PKCζ Regulates TNF-α–Induced Activation of NADPH Oxidase in Endothelial Cells

Randall S. Frey,* Arshad Rahman,* John C. Kefer, Richard D. Minshall, Asrar B. Malik

Abstract—Although oxidant generation by NADPH oxidase is known to play an important role in signaling in endothelial cells, the basis of activation of NADPH oxidase is incompletely understood. The atypical isoform of protein kinase C, PKCζ, has been implicated in the mechanism of tumor necrosis factor-α (TNF-α)–induced oxidant generation in endothelial cells; thus, in the present study, we have addressed the role of PKCζ in regulating NADPH oxidase function. We showed by immunoblotting and confocal microscopy the presence of the major cytosolic NADPH oxidase subunits, p47phox and membrane-bound gp91phox in human pulmonary artery endothelial (HPAE) cells. TNF-α failed to activate oxidant generation in lung vascular endothelial cells derived from p47phox−/− and gp91phox−/− mice, indicating the requirement of NADPH oxidase in mediating the oxidant generation in endothelial cells. Stimulation of HPAE cells with TNF-α resulted in the phosphorylation of p47phox and its association with gp91phox. Inhibition of PKCζ by multiple pharmacological and genetic approaches prevented the TNF-α–induced phosphorylation of p47phox, and its translocation to the membrane. PKCζ was shown to colocalize with p47phox, and inhibition of PKCζ activation prevented the interaction of p47phox with gp91phox induced by TNF-α. Furthermore, inhibition of association of p47phox with gp91phox prevented the oxidant generation in endothelial cells. These data demonstrate a novel function of PKCζ in signaling oxidant generation in endothelial cells by the activation of NADPH oxidase, which may be important in mediating endothelial activation responses. (Circ Res. 2002;90:1012-1019.)

Key Words: tumor necrosis factor-α ■ protein kinase Cζ ■ NADPH oxidase ■ endothelial cells

Oxidant generation in the endothelium may have an important role in signal transduction, gene expression, cell proliferation, apoptosis, and in the pathophysiology of various diseases such as acute respiratory distress syndrome (ARDS) and tissue injury from ischemia/reperfusion.1–7 Studies have shown that oxidant generation is involved in the signaling cascade mediating the tumor necrosis factor-α (TNF-α)–induced activation of nuclear factor (NF)-κB and expression of adhesion molecules such as ICAM-1 in endothelial cells.2–4 Despite the requirement of oxidant signaling in these responses, the upstream regulation of oxidant production in endothelial cells is not known.

NADPH oxidase is a highly regulated membrane-bound enzyme complex that catalyzes the 1-electron reduction of oxygen to superoxide anion with the simultaneous oxidation of cytosolic NADPH. Components of NADPH oxidase complex include the membrane-bound cytochrome b558, composed of 2 subunits, p22phox and gp91phox, and 4 cytosolic subunits, p47phox, p67phox, p40phox, and the small GTP-binding protein, Rac1/Rac2.8,9 Assembly of the active NADPH oxidase complex requires the translocation of the cytosolic factors, p47phox, p67phox, and Rac1/Rac2 to the plasma membrane where these components interact with cytochrome b558.8–10 During complex assembly, p47phox first interacts with cytochrome b558.11 Translocation is initiated by signaling events, including the phosphorylation of p47phox, which contains a number of protein kinase C (PKC), protein kinase A (PKA), and mitogen-activated protein kinase (MAPK) phosphorylation sites (RXXS/TXXR, RXRS, and PXSP, respectively).12,13 Although NADPH oxidase has been implicated in oxidant signaling in endothelial cells, there is little information on the regulation of NADPH oxidase activation and the generation of oxidants. In the present study, we addressed the role of PKC, a family of serine/threonine kinases,14–16 in mediating NADPH oxidase activation in endothelial cells. PKC isoforms are classified into three groups based on their structure and activation mechanisms: phosphatidylserine (PS)-, diacylglycerol (DAG)-, and Ca2+-dependent conventional PKC (cPKC; α, βI, βII, and γ), Ca2+-independent novel PKC (nPKC; δ, ε, μ, θ, and η) isoforms, and DAG- and Ca2+-independent atypical PKC (aPKC; ζ, and λ/ι) isoforms. Tissue distribution of PKC-α, -δ, and -ζ is widespread, whereas the others are localized in a tissue- and cell type–specific manner. In addition to PKC-α, -δ, and -ζ, endothelial...
cells also express the PKC-β, -ε, -η, and -θ isoforms. In a previous study, we showed that TNF-α–induced oxidant generation requires the activation of PKCζ, the atypical PKC isoform abundantly expressed in endothelial cells. In the present study, we investigated mechanisms by which PKCζ induces endothelial oxidant generation. We show that PKCζ is required for signaling oxidant generation in response to TNF-α and does so through the activation of NADPH oxidase. The mechanism of activation involves PKCζ–induced phosphorylation of p47^phox and its targeting to the membrane where it associates with gp91^phox to generate the active NADPH oxidase complex.

