Control of Renin Secretion From Rat Juxtaglomerular Cells by cAMP-Specific Phosphodiesterases

Ulla G. Friis, Boye L. Jensen, Shala Sethi, Ditte Andreasen, Pernille B. Hansen, Ole Skøtt

Abstract—We tested the hypothesis that cGMP stimulates renin release through inhibition of the cAMP-specific phosphodiesterase 3 (PDE3) in isolated rat juxtaglomerular (JG) cells. In addition, we assessed the involvement of PDE4 in JG-cell function. JG cells expressed PDE3A and PDE3B, and the PDE3 inhibitor trequinsin increased cellular cAMP content, enhanced forskolin-induced cAMP formation, and stimulated renin release from incubated and superfused JG cells. Trequinsin-mediated stimulation of renin release was inhibited by the permeable protein kinase A antagonist Rp-8-CPT-cAMPS. PDE4C was also expressed, and the PDE4 inhibitor rolipram enhanced cellular cAMP content. Dialysis of single JG cells with cAMP in whole-cell patch-clamp experiments led to concentration-dependent, biphasic changes in cell membrane capacitance (Cm) with a marked increase in Cm at 1 μmol/L, no net change at 10 μmol/L, and a decrease at 100 μmol/L. cAMP. cGMP also had a dual effect on Cm at 10-fold higher concentration compared with cAMP. Trequinsin, milrinone, and rolipram mimicked the effect of cAMP on Cm. Trequinsin, cAMP, and cGMP enhanced outward current 2- to 3-fold at positive membrane potentials. The effects of cAMP, cGMP, and trequinsin on Cm and cell currents were abolished by inhibition of protein kinase A with Rp-cAMPS. We conclude that degradation of cAMP by PDE3 and PDE4 contributes to regulation of renin release from JG cells. Our data provide evidence at the cellular level that stimulation of renin release by cGMP involves inhibition of PDE3 resulting in enhanced cAMP formation and activation of the cAMP-sensitive protein kinase. (Circ Res. 2002;90:996-1003.)

Key Words: juxtaglomerular apparatus ■ renin ■ exocytosis ■ cGMP ■ phosphodiesterase

The main rate-limiting step controlling the activity of the circulating renin-angiotensin system is the release of active renin from juxtaglomerular (JG) cells of the afferent glomerular arterioles in the kidney. Cyclic nucleotides are critical second messengers that determine renin secretory rate. Hormones, neurotransmitters, and autacoids that raise critical second messengers that determine renin secretory rate. Hormones, neurotransmitters, and autacoids that raise cyclic nucleotides in cells are determined by the rate of synthesis by cyclases and by the rate of degradation by specific cyclic nucleotide phosphodiesterases (PDEs). Drugs like theophylline, which inhibit PDEs unspecifically, increase renin secretion in vivo and potentiate the renin-secretory response to β-adrenoceptor stimulation. This suggests a basal phosphodiesterase activity in JG cells. Presently, at least 11 different isoforms of PDEs are recognized. They are encoded by different genes and have different substrate specificity (cAMP or cGMP or both) and regulatory mechanisms (cAMP, cGMP, Ca++) and others). With regard to the control of renin release, the PDE3 and PDE4 subtypes have attracted special attention. Thus, PDE3- and PDE4-selective inhibitors increase renin release in conscious rabbits and humans. Similar findings have been obtained with the isolated perfused rat kidney. Recent data suggest presence also of functional cGMP-specific PDE5 in JG cells. PDE3 and PDE4 use primarily cAMP as a substrate, and PDE3 is endogenously inhibited by cGMP. This raises the intriguing possibility of an interaction between hormones acting through cGMP production and the cAMP pathway in the control of renin release. Recent data from whole animal studies and from the isolated kidney have indeed supported the concept that cGMP-dependent agonists might enhance renin release through inhibition of PDE3. The primary aim of this study was to test this latter hypothesis at the cellular level, where effects on renal hemodynamics, renal nerves, and signals from the macula densa are excluded. In addition, we tested the possible involvement of PDE4 in cellular control of JG-cell function. To address the question directly, we applied the patch-clamp technique to isolated rat JG cells for measurements of whole-cell currents and cell capacitance (Cm) in response to manipulations of the cAMP and cGMP pathways. The Cm tracks were compared.
with parallel renin release studies and cAMP measurements in isolated JG cells.

