UltraRapid Communication

HCN2 Overexpression in Newborn and Adult Ventricular Myocytes
Distinct Effects on Gating and Excitability

Jihong Qu, Andrea Barbuti, Lev Protas, Bina Santoro, Ira S. Cohen, Richard B. Robinson

Abstract—Ventricular pacemaker current (I\(_f\)) shows distinct voltage dependence as a function of age, activating outside the physiological range in normal adult ventricle, but less negatively in neonatal ventricle. However, heterologously expressed HCN2 and HCN4, the putative molecular correlates of ventricular I\(_f\), exhibit only a modest difference in activation voltage. We therefore prepared an adenoviral construct (AdHCN2) of HCN2, the dominant ventricular isoform at either age, and used it to infect neonatal and adult rat ventricular myocytes to investigate the role of maturation on current gating. The expressed current exhibited an 18-mV difference in activation (V\(_{1/2}\) = -95.9±1.9 mV in adult; -77.6±1.6 mV in neonate), comparable to the 22-mV difference between native I\(_f\) in adult and neonatal cultures (V\(_{1/2}\) = -98.7 versus -77.0 mV). This did not result from developmental differences in basal cAMP, because saturating cAMP in the pipette caused an equivalent positive shift in both preparations. In the neonate, AdHCN2 caused a significant increase in spontaneous rate compared with control (88±5 versus 48±4 bpm). In adult, where HCN2 activates more negatively, the effect was evident only during anodal excitation, requiring significantly less stimulus energy than control (2149±266 versus 3140±279 mV·ms). Thus, ventricular maturational state influences the voltage dependence of expressed HCN2, resulting in distinct physiological impact of expressed channels in neonate and adult myocytes. The full text of this article is available at http://www.circresaha.org. (Circ Res. 2001;89:e8-e14.)

Key Words: pacemaker current ● gene expression ● development ● ventricle ● HCN

The recent cloning of the HCN gene family, representing the molecular correlate of the pacemaker current I\(_f\), raises the possibility of using genetic approaches for the treatment of rhythm disorders. However, I\(_f\) is present in both automatic and nonautomatic\(^1\)–\(^6\) regions of the heart, and the threshold voltage varies widely among cardiac regions, being least negative in sinus node (-40 mV in rabbit\(^7\)) and most negative in ventricle (-108 mV or more negative\(^5,8,9\)). Interestingly, I\(_f\) activates at less negative voltages in newborn ventricle (-70 mV in rat\(^8\)) than in the molecular and cellular bases for the regional variability of activation voltages in the normal adult heart and the regulation of ventricular activation voltage by development remain to be determined, but such understanding is critical to any future therapeutic application of the expressed current in myocardium.

Four members of the HCN gene family are currently known.\(^1\)–\(^3\) Three of these (HCN1, HCN2, and HCN4) are present in heart, and their relative message level varies with region and age.\(^4,14\) Sinus node and Purkinje fibers, in which I\(_f\) activates at less negative potentials, contain largely HCN1 and HCN4. Ventricle contains HCN2 and HCN4, with the HCN2/HCN4 mRNA ratio being greater in adult than newborn. This suggests that HCN2 is inherently negatively activating, and its relative abundance determines the activation threshold in different regions of the heart or at different ages. However, when HCN2 and HCN4 were expressed in mammalian cell lines, activation voltages differed by <10 mV.\(^16,17\) Thus, the intrinsic voltage dependence of different HCN isoforms is insufficient to explain the functional diversity of native cardiac I\(_f\), either regionally or developmentally. Instead, it seems likely that unidentified accessory proteins or other cellular factors influence the voltage dependence of individual HCN isoforms. Thus, HCN2 activation might differ, for example, when expressed in neonatal versus adult ventricular myocytes. The present study investigated this possibility.

