Protein Kinase A Phosphorylation of the Ryanodine Receptor Does Not Affect Calcium Sparks in Mouse Ventricular Myocytes

Yanxia Li, Evangelia G. Kranias, Gregory A. Mignery, Donald M. Bers

Abstract—Ryanodine receptor (RyR) phosphorylation by protein kinase A (PKA) may be important in modulating resting sarcoplasmic reticulum (SR) Ca2+ release, especially in heart failure. However, clear cellular data on PKA-dependent modulation of cardiac RyRs is limited because of difficulty in distinguishing between PKA effects on RyR, phospholamban (PLB), and Ca2+ current. To clarify this, we measured resting Ca2+ sparks in streptolysin-O permeabilized ventricular myocytes from wild-type (WT) and PLB knockout (PLB-KO) mice and transgenic mice expressing only double-mutant PLB (PLB-DM) that lacks the regulatory phosphorylation sites (S16A/T17A). In WT myocytes, cAMP dramatically increased Ca2+ spark frequency (CaSpF) by 2- and 3-fold when [Ca2+]i was clamped at 50 and 10 nmol/L (and the SR Ca2+ content also rose by 40% and 50%). However, in PLB-KO and PLB-DM, neither CaSpF nor SR Ca2+ load was changed by the addition of 10 μmol/L cAMP (even with phosphatase inhibition). PKA activation also increased Ca2+ spark amplitude, duration, and width in WT, but not in PLB-KO or PLB-DM. RyR phosphorylation was confirmed by measurements of 32P incorporation on immunoprecipitated RyR. In intact resting myocytes, PKA activation increased CaSpF 2.8-fold in WT, but not in PLB-KO, confirming results in permeabilized myocytes. We conclude that the PKA-dependent increase in myocyte CaSpF and size is entirely attributable to PLB phosphorylation and consequent enhanced SR Ca2+ load. PKA does not seem to have any appreciable effect on resting RyR function in these ventricular myocytes. Moreover, the data provide compelling evidence that elevated intra-SR [Ca2+]i increases RyR gating independent of cytosolic [Ca2+]i (which was clamped). (Circ. Res. 2002;90:309-316.)

Key Words: cardiac muscle n excitation-contraction coupling n calcium transport n sarcoplasmic reticulum

B eta-adrenergic receptor (β-AR) activation regulates beat-to-beat cardiac function. β-AR activation via the sympatheticadrenal system activates adenylate cyclase via a GTP-binding protein (Gα) and produces cAMP.1 Activation of cAMP-dependent protein kinase (PKA) phosphorylates functional proteins in the sarcolemma (notably Ca2+ channels),2 the sarcoplasmic reticulum (SR),3–5 and myofibrils (troponin I and protein C).6 Phospholamban (PLB) and the SR Ca2+ release channel/ryanodine receptor (RyR) are the key SR proteins phosphorylated by PKA in cardiac myocytes. PLB phosphorylation relieves its otherwise tonic inhibition of the SR Ca2+-ATPase.7 This increases SR Ca2+ uptake rate, accelerates intracellular [Ca2+] ([Ca2+]i) decline during relaxation, and tends to increase SR Ca2+ content.8 In addition, Ca2+ current (ICa) is increased by PKA. This increases the Ca2+ trigger for SR Ca2+ release and also increases cellular and SR Ca2+ content.9 PKA-dependent RyR phosphorylation has also been reported to increase the open probability (P o) of the RyR in lipid bilayers.5,10–12 Moreover, Marx et al12 reported RyR hyperphosphorylation (at Ser-2809) in heart failure (HF), which caused release of FK-506 binding protein (FKBP) from the RyR and increased overall P o . There was an increased Ca2+ sensitivity of RyR opening and reduced coupling of gating events. They also proposed that this could cause a diastolic SR Ca2+ leak in HF leading to reduced SR Ca2+ content and contractile dysfunction. SR Ca2+ content is decreased in human, canine, and rabbit HF, but this has generally been attributed to reduced SR Ca2+-ATPase or increased Na+-Ca2+ exchanger expression or function.13–15 Ca2+ sparks are the fundamental local SR Ca2+ release events detected in intact ventricular myocytes.16 Ca2+ sparks are probably due to a cluster of 6 to 20 RyRs acting in concert to produce both the resting diastolic SR Ca2+ leak and the temporally synchronized SR Ca2+ release during excitation-contraction (E-C) coupling, although individual Ca2+ sparks during E-C coupling are obscured by temporal and spatial overlap.17