Materials and Methods
Isolation of Rat JG Cells
Rat (male Sprague-Dawley, 80 g) JG cells were isolated as for mouse JG cells by enzymatic digestion of renal cortex with collagenase A (Roche Diagnostics, Denmark) and trypsin (Sigma, Denmark), followed by filtration and wash. For the patch-clamp studies, the cells were transferred directly to cover slips, and for the renin secretion and cAMP studies, the cells were separated on a Percoll density gradient (25% Percoll at 27 000g for 30 minutes), resuspended in RPMI-1640 medium, and either seeded in 96-mult well plates or loaded to superfusion chambers.

Renin Secretion From JG-Cell Cultures
Cultured cells were incubated for 20 hours, and then the cells were washed and experimental agents added. After 20 hours, the medium was removed, and the remaining cells were harvested as described. Renin concentration was determined by radioimmunoassay (RIA) for angiotensin I. Renin secretion rates were calculated as fractional release of total renin content.

Renin Secretion From Superfused JG Cells
The superfusion chambers (Bakerbond spe Columns) contained 50 mg preswollen Biogel P-2 (45 to 90 mm, BioRad) layered on top and a filter at the bottom. The cells were superfused with RPMI-1640 medium at a rate of 230 μL/min from 1 of 2 pumps. Superfusate was collected at 2-minute intervals. Four parallel experiments were run simultaneously. Renin activity was determined by RIA. Renin is expressed in terms of Goldblatt units (GU) compared with standards from the National Institute for Biological Standards and Control (Hertfordshire, UK).

Measurement of cAMP
JG-cell suspensions were seeded in 1-mL aliquots and incubated with agents for 10 minutes. The cells were harvested in cold ethanol with parallel renin release studies and cAMP measurements in isolated JG cells.

Statistics
All values are given as mean±SEM. Paired Student’s t test was used to calculate statistical difference from zero in experiments where Cm was measured. The change in Cm was calculated as the difference (in %) in Cm (at t=0 minutes and t=10 minutes). ANOVA was used to calculate statistical significance among several groups (Figures 3D and 4E) and Dunnett’s test was used to compare several groups with a control (Figure 3C). A value of P<0.05 was considered statistically significant.

An expanded Materials and Methods section can be found in the online data supplement available at http://www.circresaha.org.

Results
Characterization of Isolated JG cells
The whole-cell recording was obtained in 192 single cells isolated from 74 preparations. These cells showed a current-voltage relation typical both for isolated and in situ JG cells (Figure 1E). Thus, the cells displayed outward current rectification at positive membrane potentials and very limited net currents between −30 to 0 mV. The JG cells had an average Cm value of 2.82±0.06 pF (n=192). Evidence for correct cell identity was obtained by demonstration of preprorenin mRNA expression in serial dilution of cDNA from 20 sampled JG cells. PCR-amplification products for renin were seen with cDNA corresponding to 2 JG cells (Figure 1A). Renin enzyme content was measured in single sampled rat JG cells (Figure 1B). There was a linear relation between the number of cells sampled and the renin concentration. Moreover, immunocytochemical labeling for renin with a specific rabbit renin antibody showed strong positive immunostaining of a subset of granular cells (Figure 1C). Original recordings of the whole-cell currents after applying 11 pulses from −110 mV to +130 mV in 30-mV steps for 60 ms from a holding potential of −30 mV are shown in Figure 1D with the resulting I−V curves in Figure 1E. The current-voltage...
cells were bathed in control external solution. During the recording time (up to 20 minutes), basal $C_m$ did not change significantly ($+3.8\pm1.7\%$, $n=7$, $P>0.05$) (Figure 1G).

Thus, the present protocol for cell isolation yields single JG cells suited for patch-clamp experiments. Under control conditions, $C_m$ and current-voltage relations remain stable at least within the recording time used in the present study. The cells maintain all typical features of fully differentiated renin-producing JG cells.

