New Roads Leading to Ca\(^{2+}\) Sensitization

Avril V. Somlyo

G protein–coupled receptors (GPCRs) activated by a wide variety of agonists can switch on myosin light chain phosphorylation and force in smooth muscle. The extent of myosin light chain phosphorylation reflects activity of both the Ca\(^{2+}\)/calmodulin–dependent myosin light chain kinase (MLCK) and the myosin light chain phosphatase. Thus, at constant Ca\(^{2+}\) and MLCK activity, processes that inhibit myosin phosphatase activity cause a leftward shift of the Ca\(^{2+}\) force-response curve, a physiologically relevant phenomenon known as Ca\(^{2+}\) sensitization.\(^1\)\(^,\)\(^2\) There are two well-described myosin phosphatase inhibitory pathways. The first is through the small GTPase RhoA, in which GTP-bound RhoA translocates to the membrane and activates Rho-kinase that either directly or indirectly acts on the regulatory phosphatase subunit (MYPT-1) to inhibit phosphatase activity. The second signaling pathway, which is present in only some smooth muscles, is through phosphorylation of a phosphatase inhibitor, CPI-17 that, when phosphorylated, potently inhibits the catalytic subunit of myosin phosphatase.\(^3\) Crossstalk between the two pathways has been implicated from experiments using the Rho-kinase inhibitor Y-27632.\(^4\) A new signaling messenger of Ca\(^{2+}\) sensitization, which converges on the RhoA pathway at the level of Rho-kinase, is presented by Kobayashi and colleagues\(^5\) in this issue of Circulation Research: they demonstrate that sphingosylphosphorylcholine (SPC), a product of sphingomyelin deacylation, leads to an increase in force in the absence of an increase in the fura 2 Ca\(^{2+}\) signal. This force is inhibited by a Rho-kinase inhibitor, but not by inhibition of conventional or novel PKCs. Interestingly, the Ca\(^{2+}\)-independent contraction was maintained for \(\approx 2\) hours, even after removal of SPC from the bathing medium, and was completely and reversibly relaxed by Y-27632: subsequent stimulation with 118 mmol/L K\(^+\) induced a normal increase in [Ca\(^{2+}\)]\(_{i}\) and contraction. The redevelopment of force after a quick-release step during the maintained contraction indicated that SPC did not interfere with the ability of myosin crossbridges to hydrolyze MgATP and cycle normally. Provided that SPC is indeed released into the subarachnoid space, this study, carried out on cerebral arteries, has important implications for the therapy of cerebral vasospasm, a major health risk in some populations. Further studies on SPC production, regulation, and misregulation should establish its significance in normal and/or pathological states.

Apart from their metabolic roles, lysophospholipids such as lysosphosphatidic acid (LPA), sphingosine 1-phosphate (SIP), and sphingosylphosphorylcholine have long been known to be associated with cell growth and differentiation but are now also recognized as important signaling molecules functioning in a variety of intracellular pathways that target cell migration, cell growth, and cell survival (antiapoptosis), through effects on such processes as calcium mobilization, inhibition of adenylate cyclase, and activation of mitogen-activated protein kinases.\(^6\)\(^–\)\(^9\) S1P has also been implicated in cerebral vasospasm.\(^10\) It has been suggested\(^8\) that lysosphospholipids are likely to be as important a class of intracellular signaling molecules as the glycerophospholipid metabolites, which give rise to inositol 1,4,5-trisphosphate (InsP\(_3\)), diacylglycerol, phosphatidic acid, and arachidonic acid.

A major advance in this still young field has been the identification and cloning of GPCRs for some of the lysosphospholipids. Five of the eight GPCRs, commonly called Edg receptors for endothelial differentiation gene, bind SIP with nanomolar affinities and SPC \(\approx 10\)–100-fold less efficiently. The remaining three receptors preferentially bind LPA. (For a review of current nomenclature and structure activity relationships of lysophospholipid messengers, see References 9 and 11.) SIP is reported to be a high-affinity ligand \((K_c=33\ \text{nmol/L})\) for the ovarian cancer G protein–coupled receptor 1 (OGR1); it is expressed in several tissues and upon activation leads to Ca\(^{2+}\) mobilization and activation of p42/44 mitogen-activated protein kinases.\(^12\) A second closely related GPCR, also claimed to be activated by SPC, GPR4, has also been identified.\(^11\) Surprisingly, SPC-mediated Ca\(^{2+}\) sensitization in the cerebral artery described in the present study\(^3\) does not appear to signal through a GPCR. This conclusion was largely based on the finding that, unlike agonist-induced Ca\(^{2+}\) sensitization, SIP does not require the addition of ATP to the permeabilized smooth muscles, nor was SIP-induced Ca\(^{2+}\) sensitization affected by the nonhydrolyzable GDP\(_{BS}\), which inhibits signaling by GPCRs. Some of these same investigators have also reported similar effects of SIP \((1\ to \ 50\ \mu\text{mol/L})\) on intact, denuded of endothelium, and permeabilized pig coronary artery smooth muscle.\(^13\) On the other hand, in intact endothelial cells, SIP and SPC increase cytoplasmic [Ca\(^{2+}\)] through release of intracellular calcium as well as Ca\(^{2+}\) influx.\(^14\)\(^,\)\(^15\) SIP also increases production of NO, leading to endothelium-dependent vasorelaxation with an EC\(_{50}=5\ \mu\text{mol/L}.\)\(^14\) The different concentrations used by both groups make it probable that Ca\(^{2+}\) mobilization is through lysophospholipid GPCRs, whereas the activation of NO may be through direct action of SIP on the eNOS/NO pathway, because SPC readily crosses cell membranes. Evaluation of the contributions of SIP as a signaling molecule in vascular biology will require determination of the intracellular and extracellular concentrations of SIP in normal and pathological states.

If SIP, as suggested, directly activates Rho-kinase, it may be that it interacts with the putative negative regulatory region of Rho-kinase, possibly the pleckstrin homology domain (PH), based on consideration of the effects of arachidonic acid in vitro.\(^16\)\(^–\)\(^18\) In this model, the Rho binding domain (RB) and PH domains interact with the catalytic domain to inactivate the kinase (Figure). The enzyme
is thought to be activated by the binding of RhoA \cdot GTP to RB, thereby releasing the inhibition of the catalytic site. Perhaps SPC and other lipid messengers activate Rho-kinase through a similar mechanism, releasing the inhibitory from the catalytic domain through a conformational change and exposing the catalytic site. Direct activation of Rho-kinase by lipid messengers should not be inhibited by upstream inactivation of RhoA by the bacterial exoenzyme C3, whereas an inhibitor of SPC production (eg, sphingomyelinase) would be expected to inhibit vasospasm due to inhibition of myosin light chain phosphorylation and in force, independently of a change in cytosolic Ca$^{2+}$.

In summary, these and other studies revealing the activities of intracellular and extracellular phospholipid mediators point to new mechanisms of signaling and potential new therapeutic targets for pathophysiological states of the cardiovascular system.

References

Key Words: Rho-kinase smooth muscle vasospasm sphingolipids myosin phosphatase
New Roads Leading to Ca$^{2+}$ Sensitization
Avril V. Somlyo

Circ Res. 2002;91:83-84
doi: 10.1161/01.RES.0000028341.63905.91
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/91/2/83

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at:
http://circres.ahajournals.org//subscriptions/