Functional results about PKA effects on RyR are mostly from isolated systems (eg, single-channel bilayer recordings...
or SR vesicles). Attempts to study effects of PKA on the RyR in more intact cardiac myocytes are complicated by changes in I_{Ca}, SR Ca$^{2+}$-ATPase, SR Ca$^{2+}$ content, [Ca$^{2+}$], and myofilament properties. Nevertheless, there are reports that suggest that PKA can either enhance or depress E-C coupling in intact cells.

In the present study, we minimize complicating factors to assess the impact of RyR PKA phosphorylation on resting SR Ca$^{2+}$ leak (Ca$^{2+}$ sparks) in a relatively intact cellular environment. Myocytes were permeabilized with streptolysin-O (SLO). This functionally removes cytoplasm and allows control of [Ca$^{2+}$], by exogenous Ca$^{2+}$ buffers and indicators. Furthermore, we used mice in which the PLB gene was knocked out (PLB-KO) and also in which a double-mutant nonphosphorylatable form of PLB was transgenically expressed in the knockout background (PLB-DM). The mutant PLB has a phosphomimetical alanine replacing both Ser-16 (PKA site) and Thr-17 (CaMKII site). These mouse models abolish the complicating effect of PKA on SR Ca$^{2+}$-ATPase activity.

We sought to determine how RyR function was altered by PKA phosphorylation in SLO-permeabilized ventricular myocytes. In wild-type (WT) myocytes, PKA activation increased SR Ca$^{2+}$ content and Ca$^{2+}$ spark frequency (CaSpF) and spark amplitude. However, in PLB-KO or PLB-DM myocytes, PKA activation had no effect on either CaSpF, spark amplitude, or SR Ca$^{2+}$ content (where RyR phosphorylation was confirmed). In intact myocytes, PKA activation also increased resting CaSpF in WT, but not in PLB-KO. We conclude that PKA phosphorylation of RyR has no significant effect on resting RyR-mediated SR Ca$^{2+}$ leak. In this light, the increase in CaSpF in WT myocytes shows that elevated SR Ca$^{2+}$ content directly increases CaSpF.

Materials and Methods

Cardiac Myocyte Isolation

Single mouse ventricular myocytes were isolated similar to previously described methods. Mice were handled according to the Guiding Principles in the Care and Use of the Animals approved by the Council of the American Physiological Society. Some WT mice were purchased from Charles River Laboratories, Inc (Wilmington, Mass) and some WT and all PLB-KO and PLB-DM were bred in-house. Briefly, after anesthesia (pentobarbital-Na, 90 mg/kg IP), hearts were excised and perfused with 5% CO$_2$/95% O$_2$ gassed with 95% O$_2$/5% CO$_2$, before inclusion of 1 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L leupeptin, and 1 mmol/L aprotinin. After solubilization and removal of insoluble material, RyR was immunoprecipitated using mouse monoclonal anti-RyR IgG (MA3-925, Affinity Bioreagents Inc) and protein A Sepharose (Pharmacia Biotech AB). The protein A Sepharose was then washed 6 times with increasing [NaCl] (0 to 300 mmol/L). Phosphorylated protein was separated by SDS-PAGE (5%), dried, autoradiographed, and analyzed by PhosphoImager.

Ca$^{2+}$ Spark Measurement in Intact Myocytes

Intact mouse ventricular myocytes were loaded with 10 mmol/L fluo-4 AM for 20 minutes and washed for 15 minutes in normal MEM solution.

Figure 1. Fluo-3 calibration curve. Calibration solutions with [Ca$^{2+}$] ranging from 10 nmol/L to 10 mmol/L (with 10 mmol/L fluo-3) were measured on the confocal microscope. The Ca$^{2+}$-fluor emission dissociation constant (K_d) was 700 nmol/L.

0.5, glutathione (reduced form) 10, 8% dextran (MW 40 000), and 50 mmol/L fluo-3 (K-salt). Thus, [Ca$^{2+}$], is clamped by [Ca$^{2+}$], in the permeabilized system.