Role of Protein Kinase A for cAMP-Mediated Effects on Current and $C_m$ in JG Cells

Similarly to previous studies using single mouse JG cells, cAMP leads to biphasic concentration-dependent changes in $C_m$, ie, increase in $C_m$ (exocytosis) at 1 $\mu$mol/L cAMP, and decrease in $C_m$ (endocytosis) at 100 $\mu$mol/L cAMP (Table). The increase of $C_m$ in response to 1 $\mu$mol/L cAMP was completely abolished by the PKA-blocker Rp-cAMPS (25 $\mu$mol/L) (Table). The stable cAMP analogue, Sp-cAMPS (10 $\mu$mol/L), also increased $C_m$ significantly (Table). Furthermore, cAMP (1 $\mu$mol/L) increased outward current 3.3-fold (at +130 mV) from 0.7±0.4 to 2.3±0.6 pA ($P<0.05$, $n=4$). This increase was abolished by Rp-cAMPS (25 $\mu$mol/L) (data not shown).

During 20 hours of primary culture, rat JG cells released 11.3±1.0% of active renin. Renin release rate was significantly stimulated by cAMP-dependent agonists (forskolin 24.9±1.1%, $n=4$, $P<0.05$; isoproterenol 16.8±1.5%, $n=4$, $P<0.05$).

Effect of cGMP on Current and $C_m$ in JG Cells

Figure 2A shows the current-voltage relationship before (circle) and after (square) 10 minutes of capacitance recording. These cells were dialyzed with cGMP (10 $\mu$mol/L), which, like cAMP, resulted in a significant 2.4-fold increase in the outward current at +130 mV ($P<0.05$, $n=5$). This increase was abolished by Rp-cAMPS (25 $\mu$mol/L) (Figure 2B).

Original traces from 2 cells dialyzed with 10 $\mu$mol/L (upper trace) or 100 $\mu$mol/L cGMP (lower trace) are shown in Figure 2C. Thus, addition of 10 $\mu$mol/L cGMP to the patch pipette solution led to a modest but significant increase in $C_m$ ($+5.4\pm1.1\%$, $n=7$, $P<0.05$; Figure 2D). Cyclic GMP at 50 $\mu$mol/L did not significantly change $C_m$ ($-1.3\pm2.5\%$, $n=5$), whereas 100 $\mu$mol/L cGMP significantly decreased $C_m$ ($-5.0\pm0.7\%$, $P<0.05$, $n=4$) (Figure 2D). Thus, cGMP mimicked the biphasic effect of cAMP on $C_m$, although at a higher concentration. The increase of $C_m$ in response to 10

---

**Table:**

<table>
<thead>
<tr>
<th>Compound</th>
<th>$C_m$ (%)</th>
<th>$n$</th>
<th>$P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>cAMP (1 $\mu$mol/L)</td>
<td>15.3±5.2</td>
<td>7</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>cAMP (10 $\mu$mol/L)</td>
<td>-4.1±1.8</td>
<td>4</td>
<td>NS</td>
</tr>
<tr>
<td>cAMP (100 $\mu$mol/L)</td>
<td>-15.8±6.4</td>
<td>6</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>Sp-cAMPS (10 $\mu$mol/L)</td>
<td>15.2±3.4</td>
<td>4</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>Rp-cAMPS (25 $\mu$mol/L)</td>
<td>-2.9±2.8</td>
<td>4</td>
<td>NS</td>
</tr>
<tr>
<td>cAMP (1 $\mu$mol/L) + Rp-cAMPS (25 $\mu$mol/L)</td>
<td>-1.8±1.6</td>
<td>4</td>
<td>NS</td>
</tr>
</tbody>
</table>