Materials and Methods

Materials
Human recombinant TNF-α with a specific activity of 2.3x10^7 was purchased from Promega (Madison, Wis). Monoclonal and polyclonal antibodies against p47^phox or gp91^phox subunit of NADPH oxidase were kindly provided by Ulla G. Knaus and Bernard M. Babior (The Scripps Research Institute, La Jolla, Calif). Vitamin D3 (Nakamura, Nagasaki University, Nagasaki, Japan) and free access to food and water. Studies were performed in accordance with institutional and NIH guidelines and after approval of the Institutional Review Board. Mouse lung vascular endothelial cell cultures were obtained from Drs. Mary C. Dinauer (University of Indiana School of Medicine, Indianapolis, Ind) and Steven M. Holland (NIH, Bethesda, Md). Mice were housed in the University of Illinois Animal Care Facility in specific pathogen-free conditions.

Endothelial Cell Cultures
Human pulmonary artery endothelial (HPAE; Clonetics, La Jolla, Calif) cells were cultured as described in gelatin-coated flasks using endothelial basal medium 2 (EBM2) with bullet kit additives. Mouse lung vascular endothelial cell cultures were obtained from wild-type and p47^phox^−/− and gp91^phox^−/− mice. The knockout mice were provided by Drs. Mary C. Dinauer (University of Indiana School of Medicine, Indianapolis, Ind) and Steven M. Holland (NIH, Bethesda, Md). Mice were housed in the University of Illinois Animal Care Facility in specific pathogen-free conditions with free access to food and water. Studies were performed in accordance with institutional and NIH guidelines and after approval from the Institutional Review Board. Mouse endothelial cells were cultured as described by us.

Immunoprecipitation and Immunoblotting
HPAE cells were washed with ice-cold TBS and lysed in 10 mmol/L Tris-HCl (pH 7.5), 5 mmol/L EDTA, 10 mmol/L EGTA, 50 μg/mL PMSF, and a mixture of protease inhibitors. Lysates were sonicated and incubated for 30 minutes at 4°C. These lysates were microfuged at 4°C, and the supernatants were designated membrane fraction. For study of oxidant generation, we showed that TNF-α induces endothelial oxidant generation. We show that PKCζ, the atypical PKC isoform abundantly expressed in endothelial cells, induces endothelial oxidant generation. We show that PKCζ is required for signaling oxidant generation in response to TNF-α and does so through the activation of NADPH oxidase. The mechanism of activation involves PKCζ–induced phosphorylation of p47^phox and its targeting to the membrane where it associates with gp91^phox to generate the active NADPH oxidase complex.

