L-Type Calcium Channels
Highs and New Lows
Diane Lipscombe

Voltage-gated calcium channels are essential for coupling membrane depolarization to the influx of calcium in all excitable cells. The calcium that flows into excitable cells through voltage-gated calcium channels serves a dual function, generating both electrical and chemical signals. The intracellular events controlled by calcium are diverse and many. Excitable cells can select from a number of functionally distinct voltage-gated Ca$^{2+}$ channel subunits, whose activities are precisely tuned to support specific tasks. These include excitation-contraction coupling in muscle, excitation-secretion coupling in neurons, hair cells, and endocrine cells, and regulation of gene expression. 1-5 Ten genes encode the main Caα-α_i subunit of the voltage-gated calcium channel complex in mammals. 6 Sequence comparisons among Caα_i genes from several genomes reveal three major families, Caα_1, Caα_2, and Caα_3. 6

Even before the availability of selective toxins, several investigators demonstrated that multiple, functionally distinct classes of voltage-gated calcium channels are expressed in a variety of cell types including heart. 8-11 This division was based on the presence of two distinct classes of calcium channels that differed significantly in their voltage dependence of activation. The concept of low voltage-activated and high voltage-activated calcium channels was established, and although simple, this remains a useful and informative way for distinguishing among different classes of calcium channels.

Certain features have emerged from studies of voltage-gated calcium channels in heart and neurons that have established a set of standard criteria to define the presence of a specific Ca$^{2+}$ channel subtype. Low voltage-activated, T-type, Ca$^{2+}$ channels that contain Caα_3 subunits (α_{1C}, α_{1D}) activate rapidly, deactivate slowly, exhibit pronounced voltage-dependent inactivation, and are insensitive to dihydropyridines and several other toxins that inhibit neuronal voltage-dependent inactivation, and are insensitive to dihydropyridines, 6,12 In neurons, high voltage-activated Ca$^{2+}$ channels are further subdivided into dihydropyridine-sensitive, L-type and dihydropyridine-insensitive, P/Q-, N-, and R-type that contain Caα_2 subunits ($\alpha_{1A}, \alpha_{1B}, \alpha_{1I}$). 6,12,13

With low activation thresholds and pronounced voltage-dependent inactivation, T-type Ca$^{2+}$ channels are optimized for contributing to depolarizing currents during the slow diastolic depolarization phase that supports pacemaking in the sinoatrial (SA) node. 8,9,14,15 The presence of Caα_3, genes in SA nodal tissue of heart supports this view. 16 L-type Ca$^{2+}$ channels, on the other hand, until recently were implicated in later phases of the diastolic depolarization as the membrane potential depolarizes beyond about -30 mV. Their reliance on stronger depolarization for activation is consistent with the view that T-type Ca$^{2+}$ channels do not contribute to initiation of the action potential. However, recent studies of Ca$\alpha_1.3\alpha_i$ knockout mice, including those of Chiamvimonvat and colleagues reported in this issue of Circulation Research, offer convincing evidence supporting a role for L-type Ca$^{2+}$ channels in action potential initiation in the SA node. 17,18 In both studies, mice lacking the L-type Ca$\alpha_1.3\alpha_i$ gene exhibit significant SA node dysfunction characterized by sinus bradycardia. Other investigators also report complete hearing loss, consistent with prominent expression of Ca$\alpha_1.3\alpha_i$ in inner hair cells of the cochlea. 18,19

These findings are clearly paradoxical to classic descriptions of L-type Ca$^{2+}$ channels as high voltage-activated. The explanation is relatively simple. Ca$\alpha_1.3\alpha_i$ L-type Ca$^{2+}$ channels are not high voltage-activated. Evidence supporting this conclusion is presented in both the Striessnig and Chiamvimonvat studies by comparing properties of native currents in wild-type and Ca$\alpha_1.3\alpha_i$ knockout mice. 17,18 Others studies characterizing the functional properties of recently cloned Ca$\alpha_1.3\alpha_i$ subunits isolated from neurons and endocrine cells provide additional support. $^{18,20-22}$

Striessnig and colleagues recorded from inner hair cells of the cochlea of Ca$\alpha_1.3\alpha_i$ /$^-/$ mice and showed selective loss of a low-threshold activating Ca$^{2+}$ current. From this they inferred the presence of a similar current in SA node cells to explain the observed abnormalities in pacemaking in the same mice. 18 Chiamvimonvat and colleagues now test this hypothesis directly by recording from the SA node and from isolated cells of wild-type and Ca$\alpha_1.3\alpha_i$ /$^-/$ mice. 17 As reported in this issue of Circulation Research, the absence of Ca$\alpha_1.3\alpha_i$ is associated with a reduced rate of SA node firing, diastolic depolarization rate slowing at relatively hyperpolarized voltages (-40 and -45 mV), and the loss of calcium current in isolated SA node cells that activates at relatively hyperpolarized membrane potentials. 17 These new studies offer strong support that Ca$\alpha_1.3\alpha_i$ ablation, SA node dysfunc-
L-type Ca\(_{1.2}\) channels activate at negative membrane potentials similar to T-type Ca\(_{3.1}\) channels. Normalized, peak current-voltage relationships for L-type Ca\(_{1.3}\), T-type Ca\(_{3.1}\), and L-type Ca\(_{1.2}\) are compared. Activation midpoints (V\(_{1/2}\)) are approximately -30 mV for L-type Ca\(_{1.3}\), and T-type Ca\(_{3.1}\), and -5 mV for L-type Ca\(_{1.2}\). Curves were generated by a Boltzmann-GHK function using parameters obtained from recombinant channels expressed in Xenopus oocytes recorded under similar conditions (10 mmol/L extracellular barium\(^2\))

...and the loss of a low-threshold activating Ca\(^{2+}\) current in SA node cells are intimately linked.