---

**Figure 1.** Validation of method. A, Expression of preprorenin mRNA in cells used for patch clamp. Serial diluted cDNA from sampled JG cells was amplified for renin by reverse transcription-PCR for 34 cycles. Lane 1, molecular weight marker (X174DNA/HaeIII); lane 2 ("0"), cell-free fluid from the JG-cell preparation; lanes 3 to 6, PCR amplification products for renin with cDNA as indicated; lane 7, negative control for the PCR with water replacing cDNA; and lane 8, positive control with RT-PCR amplification of 50 ng kidney cortex RNA. Agarose gel (2%) was stained with ethidium bromide. B, Renin activity in sampled JG cells. JG cells were sampled with modified patch pipettes from the same preparation as used for single-cell electrophysiology. C, Immunolabeling of renin protein in a typical JG cell with rabbit anti-mouse renin antibody. D, Recording of the recording time. E, Steady-state average $I$-V relationships from 6 independent control experiments before (circle) or 100 $\mu$mol/L cAMP (Table). F, Typical time course of cell capacitance ($C_m$) in a single rat JG cell dialyzed with control solution. G, Relationship between $C_m$ and bath ($n=6$). There was no significant change in $C_m$ during the recording time.

---

**Figure 2A.**

**Figure 2B.**

**Figure 2C.**

**Figure 2D.**

---
mol/L cGMP was abolished by Rp-cAMPs (25 μmol/L) (Figure 2D), suggesting that PKA mediates the effect of cGMP on C_m in rat JG cells.

Effect of PDE3 and PDE4 Blockers on cAMP Level, Whole-Cell Current, C_m, and Renin Release in JG Cells

The expression profile for PDE3 isoenzyme mRNAs was analyzed by RT-PCR on serial dilutions of cDNA from cells recovered from the Percoll gradient (Figure 3A). Based on serial dilution, there was a more marked PDE3A-expression compared with PDE3B in freshly isolated cells. Furthermore, PDE3A and PDE4C were also expressed in single JG cells sampled with the patch pipette (Figure 3B).

μmol/L cGMP was abolished by Rp-cAMPs (25 μmol/L) (Figure 2D), suggesting that PKA mediates the effect of cGMP on C_m in rat JG cells.

Figure 2. Effects of cGMP on whole-cell currents and C_m of isolated JG cells. A, Steady-state average I-V relationships before (●) and after (■) 10 minutes of capacitance measurements. When the cells were dialyzed with 10 μmol/L cGMP, the maximal outward current at -130 mV was 0.8±0.3 nA at the beginning of the experiment (●) and 1.8±0.4 nA after 10 minutes of measurement (■) (n=5). B, Steady-state average I-V relationships before (●) and after (■) 10 minutes of capacitance measurements. When the cells were dialyzed with cGMP (10 μmol/L) together with the PKA blocker Rp-cAMP (25 μmol/L), the maximal outward current amounted to 0.8±0.1 nA at the beginning of the experiment (●) and 0.6±0.1 nA after 10 minutes of measurement (■) (n=3). C, Typical time courses of C_m in single rat JG cells dialyzed with 10 μmol/L cGMP (top trace) and 100 μmol/L cGMP (bottom trace). D, Relative changes of C_m in response to cGMP alone (10, 50, and 100 μmol/L) or with the PKA-blocker Rp-cAMPs (25 μmol/L).

Figure 3. Expression and functional significance of phosphodiesterase 3 and 4. A, PCR amplification (32 cycles) of cDNA from isolated JG cells for PDE3A (top), PDE3B (middle), and β-actin (bottom). JG cells were allowed to recover from the Percoll gradient, counted, and total RNA was isolated and used for RT-PCR amplification as indicated. A negative control with omission of reverse transcriptase was included (−RT). “0” is negative control for PCR without cDNA. As a positive control, cDNA from renal cortex was amplified. Size marker is X174DNA/HaeIII. B, PCR-amplification of cDNA from JG cells sampled with the patch pipette for PDE3 and PDE4. Messenger RNA was isolated from single JG cells by magnetic beads, mRNA was reverse transcribed, and cDNA was PCR amplified for 30 cycles. A dilution series of this cDNA was used as template for a second round of PCR amplification as indicated. Size marker is X174DNA/HaelIII. PDE3: 313 bp; PDE4: 303 bp. C, Enhancement of cAMP concentration by trequinsin and rolipram in isolated JG cells. JG cells were exposed to 1 and 10 μmol/L of the drugs for 10 minutes (n=6). D, Enhancement of forskolin-induced cAMP production in JG cells by trequinsin. Ctrl indicates control values in the absence of drugs (open symbols). Lower curve (■), Forskolin was added for 10 minutes in concentrations as indicated (n=6). Upper curve (●), JG cells were preincubated with 100 μmol/L trequinsin for 1 hour, and then forskolin was added for 10 minutes in concentrations as indicated (n=5). *Significant difference from control in same series.
Inhibition of cAMP-specific PDE3 and PDE4 with trequinsin \(^{22}\) and rolipram for 10 minutes significantly increased cAMP levels in isolated JG cells (n = 6, with 2 wells assigned per condition in 1 experiment; Figure 3C). Trequinsin and rolipram both stimulated cellular cAMP accumulation at 10 \(\mu\)mol/L. In a second series of experiments, forskolin concentration-dependently increased cAMP production after 10 minutes of incubation (Figure 3D). Preincubation with trequinsin (100 \(\mu\)mol/L) for 1 hour stimulated cAMP formation significantly, and furthermore, trequinsin markedly potentiated the stimulatory effect of forskolin after 10 minutes of incubation (Figure 3D).

