Mutation in the ARH Gene and a Chromosome 13q Locus Influence Cholesterol Levels in a New Form of Digenic-Recessive Familial Hypercholesterolemia

Hussam Al-Kateb, Sylvia Bähring, Katrin Hoffmann, Konstantin Strauch, Andreas Busjahn, Gudrun Nürnberg, Muhiedien Jouma, Eckehard K.F. Bautz, Hans A. Dresel, Friedrich C. Luft

Abstract—We studied a Syrian family with 3 children who had low-density lipoprotein cholesterol (LDL) concentrations of 13.3, 12.2, and 8.6 mmol/L, respectively. Three other siblings and the parents all had LDL values <4.52 mmol/L, suggesting an autosomal-recessive mode of inheritance. The extended pedigree had 66 additional persons with normal LDL values. A genome-wide scan in the core family with 427 markers showed support for linkage on both chromosomes 1 and 13. Markers on chromosome 1 revealed a 3.07 multipoint LOD score between 1p36.1-p35, an 18-cM interval. Surprisingly, we also found linkage to 13q22-q32, a 14-cM interval, with a 3.08 LOD score. We had identified this locus earlier as containing a gene strongly influencing LDL in another Arab family with autosomal-dominant familial hypercholesterolemia and in normal dizygotic twins. We found evidence for an interaction between these loci. We next genotyped our twin panel and confirmed linkage of the 1p36.1-p35 locus to LDL (P<0.002) in this normal population. Elucidation of ARH, the LDL receptor adaptor protein at chromosome 1p35, caused us to sequence that gene. We first identified the genomic structure of ARH gene and then sequenced the gene in our family. We found an intron 1 acceptor splice-site mutation. This mutation was not found in any other family members, in 31 nonrelated Syrian persons, or in 30 Germans. Our results underscore the importance of ARH on chromosome 1 and the chromosome 13q locus to LDL, not only in families with unusual illnesses, but also to the general population. (Circ Res. 2002;90:951-958.)

Key Words: cholesterol ■ LDL ■ hyperlipidemia ■ genetics ■ familial hypercholesterolemia)}
TABLE 1. Characteristics of Core Pedigree Members

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Age, y</th>
<th>Sex</th>
<th>BMI, kg/m²</th>
<th>Apo E</th>
<th>TC</th>
<th>TGL</th>
<th>LDL</th>
<th>HDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>58</td>
<td>F</td>
<td>27</td>
<td>3.3</td>
<td>6.4</td>
<td>1.6</td>
<td>4.5</td>
<td>1.16</td>
</tr>
<tr>
<td>3.3</td>
<td>73</td>
<td>M</td>
<td>24</td>
<td>3.3</td>
<td>4.9</td>
<td>1.2</td>
<td>3.1</td>
<td>1.24</td>
</tr>
<tr>
<td>5.9</td>
<td>28</td>
<td>M</td>
<td>19</td>
<td>3.3</td>
<td>9.6</td>
<td>0.9</td>
<td>8.6</td>
<td>0.59</td>
</tr>
<tr>
<td>5.10</td>
<td>30</td>
<td>F</td>
<td>20</td>
<td>3.3</td>
<td>14.5</td>
<td>1.2</td>
<td>13.3</td>
<td>0.62</td>
</tr>
<tr>
<td>5.11</td>
<td>26</td>
<td>F</td>
<td>19</td>
<td>3.3</td>
<td>13.3</td>
<td>0.9</td>
<td>12.25</td>
<td>0.69</td>
</tr>
<tr>
<td>5.12</td>
<td>21</td>
<td>F</td>
<td>23</td>
<td>3.3</td>
<td>4.3</td>
<td>1.1</td>
<td>2.4</td>
<td>1.39</td>
</tr>
<tr>
<td>5.13</td>
<td>23</td>
<td>F</td>
<td>24</td>
<td>3.3</td>
<td>4.0</td>
<td>1.0</td>
<td>2.7</td>
<td>1.08</td>
</tr>
<tr>
<td>5.14</td>
<td>33</td>
<td>F</td>
<td>22</td>
<td>3.3</td>
<td>5.0</td>
<td>0.7</td>
<td>3.3</td>
<td>1.52</td>
</tr>
</tbody>
</table>

Core pedigree members (numbered from the large pedigree) with demographic information, Apo E genotype status, and total cholesterol (TC), triglyceride (TGL), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) concentrations (mmol/L).