Ca$^{2+}$ Signal Recording Using Confocal Microscopy and Fluo-3

Ca$^{2+}$ sparks were recorded by a laser scanning confocal microscope (LSM 410, Carl Zeiss) with a x40 oil immersion objective (numeric aperture=1.3). Fluo-3 was excited at the 488-nm line of an argon laser with emission collected through a 515-nm long-pass filter. Fluorescence images were recorded in line-scan mode with 512 pixels per line at 250 Hz. In vitro calibration (Figure 1) was done using fluo-3 (K-salt) and a set of solutions with known [Ca$^{2+}$], ranging from 10 nmol/L to 10 mmol/L (calculated using MaxChela
tor). The K_d was 700 nmol/L. Free [Ca$^{2+}$] in the experimental solutions used was confirmed by the in vitro calibration. Since [Ca$^{2+}$], at rest ([Ca$^{2+}$],rest) and K_d are known, [Ca$^{2+}$], was calculated: [Ca$^{2+}$] = K_dF/F0/K_d[Ca$^{2+}$],rest + 1 - F/F0. SR Ca$^{2+}$ load was evaluated by the Ca$^{2+}$ transient induced by the application of 10 mmol/L caffeine. Because two different [Ca$^{2+}$] were used and [Ca$^{2+}$], was buffered differently, reliable Ca$^{2+}$ transient amplitude comparisons are best made at the same [Ca$^{2+}$].
Tyrode’s (NT) solution containing (in mmol/L) NaCl 140, KCl 6, HEPES 10, glucose 10, MgCl₂ 1, and 1 or 2 mmol/L CaCl₂ (in PKB-KO and WT mouse myocytes, respectively, at 23°C). Isoproterenol (1 μmol/L) was added to stimulate β-AR. CaSpF was measured before and 3 minutes after isoproterenol addition (peak CaSpF in permeabilized WT).

Data Analysis

Ca²⁺ sparks were characterized using Interactive Data Language (IDL 5.3 computer software) and the algorithm of Cheng and colleagues²⁶,²⁷ and confirmed visually. Briefly, Ca²⁺ sparks are areas where fluorescence is 3.8 times the standard deviation (SD) of background fluorescence. Ca²⁺ spark peaks were normalized to fluorescence baseline (F₀) to fluorescence baseline (F_i). Ca²⁺ spark duration was the full-duration half-maximum (FDHM) and width was the full-width half-maximum (FWMH). CaSpF was normalized to cell volume and depth (1 μm). SR Ca²⁺ load was evaluated by Ca²⁺ transient amplitude upon caffeine application.

Results are expressed as mean±SEM. Significance (P<0.05) was determined using Student’s t test for gaussian data and Mann-Whitney test otherwise.

Results

Ca²⁺ Spark Frequency in SLO-Permeabilized Myocytes

Figure 2A shows Ca²⁺ spark images from WT and PLB-KO mouse ventricular myocytes before and 3 minutes after addition of cAMP to stimulate PKA. In WT, cAMP clearly increased CaSpF, but not in PLB-KO. The same was true for WT with PLB-DM. That is, as shown in Figure 2B, CaSpF increased in WT, but not when the nonphosphorylatable PLB replaced native PLB.

Two different buffered resting [Ca²⁺]i, were used in the permeabilized cells (50 and 10 nmol/L). The higher value is somewhat below expected [Ca²⁺]i, in intact cells, but was chosen so that PKA-induced increases in CaSpF did not cause overlapping Ca²⁺ sparks (macro-sparks) or waves. Ca²⁺ waves were also limited by 0.5 mmol/L EGTA. Even at 50 nmol/L [Ca²⁺]i, in permeabilized WT myocytes, resting CaSpF was higher (~350 sparks p−¹ · s−¹) than we typically observe in intact mouse myocytes (40 to 100 sparks p−¹ · s−¹) where we assume [Ca²⁺]i ≈100 mmol/L. For PLB-KO myocyte experiments, [Ca²⁺]i was even lower (10 nmol/L) for the same reason. That is, without PLB, the SR Ca²⁺-ATPase is very active and the CaSpF at 50 nmol/L [Ca²⁺]i, was too high to confidently detect further increases. Thus, WT myocyte served as controls at each [Ca²⁺]i.