Figure 4A shows the current-voltage relationship before (circle) and after (square) 10 minutes of Cm recording. These cells were dialyzed with trequinsin (2 nmol/L), which resulted in a 3.3-fold increase in the outward current at +130 mV (P < 0.05; n = 4). This increase in outward current was abolished by the PKA-blocker Rp-cAMPS (25 \(\mu\)mol/L) (Figure 4B). Similar results were obtained with 200 nmol/L trequinsin (data not shown).

The original Cm trace from a cell dialyzed with trequinsin (2 nmol/L) is shown in Figure 4C (left panel). Capacitance measurements of single JG cells represent cumulative changes in membrane surface area over time. In order to compare such data with renin release rates, the cell capacitance measurements can be converted to a rate by differentiation with respect to time. Figure 4C (right panel) shows the differentiated data from the experiment shown in the left panel.

Trequinsin (2 nmol/L) led to a marked increase in Cm (+11.4 ± 3.1%, P < 0.05; n = 5) (Figure 4D), whereas a 100-fold higher concentration of trequinsin decreased Cm (−19.5 ± 6.6%, P < 0.05; n = 7) (Figure 4D). Both effects of trequinsin on Cm were blocked by Rp-cAMPS (Figure 4D), indicating that trequinsin alters the Cm of JG cells through a cAMP/PKA-dependent pathway. A different (albeit less potent) PDE3 inhibitor, milrinone, was also tested. Milrinone (2 \(\mu\)mol/L) increased Cm significantly (8.7 ± 0.7%; P < 0.05; n = 4) (Figure 4D). Furthermore, the PDE4 inhibitor rolipram (1 \(\mu\)mol/L) increased Cm of JG cells significantly (9.2 ± 2.6%; P < 0.05, n = 4) (Figure 4D).

The additivity of cGMP and trequinsin was also tested. When the cell was dialyzed with trequinsin (2 nmol/L) and cGMP (10 \(\mu\)mol/L), Cm (accounting to 5.2 ± 0.5%, P < 0.05, n = 6) was identical to the Cm value obtained with cGMP alone (5.4%). Outward current at +130 mV increased 1.8-fold (from 1.2 ± 0.4 to 2.1 ± 0.3 pA; P < 0.05, n = 6). This finding supports the concept of a common target for cGMP and trequinsin in the sequence of events leading to Cm changes.

The effect of trequinsin and forskolin on renin secretory activity was assessed on the same preparations of JG cells as used for single cell patch clamp in 2 different experimental setups. First, isolated JG cells were superfused and the effluent was collected with a time resolution of 2 minutes. As shown in Figure 4E, addition of 10 \(\mu\)mol/L forskolin, 1 \(\mu\)mol/L trequinsin, and 10 \(\mu\)mol/L trequinsin all resulted in rapid and transient stimulations of renin release to levels significantly above time controls.

When the time course of the renin release from the superfused juxtaglomerular cells stimulated by trequinsin (Figure 4E) is compared with the time course of the (differentiated) membrane capacitance data shown in Figure 4C (right panel), it can be seen that the time courses in the 2 experimental situations are very similar.