Results

The core pedigree consisted of 2 second-cousin parents with normal LDL values who had 6 children, as shown in Table 1. Three children had LDL values consistent with FH and had tendon xanthomas. Three other children had normal LDL values. The members of the core family stem from an extended normocholesterolemic pedigree (online Figure 1 in the online data supplement available at http://www.circresaha.org).

An expanded Materials and Methods section can be found in the online data supplement available at http://www.circresaha.org.
In the single-locus analysis, the FH trait appeared to be recessive at both the chromosome 1 and 13 loci. All 3 affected children in the core family (individuals 5.9, 5.10, and 5.11) were homozygous by descent for a few markers at both regions. We regarded this remarkable result as a clear incentive to perform a linkage analysis with 2-trait loci. We used GENHUNTER-TWOLOCUS to test the hypothesis that only a simultaneous homozygous-mutant genotype at the trait loci on both chromosome 1 and 13 leads to the disease ("recessive and recessive"), a multiplicative 2-locus model.

In addition to the nonparametric analysis with 2 disease loci, we performed a parametric 2-locus analysis under the assumption of this multiplicative model. We also analyzed the data under a heterogeneity model and under an additive model assuming a recessive action of both loci. The models are shown in Table 3. Because 2-locus analysis is computationally much more intensive than an analysis with only 1 disease locus, we were only able to include 4 of the 6 children of the core family. We first chose to include the 3 affected children and 1 unaffected child (5.13) in the GENHUNTER-TWOLOCUS analysis. The nonparametric 2-locus analysis yielded a maximum nonparametric linkage (NPL) score of 8.64 (P/H11005 3.8/H11003 10). The P value reflects a test of the null hypothesis that both disease loci are unlinked to their corresponding marker maps. The parametric analysis yielded a maximum 2-locus LOD score of 5.41 under the multiplicative model. The heterogeneity and additive models yielded maximum LOD scores of 2.82 and 2.75, respectively. For nonparametric analysis, as well as parametric analysis under all 3 models, the maximum score occurred directly at the markers D1S2843 and D13S1267, the same position for the maximal single-locus LOD score. The results remained the same when we replaced individual 5.13 by another unaffected child; the maximal change in the LOD-score was less than 1%.

To compare the results of the parametric 2-trait locus analysis to the single-locus results, we next recalculated the single-locus LOD scores for the pedigree without the individuals 5.12 and 5.14. The maximum LOD scores were 2.80 for chromosome 1 and 2.83 for chromosome 13. Hence, the 2-locus LOD score for the multiplicative model was superior to both single-locus LOD scores.

The superiority of the multiplicative model, compared with the other models, could be because of the fact that 3 of the 4

Figure 1.
Haplotype segregation in the core pedigree from the candidate region on chromosome 1. Black, Haplotypes associated with the disease; White, haplotypes not associated with the disease. Ancestral haplotypes are reconstructed according to those of the probands. Double lines indicate consanguineous marriages. The gray bar shows the region of homozygosity that cosegregates with the disease in the affected individuals. Numbers refer to those in the extended pedigree. Region of homozygosity extends over the interval between the flanking markers D1S2826 and D1S186, an 18-cM interval.