Materials and Methods

Cell Isolation and Culture

Adult rats were anesthetized with ketamine-xylazine before cardiectomy, and neonatal rats decapitated, in accordance with Institutional Animal Care and Use Committee protocols of Columbia University. A standard trypsin dissociation method was used to prepare newborn ventricular cell cultures.\(^14\) The cells were preplated to reduce fibroblast...
proliferation, cultured initially in serum-containing medium, then switched to serum-free medium after 24 hours. Action potential studies were conducted on 4- to 6-day-old monolayer cultures plated directly onto fibronectin-coated 9×22-mm glass coverslips. For voltage-clamp experiments, 4- to 6-day-old monolayer cultures were resuspended by brief (2 to 3 minutes) exposure to 0.25% trypsin, then the cells replated onto fibronectin-coated coverslips and studied within 2 to 8 hours.

Freshly isolated adult ventricle myocytes were prepared using the procedure described by Kuznetsova et al.19 This entailed a Langendorff perfusion of collagenase, followed by trimming away of the atria. The remaining tissue was minced and dissociated in additional collagenase solution. The isolated myocytes were suspended in a serum-free medium (ACCTI20) then plated onto laminin-coated 9×22-mm glass coverslips at 0.5 to 1×10^6 cells/mm^2. Two to three hours later, after the myocytes had adhered to the coverslips, the adenoviral infection procedure was begun.

Expression of HCN2
For increased expression efficiency, we prepared an adenoviral construct of mouse HCN2 (mHCN2, GenBank No. AJ225122) following previously published methods.21 A DNA fragment (between EcoRI and Xhol restriction sites) that included mHCN2 DNA downstream of the cytomegalovirus promoter was obtained from plasmid pTR-mHCN222 and subcloned into the shuttle vector pDC516 (AdMax; Microbix Biosystems). The resulting pDC516-mHCN2 shuttle plasmid was cotransfected with a 35.5-kb E1-deleted adenoviral genomic plasmid pHBlGrΔE1.3FLP (AdMax) into E1-complementing HEK293 cells. The adenoviral construct AdHCN2 was subsequently harvested and purified with CsCl.

AdHCN2 infection of adult rat ventricular myocytes was carried out 2 to 3 hours after cell plating. Infection of neonatal cells was done on monolayer cultures 1 to 3 days after plating. In either case, the culture medium was removed from the 35-mm dishes and the inoculum of 0.2 to 0.3 mL/dish was added containing AdHCN2. The multiplicity of infection (MOI; ratio of viral units to cells) was 15 to 35.

Comparison of Neonatal and Adult Ventricular Myocytes Expressing HCN2
Compared with the characteristics of HCN2 (the major ventricular HCN isoform, at the message level, at both ages14) when expressed in adult versus neonatal ventricular myocytes required maintaining adult cells in culture for 48 hours. Because a previous report indicated that longer culture conditions resulted in a marked positive shift in activation of native current,9 we first compared native I_f between acutely dissociated cells and cells maintained in serum-free medium for 2 days. All cells studied were rod-shaped and quiescent. In adult cells in culture, I_f threshold voltage (ie, first voltage step where a time-dependent current is apparent) was relatively negative (Figure 1A) compared with that reported in neonate.23 A 2-day culture period resulted in no significant difference in V_1/2 (−105.3±2.6 mV, n=12, versus −98.7±1.8 mV, n=7, in acute versus cultured cells; P=0.092), slope factor (10.9±1.2 versus 14.4±1.9 mV), or activation kinetics (data not shown). Thus, short-term culture of adult cells can be used in studies of age-dependent differences in I_f or I_HCN2.

Electrophysiological Recording and Data Analysis
Native I_f, expressed I_HCN2, and action potentials were recorded using a patch electrode in whole-cell mode on cells superfused at 35°C. Extracellular solution–changing apparatus expedited the experimental protocols. Records were not corrected for liquid junction potential (9.8 mV).

Results

Comparison of Neonatal and Adult Ventricular Myocytes Expressing HCN2

Native I_f, expressed I_HCN2, and action potentials were recorded using a patch electrode in whole-cell mode on cells superfused at 35°C. Extracellular solution–changing apparatus expedited the experimental protocols. Records were not corrected for liquid junction potential (9.8 mV).