Immunofluorescence
HPAE cells grown on gelatinized cover slips were treated as indicated, washed with HBSS and fixed in 4% paraformaldehyde for 10 seconds and then ultracentrifuged at 100,000 g or gp91^phox^−/− mice. The knockout mice were provided by Drs. Mary C. Dinauer (University of Indiana School of Medicine, Indianapolis, Ind) and Steven M. Holland (NIH, Bethesda, Md). Mice were housed in the University of Illinois Animal Care Facility in specific pathogen-free conditions with free access to food and water. Studies were performed in accordance with institutional and NIH guidelines and after approval from the Institutional Review Board. Mouse endothelial cells were cultured as described by us.

Immunoprecipitation and Immunoblotting
HPAE cells were washed with ice-cold TBS and lysed in 10 mmol/L Tris-HCl (pH 7.5), 5 mmol/L EDTA, 10 mmol/L EGTA, 50 μg/mL PMSF, and a mixture of protease inhibitors. Lysates were sonicated and incubated for 30 minutes at 4°C. These lysates were microfuged at 4°C, and the supernatants were designated membrane fraction. For study of oxidant generation, we showed that TNF-α induces endothelial oxidant generation. We show that PKCζ, the atypical PKC isoform abundantly expressed in endothelial cells, induces endothelial oxidant generation. We show that PKCζ is required for signaling oxidant generation in response to TNF-α and does so through the activation of NADPH oxidase. The mechanism of activation involves PKCζ–induced phosphorylation of p47^phox and its targeting to the membrane where it associates with gp91^phox to generate the active NADPH oxidase complex.

Transfection of HPAE Cells
Phosphorothioate oligonucleotides to PKCζ sense (ATGCCCGAGCGACC) and antisense (GGTGCTCGTGGGACAT) have been previously described. Phosphorothioate antisense oligonucleotide to PKCζ mRNA. Oligonucleotides were transfected using Lipofectin (GIBCO-BRL) as described. The expression vector pcDNA3 containing HA-tagged kinase defective PKC-ζ, -α, and -ε isoforms and catalytically active PKCζ mutant were gifts from Dr. Jae-Won Soh (Columbia University, New York, NY) and were transfected as described.

Results
TNF-α–Induced Phosphorylation and Translocation of p47^phox in Endothelial Cells
We determined the phosphorylation status of p47^phox, a requirement for activation NADPH oxidase, challenge of HPAE cells induced p47^phox phosphorylation in a time-dependent manner. Phosphorylated form of p47^phox in-
yellow-orange staining in TNF-α–stimulated HPAE cells was immunoprecipitated, subjected to SDS-PAGE, and then transferred to nitrocellulose membranes. Membranes were immunoblotted with an antibody against gp91^phox^. Results showed that TNF-α (500 U/mL) for 15 minutes, fixed with 4% paraformaldehyde, and stained with antibodies against p47^phox^ and cytochrome b_558_ as described in Materials and Methods. Results are representative of 3 separate experiments.

Figure 2. TNF-α induces association of p47^phox^ with gp91^phox^.

A. HPAE cells were stimulated with TNF-α (500 U/mL) for the indicated times and membrane fractions were prepared. gp91^phox^-p47^phox^ immunoprecipitation was performed, followed by immunoblotting with antibodies against p47^phox^ and gp91^phox^. Results are representative of 3 separate experiments.

B. Cells were stimulated with TNF-α (500 U/mL) for 15 minutes, fixed with 4% paraformaldehyde, and stained with antibodies against p47^phox^ and cytochrome b_558_. Bar graph represents the relative binding of p47^phox^ with gp91^phox^ for each condition in A. B. Results are representative of 3 separate experiments.

Figure 3. A and B. Inhibitors of PKC prevent TNF-α–induced translocation of p47^phox^.