Table 2. Two-Point LOD Scores in the Core Pedigree on Chromosome 1 and 13

<table>
<thead>
<tr>
<th>Marker</th>
<th>Recombination Fraction θ</th>
<th>0.0</th>
<th>0.01</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1S507</td>
<td>-1.629</td>
<td>-0.333</td>
<td>0.229</td>
<td>0.374</td>
<td>0.357</td>
<td>0.211</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>D1S2826</td>
<td>-1.58</td>
<td>-0.36</td>
<td>0.20</td>
<td>0.35</td>
<td>0.33</td>
<td>0.19</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>D1S199</td>
<td>2.37</td>
<td>2.32</td>
<td>2.11</td>
<td>1.85</td>
<td>1.30</td>
<td>0.75</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>D1S2843</td>
<td>2.61</td>
<td>2.55</td>
<td>2.31</td>
<td>2.01</td>
<td>1.41</td>
<td>0.83</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>D1S1129</td>
<td>0.675</td>
<td>0.658</td>
<td>0.589</td>
<td>0.503</td>
<td>0.336</td>
<td>0.184</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>D1S186</td>
<td>-1.560</td>
<td>-0.327</td>
<td>0.068</td>
<td>0.256</td>
<td>0.199</td>
<td>0.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1S3628</td>
<td>-1.45</td>
<td>-0.75</td>
<td>-0.17</td>
<td>0.03</td>
<td>0.11</td>
<td>0.03</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>D1S1300</td>
<td>-0.88</td>
<td>0.01</td>
<td>0.64</td>
<td>0.84</td>
<td>0.60</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1S795</td>
<td>1.94</td>
<td>1.90</td>
<td>1.73</td>
<td>1.52</td>
<td>1.07</td>
<td>0.61</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>D1S892</td>
<td>2.38</td>
<td>2.34</td>
<td>2.18</td>
<td>1.97</td>
<td>1.50</td>
<td>1.00</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>D1S1232</td>
<td>2.22</td>
<td>2.18</td>
<td>2.02</td>
<td>1.82</td>
<td>1.39</td>
<td>0.93</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>D1S770</td>
<td>2.42</td>
<td>2.36</td>
<td>2.15</td>
<td>1.87</td>
<td>1.33</td>
<td>0.81</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>D1S1267</td>
<td>2.63</td>
<td>2.58</td>
<td>2.34</td>
<td>2.05</td>
<td>1.45</td>
<td>0.88</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>D1S1240</td>
<td>2.63</td>
<td>2.57</td>
<td>2.35</td>
<td>2.07</td>
<td>1.50</td>
<td>0.92</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>D1S225</td>
<td>2.30</td>
<td>2.25</td>
<td>2.03</td>
<td>1.75</td>
<td>1.19</td>
<td>0.65</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>D1S1266</td>
<td>-1.88</td>
<td>-0.20</td>
<td>0.38</td>
<td>0.53</td>
<td>0.52</td>
<td>0.38</td>
<td>0.19</td>
<td></td>
</tr>
</tbody>
</table>
children were affected. To test this possibility, we repeated the 2-trait locus analysis using all 3 unaffected children, but only 1 affected child 5.9. The resulting LOD scores were 3.06 for the multiplicative model, 1.86 for the heterogeneity model, and 1.66 for the additive model. Again, the LOD scores did not change by more than 1% when another affected child was selected for the analysis.

We identified the genomic structure of ARH as shown in Table 4. First, we scanned the bacterial artificial chromosome (BAC) library with primers from the cDNA of ARH and found that the 121-O3 clone harbored the ARH gene. ARH-specific primers, designed based on the ARH cDNA sequence, were used for sequencing the cloned genomic DNA (BAC clone) to determine the positions of the introns and the intron-exon boundaries given in Table 4. Intron-exon boundaries were defined by comparing the genomic sequence with the cDNA sequence. ARH consists of 9 exons. The exon size ranges from 35 (exon 8) to 2066 bp (exon 9, the last exon). Exon 1 contains 21 bp of untranslated sequence followed by the initiation codon ATG. All the exon-intron boundary sequences conform to the consensus splice donor (GT) and acceptor (AG) sites, with the exception of the splice donor site of intron 8, which is GG instead of GT.

