Taking the Gender Gap to Heart

Barry London

For centuries, poets, philosophers, and writers have described differences between the male and female heart. During the last several decades, many traditional male/female stereotypes have been questioned in the light of our expanding scientific knowledge. Although progress has been made toward a more gender-neutral society, the “gender gap” still exists. At the heart of the complex issues involved, an unanswered fundamental question remains: To what extent are perceived gender differences real, and what are their implications?

Male/female differences in cardiovascular physiology and pathophysiology have long been appreciated. Premenopausal women have a lower incidence of atherosclerotic coronary artery disease, due at least in part to the protective effects of estrogen. Male and female hearts also differ electrophysiologically. Women have a higher incidence of atrioventricular nodal reentrant tachycardias, whereas men account for most symptomatic cases of Brugada syndrome, an autosomal dominant form of idiopathic ventricular fibrillation. Women have longer QT intervals than men and are at greater risks for torsade de pointes from congenital and acquired long-QT syndrome. Surprisingly, women may have a lower overall incidence of sudden cardiac death, even correcting for the difference in coronary artery disease. The molecular basis of these gender differences is largely unknown.

In this issue of Circulation Research, Dr Fiset and colleagues report for the first time on gender differences in the molecular basis of these gender differences is largely unknown. 3 Female mice, rabbits, and humans have longer action potentials than larger mammals. Differences in mice are mediated by the sex hormones. 4 The mechanisms underlying these changes are unknown. In the present study, Trépanier-Boulay et al report higher levels of Kv1.5 expression in the hearts of male mice. Estrogens and androgens affect ion channel expression in the heart. 5 It remains to be seen whether the differences in mice are mediated by the sex hormones.

The electrophysiology of the mouse heart differs markedly from that of larger mammals. Mice have high heart rates (>600 bpm), short action potentials without a significant plateau, and abbreviated QT intervals on their electrocardiograms. At the cellular level, the transient outward currents (Ito,f and Ito,s) and the delayed rectifier currents (IKur and IKr,slow) play a major role in repolarization of the mouse myocyte, whereas IKr and IKs have only minor roles. Thus, it seems unlikely that the mechanisms that underlie the gender-based transcriptional changes of Kv1.5 in the mouse ventricle will be directly applicable to the regulation of the K+ channels important for ventricular repolarization in rabbits or humans.

Female mice, rabbits, and humans have longer action potentials than their male counterparts. This similarity is intriguing, given the marked differences between the species. Is the 8-millisecond “gender gap” in repolarization a side effect caused by the action of gender-specific sex hormones on ion channel regulation in the heart? Does delayed repolarization provide some advantage to the female of the species? The answers to these questions are unknown. It is clear that the male and female hearts differ. For cardiovascular electrophysiology at least, the importance of this sexual diversity remains to be determined.

References

Key Words: K’ channel ■ gender ■ mouse ■ heart ■ transgenic models
Taking the Gender Gap to Heart
Barry London

Circ Res. 2001;89:378-379
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/89/5/378

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/