Nucleotide Receptors Involved in UTP-Induced Rat Arterial Smooth Muscle Cell Migration

Xavier Pillois, Hervé Chaulet, Isabelle Belloc, Françoise Dupuch, Claude Desgranges, Alain-Pierre Gadeau

Abstract—Many factors have been shown to be involved in the development of hyperplasic lesions of vessels, but the role of extracellular nucleotides remains largely unknown. The presence of P2Y and P2X nucleotide receptors on arterial endothelial and smooth muscle cells suggests a potential role for nucleotides in the vessel pathophysiology. Although the role of P2X in physiology of vessels is well documented, that of P2Y is not completely understood. We recently demonstrated that extracellular nucleotides, and particularly UTP, induced migration of cultured arterial smooth muscle cells (ASMCs). This migration is dependent on osteopontin expression and involves the Rho and mitogen-activated protein (MAP) kinase pathways. An important question is to determine the specific role of the different P2Y receptors of rat ASMCs in the UTP-induced migration process. Therefore, we first quantified mRNA levels of P2Y2, P2Y4, and P2Y6 nucleotide receptors in cultured rat ASMCs by a competitive RT-PCR approach and demonstrated that P2Y2 is the most highly expressed among these receptors potentially involved in the UTP-mediated response. In addition to UTP, UDP also induced ASMC migration even when UTP regeneration was inhibited, suggesting the involvement of UDP receptor P2Y6. Moreover, suramin, a specific antagonist of rat P2Y2 receptor, acted as an inhibitor of UTP-induced migration. Taken together, these results suggest a prominent role for the UTP receptor, P2Y2, and for the UDP receptor, P2Y6, in UTP-induced rat ASMC migration. (Circ Res. 2002;90:678-681.)

Key Words: purinergic receptors • migration • UTP • smooth muscle cells

The important role of arterial smooth muscle cell (ASMC) migration and proliferation in arterial hyperplasia is well documented in experimental models for atherosclerosis and restenosis.1 Although proliferation can be easily demonstrated in arterial injury models, evidence for in vivo ASMC migration is suggested only by the presence of these cells in the intima.

Many factors have been shown to be involved in the development of hyperplasic lesions of vessels.2 Among these, the role of extracellular nucleotides remains largely unknown. Two families of receptors have been identified for these compounds: inotropic P2X receptors and metabotropic P2Y receptors. The presence of P2Y and P2X receptors on endothelial and ASMCs suggests a potential role for nucleotides in the arterial pathophysiology. Although the role of P2X receptors in vasomotoricity of vessels is well documented, that of P2Y receptors in the vessel wall is still under investigation.

Several studies have shown that ATP and UTP binding to P2Y G protein–coupled receptors mediates ASMC activation,3 cell-cycle progression,4 and cell proliferation.5,6 Moreover, we recently demonstrated that UTP induces ASMC migration and that this migration is dependent on osteopontin expression and involves the Rho and mitogen-activated protein (MAP) kinase pathways.7
was filled with 600 μmol/L CTP or by hexokinase. Full nucleotide transformation by NDPK plus CTP or by hexokinase. (1 mmol/L) were preincubated during 1 hour at 37 °C for P2Y 1, P2Y 4, and P2Y 6 and of 62 °C for P2Y 2.

Materials and Methods

Cell Culture

Rat ASMCs were prepared from thoracic aortas of Wistar rats as previously described. Cells were cultured in DMEM containing 5% FCS, 150 mmol/L HEPES, 100 U/mL penicillin, and 100 μg/mL streptomycin (Life Technologies, Cergy Pontoise, France). ASMCs from passages 6 to 12 were used.

Migration Assay

Cell migration was performed using the Transwell system (Costar), which allows cells to migrate through 8-μm-pore-sized polycarbonate membrane as previously described. Briefly, 50,000 cells were added to the upper chamber of the Transwells. The lower chamber was filled with 600 μL serum-free DMEM containing or not containing nucleotides (ATP, ADP, UTP, UDP, UMP, α,β-methylene-ATP) or uridine in appropriate concentrations. After a 6-hour incubation, cells present beneath the membrane were stained with hemalum and counted in 10 high-power microscopic fields. Analysis was performed on 3 wells for each condition and each experiment was repeated at least 3 times.

In experiments using nucleoside-5'-diphosphate kinase (NDPK), UTP or UDP solutions (10 μmol/L) were preincubated 15 minutes at room temperature with 2.5 U/mL NDPK and 100 μmol/L CTP before addition in the lower chamber of Transwells and migration assay. In experiments using hexokinase, UTP or UDP solutions (1 mmol/L) were preincubated during 1 hour at 37 °C with 10 U/mL hexokinase. Migration tests were performed in the presence of 10 mmol/L pretreated nucleotide solution and 1 U/mL hexokinase. Full nucleotide transformation by NDPK plus CTP or by hexokinase was checked by HPLC. In experiments using suramin, ASMCs were preincubated 10 minutes with the inhibitor before loading in the upper chamber and performing migration test as described above.