We sequenced the ARH gene in the core family and found a mutation that lies in the acceptor site of intron 1. The mutation converts the original acceptor-splice site from G3C, a transversion mutation. Figure 4A shows the intron 1/exon 2 junction in a normal proband (top) and in an affected child (bottom). The affected offspring are all homozygous for the mutation, whereas the parents are heterozygous. Figure
4B shows the mutated nucleotide sequence of the coding and noncoding strands at the intron 1/exon 2 junction. We found a restriction enzyme PvuII to cut the PCR product of exon 2 at the mutated donor-acceptor site. We used this enzyme to screen the entire family by using the exon 2 PCR product. On recognition, the enzyme cuts the 316-bp PCR product of exon 2 producing 2 fragments, 256 and 60 bp, in the homozygous state and 3 fragments, 316, 256, and 60 bp, in the heterozygous state. Figure 4C shows the status of the core family members with regard to the ARH G transversion mutation. The parents (4.5 and 3.3) are heterozygous for the mutation. The 3 affected children (5.9, 5.10, and 5.11) are homozygous. In agreement with the reported haplotypes, 2 of unaffected children (5.13 and 5.14) are carriers and 1 (5.12) is a noncarrier. We screened the entire family and found 21 individuals who were heterozygous for the mutation. These individuals are the same who share the haplotype with the affected patients for the microsatellite markers genotyped in the region. Only the 3 affected offspring in the core family are homozygous for the mutation. We also screened 31 normal Syrian individuals for the mutation and another 30 normal unrelated German individuals. None had the mutation. We also found 3 single nucleotide polymorphisms (SNPs) in ARH gene. One variant lies in exon 6 at bp 625 of ARH cDNA converting C→T and leads to an amino acid substitution from Pro to Ser. The second SNP lies in the intron 6 at bp 28 converting A→G. The third SNP lies in exon 7 at bp 675 of ARH cDNA converting A→G but without any change in the coding sequence. To explore a possible effect of the variant in exon 6 on the phenotype, we genotyped the whole family for these 3 SNPs. Five persons were homozygous for the variant in exon 6. We also genotyped our twin panel for the 3 SNPs. The data showed no significant association between these variants and LDL levels (P<0.1).

Discussion
Our linkage data provide strong evidence that ARH is influenced by 2 loci in the family in our present study, namely 1p36.1-p35 and 13q22-q32. Our findings support the recent observations reported by Eden et al. Furthermore, they corroborate earlier findings from our group regarding chromosome 13 as a locus for a gene influencing cholesterol concentrations. We also excluded the recently described autosomal-dominant FH locus on chromosome 1 and the
ARH-1 locus on chromosome 15 mapped by Varret et al. and Ciccarese et al., respectively. In addition to the chromosome 1p36.1-p35 locus, we also found compelling evidence for linkage to 13q22-q32. We do not believe that this finding is related to chance. In our earlier study, we identified this locus as the site for a gene that lowers LDL. We studied a family with autosomal-dominant familial hypercholesterolemia that had affected heterozygous and homozygous members with lower than expected LDL values. We corroborated this locus with a linkage analysis in dizygotic twins and their parents. Eden et al. did not report any evidence of linkage to 13q22-q32 in their study. However, the family in our present study and the family we reported earlier are both unrelated Arab families; their genetic background may be similar.

Garcia et al. cloned the gene responsible for ARH residing at chromosome 1p35. Their exciting finding was a new protein that is responsible for LDL receptor malfunction. The gene they identified codes for a protein that has a phosphotyrosine binding domain PTD. This domain was found to interact with the cytoplasmic tail of the LDL receptor. Malfunction of this interaction could account for a disabled LDL receptor. ARH is expressed in many tissues, even in those that have only a very low LDL

TABLE 4. Genomic Structure of the ARH Gene

<table>
<thead>
<tr>
<th>Exon No.</th>
<th>Exon Length, bp</th>
<th>cDNA Position</th>
<th>Splice Donor</th>
<th>Splice Acceptor</th>
<th>Intron No.</th>
<th>Interrupted Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>109</td>
<td>1–109</td>
<td>ACCGCAGtgag...</td>
<td>. cccagAGCTGC</td>
<td>1</td>
<td>L’ys</td>
</tr>
<tr>
<td>2</td>
<td>143</td>
<td>110–252</td>
<td>GCTACAGtgag...</td>
<td>. cccagGCTAAG</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>113</td>
<td>253–365</td>
<td>ATACAGtgag...</td>
<td>. ttcagGATCTC</td>
<td>3</td>
<td>Ar*’g</td>
</tr>
<tr>
<td>4</td>
<td>115</td>
<td>366–480</td>
<td>AAGATGTgtag...</td>
<td>. ttcagGACAG</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>73</td>
<td>481–553</td>
<td>AGGAAGtgag...</td>
<td>. ttcagAGAAAG</td>
<td>5</td>
<td>G’tu</td>
</tr>
<tr>
<td>6</td>
<td>84</td>
<td>554–637</td>
<td>AGAGCTtgag...</td>
<td>. ttcagTGCTGC</td>
<td>6</td>
<td>L’tu</td>
</tr>
<tr>
<td>7</td>
<td>131</td>
<td>638–768</td>
<td>GTCTGGtgag...</td>
<td>. cccagGAGCTG</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>769–803</td>
<td>TTCGAGggaatg...</td>
<td>. ttcagGCTTGC</td>
<td>8</td>
<td>Ar*’g</td>
</tr>
</tbody>
</table>

However, the family in our present study and the family we reported earlier are both unrelated Arab families; their genetic background may be similar.