Figure 3 shows pooled data. In WT, addition of cAMP increased CaSpF dramatically, at both 10 nmol/L [Ca²⁺]i, (Figure 3A) and 50 nmol/L [Ca²⁺]i, (Figure 3B). In sharp contrast, there was no change in CaSpF for either PLB-KO or PLB-DM. Raising [Ca²⁺]i from 10 to 50 nmol/L in WT myocytes (Figure 3A versus Figure 3B) increased CaSpF from 100 to 350 sparks p−¹ · s−¹. This could be explained by altered RyR gating due to either higher [Ca²⁺]i, or higher SR Ca²⁺ content expected. At 10 nmol/L, the CaSpF in PLB-KO was ~4 times higher than in the WT. This difference cannot be due to [Ca²⁺]i (which was identical). However, after cAMP addition, WT CaSpF rose to nearly match that of the PLB-KO. This is consistent with the initial 4-fold PLB-KO versus WT difference being due to SR Ca²⁺ content. After PKA phosphorylation of PLB, this difference might be minimized such that SR Ca²⁺ loads are comparable (see below), making CaSpF similar. The failure of CaSpF to change in the PLB-KO myocyte indicates that the cAMP effect on WT CaSpF was entirely attributable to PLB phosphorylation and that RyR effects are not significant.

Figure 3 shows Ca²⁺ spark frequency versus time (with or without cAMP) in WT, PLB-KO, and PLB-DM. After 7 minutes of control Ca²⁺ spark recording, 10 μmol/L cAMP was applied. Data are mean±SEM of 5 to 17 cells from 3 to 5 mice.
Ca2+ Spark Characteristics

<table>
<thead>
<tr>
<th>Ca2+ Spark Characteristics</th>
<th>No. of Sparks</th>
<th>(\Delta[\text{Ca}2+]), nmol/L</th>
<th>FWHM, (\mu\text{m})</th>
<th>FDHM, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 nmol/L [Ca2+]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>Control</td>
<td>859</td>
<td>90±2</td>
<td>2.6±0.02</td>
</tr>
<tr>
<td></td>
<td>cAMP</td>
<td>933</td>
<td>143±3*</td>
<td>2.8±0.02†</td>
</tr>
<tr>
<td>PLB-DM</td>
<td>Control</td>
<td>896</td>
<td>132±3</td>
<td>2.1±0.02</td>
</tr>
<tr>
<td></td>
<td>cAMP</td>
<td>843</td>
<td>123±3*</td>
<td>2.1±0.02</td>
</tr>
<tr>
<td>10 nmol/L [Ca2+]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>Control</td>
<td>285</td>
<td>23.8±1.0</td>
<td>2.6±0.04</td>
</tr>
<tr>
<td></td>
<td>cAMP</td>
<td>585</td>
<td>20.1±10.8†</td>
<td>2.8±0.02†</td>
</tr>
<tr>
<td>PLB-KO</td>
<td>Control</td>
<td>1092</td>
<td>34.7±0.7</td>
<td>2.0±0.01</td>
</tr>
<tr>
<td></td>
<td>cAMP</td>
<td>580</td>
<td>31.7±0.9*</td>
<td>2.0±0.02</td>
</tr>
<tr>
<td>Early</td>
<td>Control</td>
<td>1020</td>
<td>33.9±0.7</td>
<td>2.8±0.02</td>
</tr>
<tr>
<td>Late</td>
<td>Control</td>
<td>850</td>
<td>31.2±0.8*</td>
<td>2.7±0.02*</td>
</tr>
</tbody>
</table>

Ca2+ spark characteristics, with or without cAMP. Ca2+ spark amplitude (\(\Delta[\text{Ca}2+]\)), FWHM, and FDHM in WT, PLB-KO, and PLB-DM are compared (control vs cAMP) using Mann-Whitney test (\(*P<0.05, †P<0.001\)). Changes in control Ca2+ spark characteristics early vs late in PLB-KO myocytes were also compared. Data are mean±SEM.
cAMP addition, we included phosphatase inhibitors, 10 µmol/L okadaic acid, and 2 mmol/L NaF. Figure 5 shows that Ca\(^{2+}\) spark frequency in PLB-KO myocytes was unaffected by cAMP, even with okadaic acid and NaF.