Second, renin release was studied over prolonged time in primary cultures of JG cells. Under control conditions, these cells released 8.7 ± 1.3% of total content (n = 4) (Figure 4F). Forskolin (10 \(\mu\)mol/L) significantly increased renin release to 23.4 ± 0.9% of total renin content. Similarly, 10 \(\mu\)mol/L trequinsin led to a significant stimulation of renin release (19.5 ± 1.5% of total content, P < 0.05). In a separate series of experiments, the effect of the membrane permeable PKA antagonist Rp-8-CPT-cAMPS on trequinsin-mediated renin secretion was tested in the primary cultures of JG cells. In this series of experiments, 10 \(\mu\)mol/L trequinsin stimulated renin secretion 2.5-fold (n = 5, with 4 wells assigned per condition in 1 experiment, P < 0.05) (Figure 4G). Rp-8-CPT-cAMPS (10⁻⁴ mol/L) significantly reduced this effect of trequinsin (29.3 ± 2.5% versus 21.1 ± 1.7%, P < 0.05; Figure 4G).

**Discussion**

We used isolated rat juxtaglomerular granular (JG) cells as a model to study renin secretion at the cellular level with electrophysiological and biochemical methods. The results demonstrate that renin release from JG cells is significantly regulated at the level of degradation of cAMP by the cGMP-inhibited PDE3 and by PDE4 and that the target for cAMP is PKA.

Individual JG cells from rat kidneys were chosen for patch clamp based on visible granularity and were included if they displayed the characteristic current-voltage relation previously reported from mouse JG cells.\(^{17,21}\) Cell identity was assured by detection of renin mRNA expression, presence of renin activity, and immunoreactive renin protein. Average cell membrane capacitance, Cm, was 2.82 pF, which corresponds to a cell surface area of 2.82 μm² if the specific capacitance is 1 μF/cm². This number is similar to values obtained from mouse JG cells (3.13 pF).\(^{17}\) In the control situation, Cm was stable, and the current-voltage relationship was not affected by the whole-cell mode within the time of recording.

An increase in Cm, which indicates net addition of membrane to the cell surface area, is an accepted measure of exocytosis at the level of the single cell.\(^{29}\) After moderate stimulation of renin secretion, Cm increased and achieved a stable level in about 10 minutes. The time courses of changes in Cm (differentiated to show rates) and changes in renin release after stimulation of secretion were very similar (cf, Figures 4C and 4E). The transient increase in renin release rate probably reflects the existence of a pool of rapidly releasable renin granules. Further release must await recruitment of renin granules from deeper within the cytoplasm. Therefore, the cellular mechanisms responsible for the more persistent increase in renin secretion observed in 20-hour incubated JG cells are likely to include effects on intracellular granule trafficking.

A decrease in Cm indicates net loss of cell surface area and may occur after endocytosis or after shedding of cell mem-
brane material. The sudden decreases in $C_m$ (and thereby membrane surface area) observed after dialyzing JG cells with high concentrations of cAMP, cGMP, PDE inhibitors, or after stimulation of cAMP production with forskolin were associated with enhanced release of renin whenever this parameter was measured. Thus, increases in $C_m$ correlates to exocytosis, whereas a decrease in $C_m$ reflects a net loss of surface membrane area, but does not exclude simultaneous exocytosis. Conclusions about secretion in the present study are therefore only drawn based on observed increases in $C_m$.

The view of cAMP as a stimulator of renin release through PKA was confirmed by the observation that dialysis of single JG cells with 1 μmol/L cAMP caused an increase in $C_m$, which was blocked by a PKA inhibitor. Furthermore, $C_m$ was enhanced by treatment with a PKA activator. In addition to the stimulation of secretion, cAMP also increased outward currents at positive potentials similarly to results from mouse JG cells. The PKA inhibitor blocked this effect. The increase in outward current was only observed at positive holding potentials, and was unlikely to be directly related to the changes in capacitance, which were recorded at a considerably lower holding potential ($-30$ mV). This is in accordance with previous data showing no hyperpolarizing response of the membrane potential of JG cells to cAMP-dependent stimulators of renin release.

cGMP had effects on $C_m$ and current that were qualitatively similar to the effects of cAMP, although at 10-fold higher concentrations. The effects of cGMP on $C_m$ and current were abolished by PKA inhibition, thus providing evidence that the cAMP-PKA pathway mediates these cGMP-mediated responses in JG cells. In agreement with this, cGMP-dependent NO donors enhance cAMP levels.
and renin release in JG-cell cultures. Likewise, renin secretion is promptly stimulated in a PKA-dependent fashion by activation of the NO-cGMP pathway in the isolated perfused kidney. In conclusion, our data provide evidence at the cellular level that PKA mediates stimulatory cGMP responses in JG cells.