if the measured current at −125 mV was ≥200 pA. This resulted in discarding <8% of cells from AdHCN2-infected cultures at either age. In addition, all 12 noninfected adult cells and 8 of 9 noninfected neonatal cells used in the measurement of native I_f had current values below this criterion. Tail current, plotted against test voltage, provided maximum conductance and the activation-voltage relation; the latter was normalized by maximum conductance and fitted with the Boltzmann function \(\gamma = 1/(1 + \exp[(V-V_{1/2})/k]) \) to determine the half-maximum activation voltage \(V_{1/2} \) and slope factor (K). Kinetics of activation were determined by a single-exponential fit to the early time course of the current activated by hyperpolarization; the initial delay and any late slow activation were ignored. Kinetics of deactivation were determined by a single-exponential fit of the time course of the current trace at each test voltage after activation by a prepulse to −125 mV. For both activation and deactivation, the duration of the trace being fit was ≥3× the measured time constant to ensure accuracy. Records were not corrected for liquid junction potential (9.8 mV).

All data are presented as mean±SEM. Statistical significance was examined by t test for paired and ANOVA for multiple comparisons. Values of P<0.05 were determined to be significant.
the relative peaks of the kinetic relations in the two preparations are consistent with the previously determined $V_{1/2}$ values (arrows, Figure 2B). For both expressed I_{HCN2} and native I_f (Figure 2C), kinetics in neonatal and adult myocytes appear related to the voltage dependence of steady-state activation.

Possible Basis for Difference Between Neonatal and Adult Myocytes Expressing HCN2

The biophysical characteristics of heterologously expressed currents can vary with current density.24–26 To determine if the difference in $V_{1/2}$ of HCN2 between neonatal and adult resulted from this phenomenon, we conducted a linear regression analysis (Figure 3). The results indicate that differences in expression level cannot explain the difference in HCN2 voltage dependence between neonatal and adult myocytes. Neonatal myocytes exhibited a wide range of current density for expressed current, with a correlation coefficient for $V_{1/2}$ of 0.51 ($P<0.01$); current density was less variable in adult, with no correlation with $V_{1/2}$ (correlation coefficient 0.043, $P=0.88$). Considering current densities common to both preparations (ie, <60 pA/pF, Figure 3, inset), expressed current in neonatal myocytes demonstrated a significantly less negative $V_{1/2}$ than in adult myocytes ($P<0.001$).

Both native I_f and expressed HCN2 respond to cAMP by a phosphorylation-independent shift in voltage dependence of activation,27,28 although phosphorylation-dependent mechanisms also have been reported.29 To test if the neonatal/adult difference in $V_{1/2}$ of I_{HCN2} simply reflected differences in basal cAMP, we repeated the determination of $V_{1/2}$ of expressed current with 10 μmol/L cAMP in the pipette solution to eliminate any differences in intracellular cAMP levels and achieve a maximal positive shift of I_{HCN2} (Figure 4). I_{HCN2} shifted positively by a comparable amount in both preparations and the difference in $V_{1/2}$ persisted, indicating that the
age-dependent difference in HCN2 activation does not result from a difference in basal cAMP. Results with a 10× higher cAMP concentration did not differ statistically (data not shown).

Functional Effect of Overexpression of HCN2

AdHCN2 infection resulted in expression of a large current in >90% of the cells studied. Given the activation of I_{HCN2} within the physiological voltage range in neonatal cells, we asked if HCN2 overexpression resulted in a change in spontaneous rate of these cultures. Experiments were conducted on monolayer cultures of synchronously beating cells, with a whole-cell patch electrode recording from one cell of the contiguous monolayer. Control (noninfected) cultures beat spontaneously, with a mean rate of 48.4 bpm. Control (noninfected) cultures exhibited a more regular and faster rhythm (Figure 5B), with a mean rate of 88.0±5.4 bpm (n=16), a marked diastolic depolarization, and less negative MDP (−42.5±1.6 mV, n=11; Figure 5C). The differences in frequency, phase 4 slope, and MDP were significant ($P<0.05$). AdGFP-infected, AdHCN2-infected, and AdHCN2-infected cultures did not differ from uninfected control cultures but differed significantly from AdHCN2-infected cells (2149±266, n=12 versus 3140±279 mV·ms, n=10; $P<0.05$). The required stimulus energy of AdGFP-infected cells did not differ from control (data not shown). In addition, resting potential did not differ between control, AdHCN2-infected, and AdGFP-infected myocytes (data not shown).