Figure 4. Detection of the intron 1 acceptor-site mutation in the core family. A, Sequence analysis of the intron 1/exon 2 junction in a normal proband (top) and in an affected child (bottom). The nucleotide mutated in the affected child is indicated (arrowhead). B, Nucleotide sequence of the coding and noncoding strands at the intron 1/exon 2 junction. The mutation affects the variant guanine of the acceptor-splice site converting it into cytosine. C, Status of family members with regard to the ARHG transversion mutation. The 316-bp exon 2 PCR fragment encompassing the intron 1/exon2 junction was digested with PvuII enzyme, which recognizes the mutated sequence at its restriction site CAGCTG. The parents (4.5 and 3.3) are heterozygous for the mutation and the 3 affected children (5.9, 5.10, and 5.11) are homozygous. In agreement with the reported haplotypes, two (5.13 and 5.14) of the unaffected children are carriers and one (5.12) is noncarrier.
receptor expression. Conceivably ARH has other functions; however, similar to the families described by Garcia et al,7 our affected family members have no other discernible phenotypes.

As reported in the present study, we determined the exon-intron structure of ARH. All splice sites conform to the GT/AG rule, except for intron 8, where the donor splice site GT was converted to GG. However, there are a few exceptions to this rule.16–20 We identified the intron 1 acceptor-site mutation in the affected persons of the core family. The mutation replaces the G bp of the acceptor-splice site (AG) by C. We corroborated our findings by analysis of the other family members. We also examined 31 healthy Syrians and 30 Germans. All were wild-type for the mutation. A defect in intron 1 splice-donor site will either skip exon 2 on splicing or will retain intron 1 in the processed mRNA. Both cases contain stop codons that would result in a truncated protein missing the amino acids coded by exons 2 to 9. We also found 3 SNPs in exon 6, intron 6, and exon 7. The SNP in exon 6 causes an amino acid exchange Pro→Ser. We excluded this variant when we found other homozygous family members who had normal total cholesterol and LDL levels. Moreover, we examined these variants in our twin panel and found that they were not associated with total cholesterol and LDL levels.

The parametric and nonparametric 2-locus analysis was not only done to verify that ARH is indeed governed by 2 loci, but also to gain insight into how the 2 genes may act together. Due to the restrictions on the pedigree size with GENEHUNTER-TWOLOCUS, we were not able to include all 6 children in the analysis simultaneously. We performed the analysis with all 3 affected children and 1 unaffected child. A recessive-and-recessive multiplicative model gave the strongest results, irrespective of the unaffected child selected. The model reflects that only individuals with a homozygous mutant genotype at both loci will develop the trait. Here, the 2-locus LOD score was 5.41, which was almost twice as high as the result obtained for the heterogeneity and additive models. With the latter models, the disease may be caused by a homozygous-mutant genotype at only 1 locus.

It may be argued that the multiplicative 2-locus model gave the strongest results merely because 2 unaffected individuals were not included in the analysis. We therefore repeated the 2-locus calculations with all 3 unaffected children and 1 affected child. The resulting LOD score was 3.06 for the multiplicative model, 1.86 for the heterogeneity model, and 1.66 for the additive model. Hence, even in this setting the superiority of the multiplicative model remained over the other 2 models. These results support a multiplicative action of both loci, where a homozygous mutant genotype at both chromosome 1 and 13 loci is necessary to express the disease.