PDE3 has been suggested to mediate cross talk between cAMP and cGMP pathways in JG cells. The PDE3 enzymes are cAMP-specific PDEs that are inhibited by cGMP and comprise the 3A and 3B subtypes, which are encoded by 2 separate genes. cGMP inhibits PDE3A activity in the micromolar range, whereas PDE3B is less sensitive. PDE3B was cloned from rat adipocytes, whereas PDE3A is mainly expressed in myocardium and vasculature. There has been some confusion with respect to the nomenclature of PDE3A and B. We used the corrected nomenclature (PDE3A, GenBank accession No. GI 8567397). As previously observed in kidney vessels, we found more marked PDE3A expression compared with PDE3B in JG cells (and renal vascular smooth muscle cells [results not shown]). In addition, PDE4C was expressed in JG cells. In agreement with this, selective PDE3 and PDE4 inhibitors increased cAMP levels in JG cells and changed both Cm and whole-cell current in a PKA-dependent way similar to dialysis with intracellular cAMP. In keeping with this result, trequinsin stimulated renin release from superfused and incubated JG cells in a PKA-dependent way. Further evidence that cGMP affected the cellular responses through PDE3 was provided by the observation that the effects of cGMP and trequinsin were not additive. The patch-clamped cells were more sensitive to the blockers compared with incubated JG cells. This is probably due to the difference in the route of administration with direct intracellular dialysis versus diffusion across the cell membrane from the medium. Taken together, the results show that inhibition of PDE3 has a significant impact on renin release and cell currents, and that these effects are mediated through the cAMP-PKA pathway. In addition to PDE3, PDE4 also influences cAMP-PKA pathway function. We conclude from this that although cGMP stimulates renin release through the PDE3 cAMP-PKA pathway, PDE3 is not the only determinant of cAMP breakdown rate.

Taken together, our data strongly indicate that phosphodiesterase 3 and 4 are significant determinants of membrane trafficking and renin secretion at the level of single JG cells, and that the target for cAMP in the exocytotic pathway in JG cells is PKA. The data show that cGMP changes JG-cell membrane turnover and cell currents in a PKA-dependent way. Our results therefore provide direct cellular evidence for the hypothesis that cGMP-dependent agonists enhance renin release through a PDE3-mediated change in cAMP metabolism in JG cells.

Acknowledgments

The present work was supported by grants from the Danish Medical Research Council (UGF 9802815, BLJ 22010159, and OS 9902742), the NOVO Nordisk Foundation, Ms Ruth T. E. König-Petersen Foundation for Kidney Diseases, the Danish Heart Association (97-2-2-9-22527, 01-1-2-30-22896, 99-2-2-36-22743), the Danish Medical Association Research Fund, by Ingeborg O. Bucks Foundation, the “Fonden til Lægevidenska-bens Freme,” the “Else Poulsens Mindelegat,” and the “Direktør Jacob Madsen og Hustru Olga Madsen Fond.” The authors wish to thank Mette Fredenslund, Inge Andersen, Annette K. Rasmus sen, and Ole Madsen for technical assistance. Rabbit anti-mouse renin antibody was kindly provided by Dr Knud Poulsen, the Royal Danish School of Veterinary Medicine.

References


Control of Renin Secretion From Rat Juxtaglomerular Cells by cAMP-Specific Phosphodiesterases
Ulla G. Friis, Boye L. Jensen, Shala Sethi, Ditte Andreasen, Pernille B. Hansen and Ole Skøtt

Circ Res. 2002;90:996-1003; originally published online April 4, 2002; doi: 10.1161/01.RES.000017622.25365.71
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/90/9/996

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2002/05/10/90.9.996.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/