Figure 5. Ca\(^{2+}\) spark frequency in PLB-KO mouse cells (with or without cAMP, with phosphatase inhibitors). CaSpF was not changed by 10 µmol/L cAMP alone or with addition of 10 µmol/L okadaic acid (OA) and 2 mmol/L NaF from 15 minutes, as indicated (data from 6 to 9 PLB-KO myocytes).

Discussion

In SLO-permeabilized mouse ventricular myocytes, activation of PKA by cAMP causes (1) phosphorylation of the RyR, through cAMP-Mediated RyR Phosphorylation in PLB-KO Mouse Ventricular Myocytes

Although RyR phosphorylation is expected in 10 µmol/L cAMP (especially with okadaic acid and NaF), we also measured \(^{32}\)P incorporation in SLO-permeabilized PLB-KO myocytes under conditions analogous to those used for Ca\(^{2+}\) spark measurements (Figure 6). Minimal phosphorylation (lane 1) was 62% of the control basal condition (lane 2). When exposed to 10 µmol/L cAMP (lane 3), RyR phosphorylation was 320% of control, and inclusion of okadaic acid and NaF further enhanced by another 2.4-fold (lane 4). We also increased [cAMP] to 50 µmol/L, with phosphatase inhibitors, but no further phosphorylation was detected. In conclusion, the addition of cAMP as used here greatly increased RyR phosphorylation, presumably approaching an upper limit when phosphatase inhibitors are included.

 Added ATP concentration during incubation in the \(^{32}\)P phosphorylation experiment was much less than in the Ca\(^{2+}\) spark solutions (1 µmol/L versus 5 mmol/L), to maintain a high specific activity of \(^{32}\)P-ATP. If ATP concentration is limiting in these experiments, dephosphorylation might underestimated RyR phosphorylation where phosphatase inhibitors were absent (especially when PKA is strongly activated). Thus, during cAMP exposure in the Ca\(^{2+}\) spark experiments, RyR phosphorylation may be closer to maximal than suggested by Figure 6.

Figure 6. PKA-dependent phosphorylation of the RyRs in PLB-KO. Four different conditions were used in permeabilized PLB-KO myocytes: (1) minimal phosphorylation (with protein phosphatases PP1 and PKI), (2) control condition (no modulators), (3) cAMP (10 µmol/L), and (4) maximal phosphorylation (with cAMP + 10 µmol/L OA + 2 mmol/L NaF). A, Measurement of \(^{32}\)P into RyR by autoradiography. The spread below the RyR band may result from degradation. RyR position was verified by Western blot. B, Radioactivity counted by PhosphorImager normalized to control and averaged (n=4).

Figure 7. Intact cell resting Ca\(^{2+}\) spark frequency in WT and PLB-KO myocytes (≥1 µmol/L isoproterenol). [Ca\(^{2+}\)]\(_o\) was 2 mmol/L and 1 mmol/L for WT and PLB-KO, respectively (to obtain comparable CaSpF). *P<0.01 for control (Ctl) vs isoproterenol (ISO). ISO increased CaSpF in WT (n=5 and 9 for control and ISO condition, respectively), but not in PLB-KO (n=8).

While the environment in SLO-permeabilized myocytes is relatively physiological, permeabilization could alter RyR current effects. Resting fluorescence (F\(_0\)) was not changed by isoproterenol in PLB-KO, but decreased by 13% in WT, consistent with PKA-dependent SR Ca\(^{2+}\) uptake from cytosol in WT but not PLB-KO. After Ca\(^{2+}\) spark recording, cells were stimulated at 0.5 Hz. Thus, during cAMP exposure in the Ca\(^{2+}\) spark experiments, RyR phosphorylation may be closer to maximal than suggested by Figure 6.

