American Lung Association. Special thanks to Dr S. Seino for providing the Kir6.1 cDNA and Dr Kurachi for the SUR2B cDNA. We are grateful to SmithKline Beecham Pharmaceuticals for the gift of levromakalim (BRL38227).

References

Hypercapnic Acidosis Activates K_ATp Channels in Vascular Smooth Muscles
Xueren Wang, Jianping Wu, Li Li, Fuxue Chen, Runping Wang and Chun Jiang

Circ Res. 2003;92:1225-1232; originally published online May 8, 2003;
doi: 10.1161/01.RES.0000075601.95738.6D
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/92/11/1225

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/