Discussion

This study investigated if the distinct activation voltage of I_t in neonatal and adult ventricle was the result of a difference...
expressing HCN2 with less negative voltage dependence. The actual
\(V_{1/2} \) of native \(I_f \) in ventricle was \(-77\) and \(-99\) mV in
neonate and adult, respectively, compared with values for
HCN2 of \(-78\) and \(-96\) mV in these two preparations. Thus,
HCN2 activation largely explains the voltage dependence of
native ventricular \(I_f \). The current referred to in this study as
\(I_{HCN2} \) is of course a sum of expressed and native current.
However, selection criteria were established (see Materials
and Methods) to minimize contamination by native current.
Further, if native and expressed current differ significantly,
then one would predict a marked dependence of activation
voltage on current density, whereas the observed correlation
was modest and did not account for the differences in
newborn and adult.

The kinetic characteristics of the native current in neonate
and adult ventricle also are largely, but not necessarily
entirely, explainable by HCN2. Native \(I_f \) in the neonate
activates with kinetics close to that of \(I_{HCN2} \) in these same
cells. When the full activation/deactivation relation of
expressed HCN2 is compared in neonate and adult, the
difference is largely attributable to the difference in voltage
dependence of activation. Thus, there does not appear to be
an effect of maturational state of the myocyte directly on
activation kinetics of expressed current, independent of the
effect on voltage dependence of activation. However, native
\(I_f \) kinetics appear slower than expressed HCN2 kinetics,
especially in adult (compare Figures 2B and 2C), and this
may reflect the influence of the more slowly activating HCN4
isoform. Whether HCN2 and HCN4 can form heteromulti-
mers is not known, but recent studies of HCN1 and HCN2
support the idea of heteromeric formation.

The basis for the age-dependent difference in HCN2
voltage dependence in myocytes is unclear, beyond the
observation that it is not secondary to differences in basal
cAMP. The range of voltage dependence reported for \(I_f \) in
different cardiac regions or as a function of age is pronounced
and may reflect a combination of mechanisms. Studies of
other channels have identified several factors that alter the
biophysical properties of native or expressed current, includ-
ing \(\beta \) subunits, local membrane composition, cytoskel-
etal interactions, phosphorylation/dephosphorylation,
and truncation. A \(\beta \) subunit for the HCN gene family has
recently been identified, but it is concentrated in the
sinoatrial node of the heart and affects kinetics rather than
voltage dependence. The extent to which other \(\beta \) subunits or
the other potential mechanisms contribute to the variation in
voltage dependence of \(I_f \) or \(I_{HCN2} \) is unknown. In this context,
it is interesting that when native \(I_f \) is studied in cell-free
macropatches, activation shifts markedly negatively, but
treatment of the intracellular face of the patch with promace
shifts activation positively again by \(56 \) mV. Further, when
a large portion of the HCN2 C-terminal that includes the
cyclic nucleotide-binding domain is deleted, activation shifts
positively by \(24 \) mV. From these results, one can speculate
that interactions between cytoplasmic elements of the HCN
protein contribute to more negative activation, but that these
interactions are minimized in the intact cell. Although the
relevance of these observations to the regional or develop-
mental variation in activation voltage remains to be deter-

Figure 6. Effect of HCN2 overexpression in adult ventricular
myocytes. A, Representative anode break excitation tracings
and stimulus profile from a control myocyte (left) and an
AdHCN2-infected myocyte (right). Injected current in illustrated
traces: \(-50, -150, -250, -350, \) and \(-450 \) pA (left); \(-10, -20, \)
and \(-30 \) pA (right). Resting potential in the two examples is
\(-66 \) and \(-60 \) mV, respectively. Mean resting potential between
control (\(-62.1 \pm 1.8 \) mV, \(n = 18 \)) and infected adult culture
(\(-59.1 \pm 1.1 \) mV, \(n = 12 \)) did not differ statistically. B, Graph of
relation between maximal negative potential achieved during
anodal stimulation and \(I_f \) (filled symbols) or \(I_{HCN2} \) (filled sym-
bole) density (measured after a 2-second step to \(-125 \) mV).
Inset, Current densities of 0 to 1.2 pA/pF on an expanded time
base, with calculated linear regression (line).
mined, it is likely that any cellular factor(s) contributing to the less negative activation of HCN2 in the neonate are not substrate limited because we observed no negative shift in \(V_{1/2} \) (and in fact a slight positive trend) at expression levels that were 2 to 3 orders of magnitude greater than that typical of native current.