Do all L-type Ca\(^{2+}\) channels that contain Ca\(_{1.3}\) subunit activate at hyperpolarized voltages? The answer is probably yes, based on recent functional analyses of recombinant Ca\(_{1.3}\) channels.\(^{20-22}\) The Figure compares peak current voltage relationships of Ca\(_{1.3}\) L-type channels to high voltage-activated Ca\(_{1.2}\) L-type, and to low voltage-activated Ca\(_{3.1}\) T-type channels. The large difference in voltage dependence of activation between the two L-type Ca\(^{2+}\) channels is as striking as the similarity in the activation thresholds of Ca\(_{1.3}\) L-type and Ca\(_{3.1}\) T-type channels.\(^{20,23}\) While properties of calcium channels are influenced by several factors including association with specific auxiliary subunits, the similar features of Ca\(_{1.3}\) subunits cloned from different tissues,\(^{20-22}\) combined with two gene ablation studies in mice,\(^{17,18}\) favor the conclusion that low voltage-dependent activation is an intrinsic feature of Ca\(_{1.3}\)-containing L-type Ca\(^{2+}\) channels. Clearly, significant functional differences exist among L-type Ca\(_{1.2}\) genes.

If Ca\(_{1.3}\)-containing L channels activate at hyperpolarized membrane potentials, it is rather surprising that this feature has not been highlighted in previous studies of cloned and heterologously expressed channels. Although other factors almost certainly influence channel properties, the concentration of extracellular divalent cation has large effects on the voltage dependence of activation as a result of charge screening and is a factor that differs significantly among studies. For unknown reasons, achieving high expression levels from Ca\(_{1.3}\) clones has until recently been problematic. To compensate for low current densities, concentrations of extracellular calcium and barium up to 40 mmol/L have been used.\(^{17,24}\) As suggested by Zhang et al,\(^{17}\) this likely contributes to the discrepancy between properties of recombinant Ca\(_{1.3}\) channels and the activation range expected from functional analyses of native currents in SA node cells. The use of high concentrations of extracellular divalent cations in earlier studies of cloned channels probably obscured the unusually hyperpolarized activation range of Ca\(_{1.3}\) L channels. It is notable that the Ca\(_{1.3}\) L-type current-voltage relationship is shifted toward voltages \(\approx 20\) mV more depolarized and into the range of a high voltage-activated L-type channel when 40 mmol/L barium is used.\(^{20}\)

Future studies will be needed to address the relative importance of Ca\(_{1.3}\)-containing L-type Ca\(^{2+}\) channels in pacemaking in the heart. Although Ca\(_{1.3}\) mRNA is present in atrial myocytes,\(^{25}\) recent studies suggest that levels are very low in the SA node, particularly when compared with Ca\(_{3.1}\)-T-type mRNA.\(^{16}\) The availability of a selective inhibitor of Ca\(_{1.3}\)-containing L channels would prove a useful tool to determine the relative contribution of this channel to SA node function. Classic L-type Ca\(^{2+}\) channel blockers are not useful in this regard. Recent studies of recombinant Ca\(_{1.3}\) L-type channels suggest a relatively low sensitivity to block by dihydropyridines compared with Ca\(_{1.2}\) L-type channels.\(^{20,21}\) It will be of interest to establish whether a unique splice isoform of Ca\(_{1.3}\) is expressed in the SA node. There is evidence for some level of atrial-specific splicing of Ca\(_{1.3}\) RNA in the S3–S4 linker of domain IV of the channel.\(^{25}\) Splicing at this site shifts the voltage dependence of activation by \(< 10\) mV and does not seem to influence dihydropyridine binding.\(^{20}\) Finally, given the emphasis placed on similarities between Ca\(_{1.3}\)-L-type and T-type Ca\(^{2+}\) channels in terms of their activation thresholds, it is worth noting features that distinguish these channels. Whereas T-type Ca\(^{2+}\) channels undergo prominent voltage-dependent inactivation, Ca\(_{1.3}\) L-type Ca\(^{2+}\) channels show weak voltage-dependent, but strong calcium-dependent, inactivation. Further, Ca\(_{1.3}\) L-type Ca\(^{2+}\) channels deactivate rapidly compared with T-type Ca\(^{2+}\) channel subtypes that dominate in heart.

References

7. Deleted in proof.

20. Xu W, Lipscombe D. Neuronal Ca\textsubscript{v}1.3(\(\alpha_{1}\)) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. *J Neurosci*. 2001;21:5944–5951.

22. Safa P, Boulter J, Hales TG. Functional properties of Ca\textsubscript{v}1.3 (\(\alpha_{1D}\)) L-type Ca2+ channel splice variants expressed by rat brain and neuroendocrine GH3 cells. *J Biol Chem*. 2001;276:38727–38737.

25. Takimoto K, Li D, Nerbonne JM, Levitan ES. Distribution, splicing and glucocorticoid-induced expression of cardiac \(\alpha_{1C}\) and \(\alpha_{1D}\) voltage-gated Ca2+ channel mRNAs. *J Mol Cell Cardiol*. 1997;29:3035–3042.

Key Words: L-type calcium channels ■ \(\alpha_{1}\) ■ low voltage-activated ■ voltage-gated calcium channels
L-Type Calcium Channels: Highs and New Lows
Diane Lipscombe

Circ Res. 2002;90:933-935
doi: 10.1161/01.RES.0000019740.52306.92
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/90/9/933

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/