Competitive RT-PCR

Purification of mRNA, cDNA synthesis, and PCR were performed as previously described. For competitive PCR, the specific competitor of P2Y receptor cDNA at various concentrations and the cellular cDNA were added to the PCR mix in a final volume of 25 μL and coamplified. Competitive templates were either mutated DNA obtained by site-directed mutagenesis or orthologues of the target cDNA that differ from the respective rat P2Y receptor sequence by the absence or presence of a specific restriction site (Table). Thirty to forty amplification cycles were used with an annealing temperature of 66°C for P2Y 1, P2Y 4, and P2Y 6 and of 62°C for P2Y 2 receptors. Cellular cDNA and competitor PCR products were separated on a 1.5% agarose gel electrophoresis after hydrolysis by specific restriction enzymes. Equimolar ethidium bromide fluorescence of competitor and cellular cDNA PCR products indicates identical template concentration in the starting solution. Each experiment was done in triplicate.

Statistics

ANOVA and unpaired Student’s t test were performed for statistical analysis. A probability value less than 0.05 was considered statistically significant. Data are expressed as mean±SD.

Results

Quantification of P2Y mRNA Expression

The mRNA amount of P2Y 1, P2Y 2, P2Y 4, and P2Y 6 receptors in cultured ASMCs was evaluated by competitive RT-PCR. Figure 1 shows gel electrophoresis of PCR products obtained with different competitor concentrations and demonstrated that P2Y receptor mRNA was expressed at very different levels in the cells. The estimated amount of P2Y 2 receptor mRNA was 10-fold that of P2Y 4 receptor, itself 10-fold higher than that of P2Y 1 receptor. P2Y 1 receptor expression was 100-fold lower than that of P2Y 4 receptor.

Figure 1. P2Y 1, P2Y 2, P2Y 4, and P2Y 6 receptor expression in cultured rat ASMCs. Purinergic receptor cDNA quantification was performed by competitive PCR. Competitor of each P2Y receptor, added from 10 −15 to 10 −5 μg/μL to the PCR mix test, was coamplified with respective cellular cDNA. PCR products from competitor (black arrowheads) were separated from specific cDNA (white arrowheads) by 1.5% agarose gel electrophoresis. The white rectangle on each image delineates the reversal point of amplification of specific cDNA versus competitor. L indicates 100-bp ladder; C, control lane without competitor added in the test tube.
Effect of UTP and UDP on ASMC Migration

At least three receptors, P2Y\textsubscript{2}, P2Y\textsubscript{4}, and P2Y\textsubscript{6}, are known to respond to pyrimidine nucleotides and could mediate the ASMC migration response induced by UTP or its immediate catabolite UDP. To determine the receptor(s) involved in this process, we compared the effect of the uridylic family UTP, UDP, UMP, and uridine and that of ATP and ADP on ASMC migration. Figure 2 demonstrates that neither UMP nor uridine has migratory potential. In contrast, UDP induced ASMC migration but to a lesser degree than UTP. The UDP response was \(\approx 50\% \) that of UTP. The specific potential of UTP and UDP by themselves needs to be evaluated because UTP and UDP can be converted to each other. Indeed UTP can be catabolized by ectonucleotidases into UDP, and UDP can be converted into UTP by extracellular ectonucleotide diphosphokinase.11

To confirm the involvement of UTP-specific receptors, the migration test was performed in conditions limiting the involvement of UDP. To this end, the migration test was done in the presence of NDPK and CTP in the cultured medium so that UDP generated by UTP catabolism was immediately transformed into UTP. The efficiency of this process was assessed by determining the nucleotide concentration in the cultured medium by HPLC (not shown). The UTP solution added to the bottom of the migration chamber was also treated with NDPK to eliminate UDP contamination. In these conditions, UTP-mediated ASMC migration could be entirely attributed to this nucleotide. Moreover, addition of NDPK to the medium of UDP-stimulated ASMCs led to an increased chemotactic activity, demonstrating that UTP is a more potent chemoattractant than UDP for ASMCs (Figure 3A).

Conversely, to evaluate the potential involvement of P2Y\textsubscript{6} receptor in UDP-induced ASMC migration, we added hexokinase to the culture medium to avoid UTP contamination or formation as previously described.11 Figure 3B shows that the chemotactic activity of UDP was maintained in the absence of UTP, destroyed by hexokinase treatment, suggesting that the P2Y\textsubscript{6} receptor was also involved in ASMC migration.