Under our experimental conditions, \(V_{1/2} \) of native current in newborn and adult ventricle differed by 22 mV, which is lower than the previously reported difference in threshold value of \(\approx 40 \) mV. In part, this may result from the 48-hour culture period, because acutely isolated adult myocytes had a \(V_{1/2} \) that was more negative by 6 mV. Although not a statistically significant difference, it is consistent with an earlier report that extended culture of adult myocytes under conditions that cause morphological dedifferentiation results in a marked positive shift of activation voltage. In addition, the earlier developmental study specifically used adult epicardial myocytes, whereas the present study used the whole ventricle of the adult heart to obtain a higher yield of viable cells for culture. A gradient of \(I_f \) activation, with epicardium more negative than endocardium, has been observed in the canine heart. If a similar gradient exists in adult rat ventricle, then this also could contribute to the less negative adult values observed in the present study.

Expressing high levels of HCN2 in a neonatal culture results in a marked increase in spontaneous rate. This is accompanied by a less negative maximum diastolic potential and more pronounced phase 4 slope. The maximum diastolic potential in the HCN2-infected culture corresponds to the threshold voltage of \(I_{HCN2} \), indicating that even threshold levels of expressed current are sufficient to balance the contribution of \(I_{K1} \) (which is small in neonatal cultures). Expressing HCN2 in adult myocytes does not result in automaticity, either because of the more negative activation range in the adult cells or the greater \(I_{K1} \) density at this age. However, it does increase the susceptibility to anode break excitation, and this occurs without any alteration of \(I_{K1} \) (data not shown). In HCN2-infected adult cultures, the maximal negative voltage required to exhibit anode break excitation corresponds to the threshold voltage of \(I_{HCN2} \). Thus, the physiological impact of overexpression of the HCN gene family in myocardium depends on the threshold voltage of the expressed current, which is context-dependent, with a distinct result depending on the maturational state of the target tissue. For the same reason, the effect is likely to depend on the cardiac region in which the channel is expressed and the disease state of the tissue, because native \(I_f \) is markedly affected by these factors. This has obvious implications for future efforts to alter cardiac rhythm through the regional overexpression of selective HCN isoforms. It suggests that rate can be enhanced by increasing current level, if the expressed current activates at a physiologically relevant threshold voltage in the target tissue. As we gain further insight into the mechanisms regulating the voltage dependence of this gene family, it may be possible to control both the level of current and its activation voltage and thereby its contribution to an automatic rhythm.

Acknowledgments

This work was supported by NIH grants HL-28958 and NS-36658. Dr Qu is the recipient of a postdoctoral fellowship from the American Heart Association, Heritage Affiliate. We would like to thank Dr Hamish Young for assistance in preparing the adenoviral construct, Drs Michael Rosen and Steven Siegelbaum for advice and suggestions on the manuscript, and Ema Stasko, Hae-Jung Chung, and Patricia McLaughlin for technical assistance.

References

2. Zhou Z, Lipsius SL. Effect of isoprenaline on \(i_f \) current in latent pacemaker cells isolated from cat right atrium: ruptured vs. perforated patch whole-cell recording methods. Pflugers Arch. 1993;423:442–447.
11. Santoro B, Grant SGN, Bartsch D, Kandel ER. Interactive cloning with the SH3 domain of Nsrc identifies a new brain specific ion channel protein, with homology to and cyclic nucleotide-gated channels. Proc Natl Acad Sci U S A. 1997;94:14815–14820.

HCN2 Overexpression in Newborn and Adult Ventricular Myocytes: Distinct Effects on Gating and Excitability
Jihong Qu, Andrea Barbuti, Lev Protas, Bina Santoro, Ira S. Cohen and Richard B. Robinson

Circ Res. 2001;89:e8-e14
doi: 10.1161/hh1301.094395

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/89/1/e8

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/