Ca\(^{2+}\) Spark Frequency in Intact Mouse Myocytes

While the environment in SLO-permeabilized myocytes is relatively physiological, permeabilization could alter RyR function (eg, basal CaSpF was higher). Thus, we also measured the effects of PKA activation on CaSpF in intact resting ventricular myocytes from WT and PLB-KO mice (Figure 7). Isoproterenol caused a 2.8-fold increase in CaSpF in WT (36±6 versus 102±12 sparks pl\(^{-1}\)·s\(^{-1}\)), but not in PLB-KO (81±9 versus 80±11 sparks pl\(^{-1}\)·s\(^{-1}\)). Importantly, no stimulation was used during the PKA activation, to prevent complications from Ca\(^{2+}\) current effects. Resting fluorescence (F\(_0\)) was not changed by isoproterenol in PLB-KO, but decreased by 13% in WT, consistent with PKA-dependent SR Ca\(^{2+}\) uptake from cytosol in WT but not PLB-KO. After Ca\(^{2+}\) spark recording, cells were stimulated at 0.5 Hz to confirm that isoproterenol had exerted its stimulatory effect. Isoproterenol increased twitch Ca\(^{2+}\) transients by 85±24% in WT and 27±14% in PLB-KO (based on ΔF), consistent with lower inotropic effects of isoproterenol in PLB-KO versus WT.** These intact cell experiments extend our observation in permeabilized myocytes to a more physiological setting.
(2) increased SR Ca\(^{2+}\) uptake and CaSpF in WT myocytes, (3) no change in either SR Ca\(^{2+}\) load or Ca\(^{2+}\) sparks in the absence of phosphatatable PLB (PLB-KO and PLB-DM), and (4) no change in CaSpF in PLB-KO, even when RyR phosphorylation is driven to maximally achievable levels. CaSpF was also not altered by PKA activation in intact resting myocytes from PLB-KO mice. We conclude that PKA-dependent RyR phosphorylation does not affect resting SR Ca\(^{2+}\) leak in these myocytes, and that the increased CaSpF seen in WT mice is entirely dependent on PLB phosphorylation and consequent increases in SR Ca\(^{2+}\) content. Moreover, these data provide compelling evidence for the activation of RyR by intra-SR Ca\(^{2+}\) in a relatively intact setting (because [Ca\(^{2+}\)]\(_i\) was clamped at a constant level).

Potential Limitations

The present studies were at 23°C versus 37°C. However, all bilayer results suggesting PKA effects on RyR gating were at room temperature. Permeabilization could result in lost accessory proteins or factors required for phosphorylation, but we showed that RyR phosphorylation occurred. We permeabilized with SLO (versus saponin or digitonin) because SLO produces more discrete pores (30 nm in diameter, excluding dextran >148 kDa). Our permeabilized cell studies used 10 to 50 mmol/L [Ca\(^{2+}\)]\(_i\), less than likely diastolic [Ca\(^{2+}\)]\(_i\) in intact cells. However, since purported PKA effects on RyR are to increase its Ca\(^{2+}\) sensitivity, this is where effects should be most apparent. Thus, permeabilization should not be a limitation. CaSpF was higher in permeabilized versus intact cells. Although we do not know why this occurs, it could cause CaSpF to be maximal prior to PKA activation. Low [Ca\(^{2+}\)]\(_i\), was used partly to avoid this limitation, and it is also clear from the WT versus PLB-DM (Figures 3B and 4) that CaSpF could still increase. The similar results in intact versus permeabilized myocytes renders these issues minor.

Conceivably, FKBP 12.6 bound to the RyR is lost during permeabilization, which may be critical in PKA activation of the RyR. That could have raised basal CaSpF versus intact cells and precluded further effects of PKA activation. However, this seems highly unlikely, because FKBP is not dissociated from the RyR even during aggressive homogenization and biochemical purification steps, much more disruptive than SLO exposure. Moreover, the role of FKBP in regulating the cardiac RyR is controversial. We may also see some alteration in Ca\(^{2+}\) sparks (especially with cAMP current nor PLB effects should be seen in more intact physiological environments. PKA studies in intact ventricular myocytes are complicated by phosphorylation effects on I\(_{ca}\), SR Ca\(^{2+}\)-ATPase (via PLB phosphorylation), and myofilaments. However, our results on resting CaSpF in intact PLB-KO myocytes, where neither Ca\(^{2+}\) current nor PLB effects should be a factor, strongly support our results in permeabilized myocytes (no CaSpF change with PKA). Although RyR expression is downregulated 25% in PLB-KO mouse, this should not prevent PKA effects on RyRs. In intact WT myocytes, where PLB can be phosphorylated and SR Ca\(^{2+}\) content enhanced, CaSpF increased dramatically as in the permeabilized cells. We conclude that strong PKA-dependent phosphorylation of the RyR does not directly alter resting SR Ca\(^{2+}\) leak via RyR in mouse ventricular myocytes. Rather, the PKA-dependent effects on the resting SR are mainly due to PLB phosphorylation.