Our 2-locus multiplicative model suggests that a mutation at only 1 locus is not sufficient to develop the disease. However, our results suggest that the chromosome 1 mutation has a dramatic effect on the adaptor protein. Our analysis raises the possibility that 2 proteins coded by 2 separate genes at distant loci are able to perform the same biological function. A mutation at 1 locus may disable one of the proteins, whereas the second is still available for normal function. Such a model would require disruption of both genes, disabling both proteins to express the phenotype. If our hypothesis is correct, a mutation on chromosome 1 leading to a dramatically altered protein is still in accord with the multiplicative 2-locus trait model. Our linkage and interaction analysis strongly supports the hypothesis that 2 loci are involved in this form of recessive FH in our family.

We were interested to observe linkage for the 1p36.1-p35 locus to total and LDL cholesterol in normal dizygotic twins and their parents. We verified earlier findings that LDL, HDL, total cholesterol, triglycerides, and body mass index are all strongly influenced by genetic variance.21 In the Syrian family, the chromosome 1 locus did not appear as a QTL. The effect here is autosomal-recessive and qualitative in nature. In the twins, the locus appeared as a QTL, suggesting that other variations in the responsible gene are operative. We believe that these studies are unique because we not only mapped a digenic syndrome, but also suggested its relevance in a completely unrelated, normal population. Identification of ARH and its mutations are clearly important to our understanding of cholesterol metabolism and cardiovascular risk. Elucidating the gene at the chromosome 13q locus and the basis for the interaction will have a high priority.

Acknowledgments
Hussam Al-Kateb is supported by a fellowship from the Deutscher Akademischer Austauschdienst (DAAD). We thank Atakan Aydin for his help in solving technical problems, and Athanasius Vergopoulos for sequencing the LDL receptor in the family.

References

Mutation in the ARH Gene and a Chromosome 13q Locus Influence Cholesterol Levels in a New Form of Digenic-Recessive Familial Hypercholesterolemia
Hussam Al-Kateb, Sylvia Bähring, Katrin Hoffmann, Konstantin Strauch, Andreas Busjahn, Gudrun Nürnberg, Muhidien Jouma, Eckehard K.F. Bautz, Hans A. Dresel and Friedrich C. Luft

Circ Res. 2002;90:951-958; originally published online April 11, 2002; doi: 10.1161/01.RES.0000018002.43041.08
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/90/9/951

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2002/05/10/90.9.951.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
EXPANDED METHODS

Two point LOD-score calculations were performed by the LINKAGE program package using the LINKRUN computer program (Prof. T.F. Wienker, Bonn, Germany, personal communication). We assumed an autosomal recessive mode of inheritance with a complete penetrance and a disease allele frequency of 0.0001. Marker allele frequency was calculated from the observed allele frequencies in unrelated persons from the same Druze population (recruited mainly from the spouses in-law within the extended pedigree). The program SIMWALK was used for computation of multipoint LOD scores.\(^1\) Haplotyping was performed with GENHUNTER version 2.0 and by hand.\(^2\)\(^-\)\(^3\) For two-locus analysis, we used the program GENEHUNTER-TWOLOCUS that allowed us to perform parametric and nonparametric analysis.\(^4\) The two trait loci should be unlinked (e.g. located on different chromosomes), and each of them is assumed to be linked to a separate marker map. For two-locus LOD and NPL-score calculation, GENEHUNTER-TWOLOCUS simultaneously uses all available markers. Hence, the approach is completely multipoint, and a maximum of linkage information is extracted at both genetic regions under study. QTL effects for the traits, total cholesterol, LDL, HDL, and triglycerides were tested by applying the TDT statistic for quantitative traits as described by Allison and as implemented in QTDT.\(^5\) Significance was ascertained by means of 1000 Monte-Carlo permutations.

Using GENEHUNTER-TWOLOCUS, we relied on three models, a multiplicative model, a heterogeneity model, and an additive model. With a heterogeneity model, a disease-predisposing genotype at either locus per se can cause the trait. With an additive model, the penetrance for predisposing genotypes at both loci equals the sum of the penetrances for individuals having an at-risk genotype at one locus but not the other. The multiplicative model reflects epistasis or interaction. Strictly speaking, this also holds for the heterogeneity model. Here, the two-locus effect differs from the sum of the two single-locus effects, just as it does for the multiplicative model. We
used the same marker maps as for the single-locus multipoint analyses for all models. A disease allele frequency of 0.0001 was assumed at both trait loci.