A. HPAE cells were pretreated with 100 nmol/L calphostin C (Cal C) for 30 minutes and stimulated with TNF-α (500 U/mL) for 15 minutes as described in Materials and Methods. Cells were then fixed and stained with an antibody against gp91^phox^. Results are representative of 3 separate experiments. B. HPAE cells were pretreated with 5 μmol/L cheletherine chloride for 1 hour before stimulation with TNF-α (500 U/mL) for 5 minutes. Membrane fractions were prepared and equal amounts of protein were analyzed by SDS/PAGE and immunoblotted with an antibody against p47^phox^. Results are representative of 2 separate experiments. C. Phorbol ester–induced depletion of cPKC and nPKC isoforms fails to prevent TNF-α–induced translocation of p47^phox^. HPAE cells were treated with or without (–) or with (+) PMA (500 nmol/L in 10% FBS/EBM-2) for 20 hours followed by stimulation with TNF-α for 15 minutes. Membrane fractions were prepared and equal amounts of protein were analyzed by SDS/PAGE and immunoblotted with the antibody against p47^phox^. Results are representative of 2 separate experiments.
membrane translocation of p47phox (Figures 4A and 4B). The antisense oligonucleotide to PKC\(\zeta\), which inhibits the expression of PKC\(\zeta\),19 also prevented TNF-\(\alpha\)-induced membrane targeting of p47phox (Figure 4C). In contrast, antisense oligonucleotide to PKC\(\alpha\) failed to modify the TNF-\(\alpha\) response (Figure 4C). We also determined the effects of kinase-defective mutant of PKC\(\zeta\) (PKC\(\zeta\)K281R) on the membrane translocation of p47phox. Expression of PKC\(\zeta\)K281R prevented the TNF-\(\alpha\)-induced membrane targeting of p47phox, whereas in control experiments, inhibition of PKC\(\alpha\) by the kinase-defective mutant (PKCaK368R) failed to prevent the response (Figure 4D).

Expression of kinase-defective mutant of PKC\(\epsilon\) (PKCeK437R) also failed to inhibit the response (data not shown). In another experiment, we showed that expression of constitutively active PKC\(\zeta\) mutant induced membrane targeting of p47phox in the absence of TNF-\(\alpha\) challenge (Figure 4E). Thus, these data indicate that PKC\(\zeta\) is required and sufficient to mediate the TNF-\(\alpha\)-induced membrane translocation of p47phox.

As p47phox phosphorylation is required for NADPH oxidase activation,13,25,26 we evaluated whether PKC\(\zeta\) is involved in mediating the phosphorylation of p47phox. Inhibition of PKC\(\zeta\) by the specific peptide antagonist27 prevented TNF-\(\alpha\)-induced p47phox phosphorylation (Figure 5A). In contrast, inhibition of PKC\(\delta\) had no effect on this response (Figure 5A). We determined the ability of PKC\(\zeta\) to associate with p47phox after TNF-\(\alpha\) challenge because this may be required