During cardiac E-C coupling, PKA effects are more complicated to assess because PKA activation increases both I\(_{ca}\) and SR Ca\(^{2+}\) content. In this case, increased Ca\(^{2+}\) transient amplitude provides no information about intrinsic RyR alterations. The ideal way to assess this is to control I\(_{ca}\) and SR Ca\(^{2+}\) content so they are the same before and after PKA activation. Then the SR Ca\(^{2+}\) release for a given I\(_{ca}\) and SR Ca\(^{2+}\) can be compared. Li et al found that Ca\(^{2+}\)-dependent CaMKII activation increases the fraction of SR Ca\(^{2+}\) released for a given I\(_{ca}\) and SR Ca\(^{2+}\) load. For PKA activation, preliminary data of this sort do not indicate large changes in E-C coupling. Two recent studies that partially fulfill this design reported that PKA either increases or decreases E-C coupling gain. It was also argued that altered RyR gating (alone) during systole can only produce transient changes in steady-state twitch Ca\(^{2+}\) transients, although preferential enhancement of diastolic SR Ca\(^{2+}\) leak can unload the SR and contribute to negative inotropy. Thus, although the present results indicate that PKA does not alter resting SR Ca\(^{2+}\) leak, the E-C coupling effects are complex and unresolved. Indeed, it would be valuable to explore whether the PKA-induced enhancement of RyR opening in response to rapid local [Ca\(^{2+}\)]\(_i\), changes seen in bilayers is evident during E-C coupling in more intact cellular systems.
Luminal Ca\(^{2+}\) Effects on RyR Gating

Luminal (intra-SR) [Ca\(^{2+}\)] can importantly affect cardiac RyR gating. Indeed, high luminal [Ca\(^{2+}\)] greatly increases Ca\(^{2+}\) sensitivity of RyR activation in bilayer recording.\(^{39,42}\) This is also seen for Ca\(^{2+}\) sparks\(^{16,43,44}\) (but see also Reference 26); however, in intact cells, it is difficult to unequivocally control cytosolic free [Ca\(^{2+}\)]. The present data and a related skinned myocyte Ca\(^{2+}\) spark study\(^{45}\) have shown that at constant [Ca\(^{2+}\)], increasing SR Ca\(^{2+}\) content can dramatically increase CaSpF (and that lower SR Ca\(^{2+}\) content decreases CaSpF). Luminal Ca\(^{2+}\) sensitivity also extends to E-C coupling, where fractional SR Ca\(^{2+}\) release is nearly zero at about half-maximal SR Ca\(^{2+}\) load, but increases very steeply as load increases.\(^{46,47}\)

Overall, we conclude that PKA-dependent increase in CaSpF and spark amplitude in mouse ventricular myocytes is attributable to PLB phosphorylation and consequent enhancement of SR Ca\(^{2+}\) load. PKA does not appear to appreciably affect resting RyR function in these myocytes. It will be a challenge to reconcile these results with those indicating PKA-dependent modulation of RyR gating in HF.\(^{12}\) Additionally, we provide compelling evidence that elevated intra-SR [Ca\(^{2+}\)] causes increased CaSpF, independent of [Ca\(^{2+}\)], which was clamped.

Acknowledgments

This work was supported by grants from the NIH (HL-30077, HL-64098, and HL61503). We thank Dr Andrew R. Marks for stimulating discussions and for recommending phosphatase inhibitors to maximize RyR phosphorylation and Dr Dan Bare for help with phosphorylation assays.

References

41. Tripathy A, Meissner G. Sarcoplasmic reticulum luminal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel. Biophys J. 1996;70:2600–2615.

42. Györke I, Györke S. Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J. 1998;75:2801–2810.

43. Satoh H, Blatter LA, Bers DM. Effects of [Ca2+]	extsubscript{i}, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Am J Physiol. 1997;272:H667–H668.

Protein Kinase A Phosphorylation of the Ryanodine Receptor Does Not Affect Calcium Sparks in Mouse Ventricular Myocytes
Yanxia Li, Evangelia G. Kranias, Gregory A. Mignery and Donald M. Bers

Circ Res. 2002;90:309-316; originally published online January 24, 2002;
doi: 10.1161/hh0302.105660

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/90/3/309