To test the hypothesis that the ARH locus on chromosome 1 is of relevance to the general population, we performed studies in 100 pairs of dizygotic (DZ) twins and available parents of the DZ twins. The subjects were all healthy, normotensive Caucasians recruited from various parts of Germany. The protocol was approved by the Humboldt University's committee on the protection of human subjects and written informed consent was obtained from all participants. Persons with histories of familial lipid disorders were excluded. Details on our twin analysis have been published elsewhere.6

Determining of gene structure of ARH

A human bacterial artificial chromosome (BAC) DNA pools (Research Genetics) were screened by PCR with primers 5´ CATGGACGCGCTCAAGTC 3´ and 5´ GCGTGTCTGTCCAGTTCTCA that were designed based on the cDNA sequence of the ARH gene. The first primer identified the clone 121-O3. The DNA from this clone was recovered using a standard plasmid isolation protocol (Qiagen). After determining the positions of introns and obtaining the intron-exons sequences, the following primers were used for sequencing the ARH gene in the family. Exon1: 5´CCGGGCGGAAAGTTTTT 3´ and 5´CGAGTAGGTGCACAACCTTG 3´, exon 2: 5´AAGAAGGCTGGTGAGAGCTG 3´ and 5´TCAGACACACC CAACTGGGA, exon 3: 5´TGCCTGACAGATAGCTGGT 3´ and 5´GCCTGG ATTCAGATGGGATAT A, exon 4: 5´TGGAGTGGGAATAGCAGGTG 3´ and 5´ACTTGGGGTTCCCAGAGATT 3´, exon 5:GGCTGTCTCACCACTACGGACTG 3´, and 5´AAACTGCCCTTTAGGGTTTGGT 3´

and 5´TGAAAAACCAAGAGCTCTCC 3´,exon 7: 5´ACATCAGAGGGAGGGGTCA 3´and 5´CCTCAGGTTCAAAAGGGACA 3´, exon 8: 5´CCCTGAGCTTGTCCTGCAG 3´ and 5´CCCTGACGCGCTCAAGTC 3´ and 5´GCGTGTCTGTCCAGTTCTCA.
5′CTAGCATTCCTCGA AAACG 3′ and exon 9: 5′GGGCACAGAGTGGGTGCT 3′. PCR was performed in 15-µl volumes containing 1.5 µl of 10× PCR buffer (Eppendorf), 5 pM of each primer, 0.06 mM each dNTP, 0.06 U Taq DNA Polymerase (Eppendorf), 2.5 mM MgCl₂ and 100 ng total human genomic DNA. Reactions were amplified for one cycle at 95°C (4 min, hot start); 35 cycles at 94°C (30 s), (30 s) at the annealing temperature (60°C for exon 9, 62°C for exons 4-8, and 64°C for exons 2 and 3) and extension at 72°C (30s) and one cycle at 72°C (7 min). Exon 1 was amplified using the same reaction volumes as described for the other exons but in addition to 5% of DMSO and Taq Gold DNA Polymerase was instead used. Amplification step for exon 1 was performed for one cycle at 95°C (10 min); 45 cycles at 94°C (30 s), (30 s) at the annealing temperature (52°C), and extension at 72°C (30 s), and one cycle at 72°C (7 min). Sequencing was done as follows: a holding step at 96°C (10 s), an annealing step for 10 s and then an extension step at 60°C for 90 s.

REFERENCES FOR EXPANDED METHODS

Figure legends

(Supplement data. Fig. 1). Extended pedigree of the entire family. Solid symbols are affected persons with autosomal recessive hypercholesterolemia. Seventy-two members were examined and blood samples were obtained. The subject identification number is given and fasting low-density cholesterol (LDL-cholesterol) levels are shown.

(Supplement data. Fig.2.). Combined LOD scores resulted from a genomewide scan in the core family. A genomewide scan was performed in the core family with markers located at ~8-cM intervals. The LINKRUN computer program was used for computation of two-point LOD scores. Linkage analyses were done assuming an autosomal recessive mode of inheritance with a complete penetrance and a disease allele frequency of 0.0001. The genomewide scan in the core family resulted in two LOD scores over 2.5 on chromosomes 1 and 13.
* Identification Number

○ LDL-Chol (mmol/L)

Figure. 1 (Supplementary data)
Figure 2 (Supplementary data)