Figure 4. A and B, PKC\(\zeta\) peptide inhibitor prevents TNF-\(\alpha\)-induced translocation of p47phox. A, HPAE cells were treated with a myristoylated membrane-permeable peptide antagonist of PKC\(\zeta\) (10 \(\mu\)mol/L) for 0.5 hours followed by stimulation with TNF-\(\alpha\) (500 U/mL) for 15 minutes. Cells were then fixed with 4% paraformaldehyde, stained with anti-p47phox antibody (red) as described in Materials and Methods, and analyzed by confocal microscopy. Cells were also stained with 4',6-diamidino-2-phenylindole (blue) to view the nucleus. B, HPAE cells were treated with PKC\(\zeta\) peptide antagonist (10 \(\mu\)mol/L) for 0.5 hours before stimulation with TNF-\(\alpha\) (500 U/mL) for 5 minutes. Membrane and cytosolic fractions were prepared, and equal amounts of protein were analyzed by SDS/PAGE and immunoblotted with an antibody against p47phox. Results are representative of 2 separate experiments. C, Antisense oligonucleotide to PKC\(\zeta\) inhibits TNF-\(\alpha\)-induced translocation of p47phox. HPAE cells were transfected with 0.25 \(\mu\)mol/L sense or antisense oligonucleotide to PKC\(\zeta\) or antisense oligonucleotide to PKC\(\alpha\) as described in Materials and Methods. After 36 to 48 hours, cells were stimulated for 15 minutes with TNF-\(\alpha\) (500 U/mL). Membrane fractions were prepared and equal amounts of protein were analyzed by SDS/PAGE and immunoblotted with an antibody against p47phox. Results are representative of 2 separate experiments. D, Effects of catalytically active PKC\(\zeta\) (PKC\(\zeta\)-CAT) on p47phox staining and translocation. HPAE cells were transfected with empty vector pcDNA3 or constructs encoding dominant-negative form of PKC\(\zeta\) (PKC\(\zeta\)K281R) or PKC\(\alpha\) (PKCaK368R) isozymes. Cells were stimulated in the absence or presence of TNF-\(\alpha\) for 15 minutes. Cells were fixed, permeabilized, and stained with antibodies to HA and p47phox and confocal images were taken as described in Materials and Methods. Results are representative of 3 separate experiments. E, Effects of catalytically active PKC\(\zeta\) (PKC\(\zeta\)-CAT) on p47phox activation, 13,25,26 we evaluated whether PKC\(\zeta\), which inhibits the expression of PKC\(\zeta\),19 also prevented TNF-\(\alpha\)-induced membrane targeting of p47phox (Figure 4C). In contrast, antisense oligonucleotide to PKC\(\zeta\) failed to modify the TNF-\(\alpha\) response (Figure 4C). We also determined the effects of kinase-defective mutant of PKC\(\zeta\) (PKC\(\zeta\)K281R) on the membrane translocation of p47phox. Expression of PKC\(\zeta\)K281R prevented the TNF-\(\alpha\)-induced membrane targeting of p47phox, whereas in control experiments, inhibition of PKC\(\alpha\) by the kinase-defective mutant (PKCaK368R) failed to prevent the response (Figure 4D).

Expression of kinase-defective mutant of PKCe (PKCeK437R) also failed to inhibit the response (data not shown). In another experiment, we showed that expression of constitutively active PKC\(\zeta\) mutant induced membrane targeting of p47phox in the absence of TNF-\(\alpha\) challenge (Figure 4E). Thus, these data indicate that PKC\(\zeta\) is required and sufficient to mediate the TNF-\(\alpha\)-induced membrane translocation of p47phox.
Inhibition of PKCζ Prevents TNF-α–Induced Association of p47phox With Oxidant Generation

We evaluated the effects of inhibition of PKCζ on TNF-α–induced association of p47phox with gp91phox and resultant oxidant generation in HPAE cells. Coimmunoprecipitation studies showed that pretreatment of cells with the peptide antagonist of PKCζ inhibited the TNF-α–induced association of p47phox with gp91phox (Figure 6A). This finding is consistent with the role of PKCζ in phosphorylating and membrane targeting of p47phox as described in Figure 4. We used the fluorescent redox-sensitive dye carboxy-H₂DCFDA to determine if the effects of PKCζ inhibition in TNF-α–induced NADPH oxidase assembly prevented the oxidant generation. Cells were challenged with TNF-α for 1 hour to allow maximum oxidant accumulation during this period. Control cells showed little fluorescence. In contrast, TNF-α induced marked oxidant generation (Figure 6B), which was evident as early as 5 minutes after TNF-α exposure of HPAE cells (data not shown). Inhibition of PKCζ by the peptide antagonist prevented TNF-α–induced oxidant generation (Figure 6B). In another experiment in lung vascular endothelial cells obtained from p47phox−/− and gp91phox−/− mice, we showed that TNF-α failed to activate oxidant generation (Figure 7). These data indicate that PKCζ is crucial in signaling NADPH oxidase activation and oxidant generation in endothelial cells.