ATP, but not ADP, also demonstrated a chemotactic activity (Figure 4), suggesting that ATP-induced ASMC migration was not due to P2Y\textsubscript{1} activation but rather to the activation of other receptor(s), ie, the P2Y\textsubscript{2} or P2Y\textsubscript{4} receptors.
hypothesis, α,β-methylene-ATP was added to ATP to protect it from ectonucleotidases. Figure 4 shows that α,β-methylene-ATP strongly increased the ATP-induced migration while inducing only a small nonsignificant response by itself. Because agonists could not discriminate P2Y2 and P2Y4 rat receptors, we used suramin, a P2Y2 but not P2Y4 receptor antagonist in the rat10 on UTP-induced ASM migration. Figure 4B shows that suramin inhibited the UTP-induced migration dose dependently. This result is consistent with a major role of P2Y2 receptor in this process.

Discussion
In previous experiments, we demonstrated that extracellular UTP is able to induce migration of cultured rat ASMCs in a dose-dependent manner.7 In the present work, we demonstrate that UTP can also induce ASM migration. Because UTP and UDP can activate different P2Y receptors, the aim was to define the role of P2Y2, P2Y6, and P2Y4 receptors in UTP-induced ASM migration. First, we determined that the P2Y2 receptor is 10- and 100-fold more highly expressed than P2Y6 and P2Y4 receptors, respectively. The expression of the P2Y2 receptor was lower than that of the P2Y4 receptor.

The very low level of P2Y1 receptor mRNA was confirmed by the absence of ADP-induced migration of cultured ASMCs, demonstrating that P2Y1 is not involved in this process.

Both UTP and UDP induced ASM migration. The reversible conversion of UTP to UDP made it difficult to determine the P2Y receptor(s) involved in the UTP-induced migratory response. We found that a commercial solution of UDP and hexokinase-treated UDP solution (UTP-free) induced ASM migration equally, thereby demonstrating that UDP is chemotactic by itself for ASMCs and that P2Y4 receptor is thus able to mediate migration. Conversely, the migration experiment done in conditions limiting UTP degradation by NDPK treatment demonstrated the involvement of P2Y2 and/or P2Y4 receptor(s). The lower migration induced by UDP than by UTP could be the result of reduced receptor efficiency in this process, but it also could be due to the reduced P2Y4 receptor expression as suggested by the smaller amount of P2Y4 than P2Y2 receptor mRNA found in cultured ASMCs.

ATP and UTP have been found to have an equal effect on the calcium fluxes resulting from stimulation of rat P2Y2 and P2Y4 receptors in transfected cells.14,15 In the present study, ATP demonstrated a migratory effect lower than UTP. However, this difference decreased and became nonsignificant when ATP was protected from ectonucleotidase degradation by α,β-methylene-ATP. This result suggests that the lower effect of ATP alone is certainly related to the ATP conversion in its catalytides. Although agonist-induced experiments could not allow the discrimination between P2Y2 and P2Y4-mediated response, the inhibitory effect of the rat P2Y2 receptor antagonist, suramin,13 on UTP-induced migration and the fact that P2Y2 mRNA content is 100-fold higher than that of P2Y4 strongly suggest a prominent involvement of the P2Y2 receptor in UTP-induced rat ASM migration.

Taken together, these results suggest that UTP-induced migration is mainly due to the P2Y2 receptor. Moreover, this work also demonstrated for the first time a functional role of P2Y4 in ASMCs and that this receptor could be involved in UTP-mediated ASM migration after UTP conversion in UDP.

The findings that P2Y2 receptor is overexpressed in experimentally induced arterial intimal thickening4 and that UTP induces significant ASM migration at concentrations as low as 10 nmol/L close to in vivo concentrations1 suggest that UTP could play a significant role in pathophysiological conditions by inducing ASM migration.

Acknowledgments
This study was supported by grants from Institut National de la Santé et de la Recherche Médicale, Etablissement Public Régional No. 970301302, Fondation de France, and by a fellowship from Ministère de la Recherche et de la Technologie (H. Chaulet).

References
Nucleotides Receptors Involved in UTP-Induced Rat Arterial Smooth Muscle Cell Migration

Xavier Pillois, Hervé Chaulet, Isabelle Belloz, Françoise Dupuch, Claude Desgranges and Alain-Pierre Gadeau

Circ Res. 2002;90:678-681; originally published online February 21, 2002;
doi: 10.1161/01.RES.0000013700.98464.8E

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/90/6/678

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/