Discussion

We investigated the basis of NADPH oxidase activation in endothelial cells because oxidant signaling triggered by this complex has an important function in mediating TNF-α–induced activation of NF-κB and resultant expression of adhesion molecules such as ICAM-1.2,3–4 The present results show that the atypical PKC isofrom PKCζ plays a critical role in signaling NADPH oxidase activation and the generation of oxidants in TNF-α–exposed endothelial cells. The mechanism of NADPH oxidase activation involved PKCζ–induced phosphorylation of p47phox, thus targeting this subunit to endothelial membranes where it associated with gp91phox.

We have used several independent pharmacological and genetic approaches to define the role of the PKCζ isofrom in mediating NADPH oxidase activation. First, we showed that chelerythrine and calphostin C, broad spectrum inhibitors of PKC,18 prevented the TNF-α–induced membrane translocation of p47phox. To exclude the involvement of cPKC and nPKC isoforms in the mechanism, we depleted both cPKC and nPKC (but not the aPKC isoforms) by prolonged exposure of endothelial cells to PMA.18 Depletion of cPKC and nPKC failed to prevent membrane translocation of p47phox in response to TNF-α challenge. These results pointed to the involvement of aPKC isoform such as PKCζ in the membrane targeting of p47phox. Although the present studies show an important role of PKCζ in the TNF-α–induced membrane translocation of p47phox and NADPH oxidase activation, it is possible that cPKC and nPKC isoforms signal activation of NADPH oxidase in response to other agonists, such as thrombin, which activate 7 transmembrane G protein–coupled receptors.28 PKCα, PKCβ, and PKCδ have been shown to contribute to the assembly and activation of NADPH oxidase in a stimulus- and cell-specific manner.29–31

To delineate the specific role of PKCζ signaling as a requirement for the TNF-α–induced activation of NADPH oxidase in endothelial cells, we used 3 different approaches in...
which PKCζ activation was inhibited. First, pretreatment of HPAE cells with a myristoylated membrane-permeable peptide antagonist corresponding to the pseudosubstrate region of PKCζ, known to inhibit protein kinase activity,32 markedly decreased TNF-α-induced membrane translocation of p47phox.

Second, inhibition of PKCζ synthesis by antisense oligonucleotide 18,23 also blocked the membrane translocation of p47phox induced by TNF-α. In contrast, inhibition of PKCκ or PKCε isoforms failed to prevent the TNF-α response. Third, expression of kinase-defective mutant of PKCζ prevented TNF-α-induced p47phox translocation, whereas expression of the mutants of PKCα and PKCε isoforms had no effect. Finally, in a gain of function experiment, we showed that expression of the constitutively active PKCζ increased p47phox translocation. Taken together, these results show the critical role of PKCζ in signaling TNF-α-induced p47phox activation.

We next addressed whether the role of PKCζ-induced phosphorylation of p47phox is requirement for NADPH oxidase activation. Studies have shown that phosphorylation causes a conformational change in p47phox, which releases the complexed p47phox and allows its translocation and association to membrane-bound cytochrome b558.33 We observed that TNF-α induced time-dependent phosphorylation of p47phox, paralleling the membrane translocation of p47phox and activation of NADPH oxidase. These data are in accord with the finding of Dang et al34 showing that p47phox is an in vitro substrate for PKCζ. We also showed that inhibition of PKCζ activation prevented the TNF-α-induced phosphorylation of p47phox, indicating the causal role of PKCζ in the response.

The finding that PKCζ is required for phosphorylation of p47phox led us to examine if PKCζ directly phosphorylates p47phox or an intermediate kinase is activated in turn is
The present data are consistent with an important role of blocking PKC with gp91phox concerning the role of gp91phox detected in endothelial cells isolated from p47phox paraformaldehyde and analyzed by fluorescence microscopy as described in Materials and Methods. Cells were loaded with 10 μmol/L carboxy-H2DCFDA dye for 1 hour, washed, and then stimulated with TNF-α (800 U/ml). Cells were fixed with 4% paraformaldehyde and analyzed by fluorescence microscopy as described in Materials and Methods. Cells from wild-type (wt) mice showed oxidant accumulation within 20 minutes stimulation with TNF-α. In contrast, no oxidant production was detected in endothelial cells isolated from p47phox−/− or gp91phox−/− mice even after 60-minute stimulation with TNF-α. Results are representative of 2 experiments.

Figure 7. TNF-α fails to induce oxidant generation in lung vascular endothelial cells derived from p47phox−/− or gp91phox−/− mice. Mouse lung vascular endothelial cells were isolated as described in Materials and Methods. Cells were loaded with 10 μmol/L carboxy-H2DCFDA dye for 1 hour, washed, and then stimulated with TNF-α (800 U/ml). Cells were fixed with 4% paraformaldehyde and analyzed by fluorescence microscopy as described in Materials and Methods. Cells from wild-type (wt) mice showed oxidant accumulation within 20 minutes stimulation with TNF-α. In contrast, no oxidant production was detected in endothelial cells isolated from p47phox−/− or gp91phox−/− mice even after 60-minute stimulation with TNF-α. Results are representative of 2 experiments.

To address the functional effects of phosphorylation of p47phox and its translocation to the membrane, we assessed the assembly of NADPH oxidase complex and its effect on oxidant generation. The data showed that inhibition of phosphorylation and membrane translocation of p47phox induced by blocking PKCζ activation prevented the association of p47phox with gp91phox as well as oxidant generation. Results also showed that pretreatment of HPAE cells with an endogenous proline-arginine (PR)-rich antibacterial peptide, PR-39, known to inhibit NADPH oxidase assembly through interaction with Src homology 3 domains of p47phox, prevented the TNF-α–induced assembly of NADPH oxidase complex and oxidant generation (data not shown). We further demonstrated that TNF-α failed to activate oxidant generation in lung vascular endothelial cells derived from p47phox−/− and gp91phox−/− mice. It should be noted that there is a controversy concerning the role of gp91phox in nonphagocytic cells, and on the relative importance of Nox-1, a homologue of gp91phox, (or other members of Nox family) in these cells. However, the present data are consistent with an important role of gp91phox in the mechanism of oxidant generation in endothelial cells.40–42

The site of oxidant generation activated by NADPH oxidase in endothelial cells is unclear. The finding that p47phox fluorescence after TNF-α challenge did not appear as a ring associated with the plasma membrane suggests an intracellular source of oxidants. The previous finding that endothelial NADPH oxidase components (gp91phox and p22phox) are localized in the endoplasmic reticulum42 supports an intracellular source of oxidants.40,41 whereas other studies have shown extracellular production of superoxide anion (O2−) in endothelial cells.43,44 Thus in the present study, we cannot exclude that there is also extracellular oxidant generation induced by the NADPH oxidase complex in these cells.

In summary, the present study implicates PKCζ as the critical kinase that signals TNF-α–induced oxidant generation in endothelial cells through the activation of NADPH oxidase. The activation of NADPH oxidase was dependent on PKCζ-induced phosphorylation of p47phox. Inhibition of PKCζ activity or its expression prevented the TNF-α–induced NADPH oxidase assembly and oxidant production. Thus, strategies aimed at preventing TNF-α–induced PKCζ activation and oxidant signaling may be useful in controlling the inflammatory components of diseases such as ARDS and ischemia/reperfusion tissue injury.

Acknowledgments
This work was supported by National Institutes of Health grants HL27016, HL46350, HL45638, and HL67424.

References

PKCζ Regulates TNF-α–Induced Activation of NADPH Oxidase in Endothelial Cells
Randall S. Frey, Arshad Rahman, John C. Kefer, Richard D. Minshall and Asrar B. Malik

Circ Res. 2002;90:1012-1019; originally published online April 4, 2002;
doi: 10.1161/01.RES.0000017631.28815.8E
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/90/9/1012

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/