Calcium Fluxes Involved in Control of Cardiac Myocyte Contraction

Donald M. Bers

Intracellular Ca2+ is the central regulator of cardiac contractility. Moreover, it is becoming increasingly apparent that alterations in myocyte Ca2+ regulation may be critically important in both the mechanical dysfunction and arrhythmogenesis associated with congestive heart failure1,2. Thus, it is imperative to have a clear and relatively quantitative understanding of how cellular Ca2+ levels are regulated during the normal contraction-relaxation cycle. The scope and relevant references in this field are far too large for this format, so my focus here is narrower and more personal than elsewhere3–5. Figure 1A shows the key pathways involved in myocyte Ca2+ transport. During the cardiac action potential (AP) L-type Ca2+ channels are activated and Ca2+ enters the cell via Ca2+ current (I\textsubscript{Ca}) and also a much smaller amount enters via Na+-Ca2+ exchange (NCX). Ca2+ influx triggers Ca2+ release from the sarcoplasmic reticulum (SR) and also a much smaller amount enters via Na+-Ca2+ exchange (NCX). Ca2+ influx triggers Ca2+ release from the sarcoplasmic reticulum (SR) and, to some extent, can also contribute to activation of the myofilaments directly. The Ca2+ entry plus the amount released from the SR via Ca2+-induced Ca2+ release (CICR) raises cytosolic free [Ca2+] (\([\text{Ca}^{2+}]_{i}\)) and also a much smaller amount enters via Na+-Ca2+ exchange (NCX). Ca2+ influx triggers Ca2+ release from the sarcoplasmic reticulum (SR) and, to some extent, can also contribute to activation of the myofilaments directly. The Ca2+ entry plus the amount released from the SR via Ca2+-induced Ca2+ release (CICR) raises cytosolic free [Ca2+] (\([\text{Ca}^{2+}]_{i}\)), causing Ca2+ binding to multiple cytosolic Ca2+ buffers. One of the most functionally important cytosolic Ca2+ buffers is the thin-filament protein troponin C (TnC). When Ca2+ binds to TnC, it switches on the myofilaments in a cooperative manner activating contraction. For relaxation and diastolic filling to occur, [Ca2+] must decline such that Ca2+ dissociates from TnC, thereby turning off the contractile machinery. Four Ca2+ transporters remove Ca2+ from the cytosol: (1) SR Ca2+-ATPase, (2) sarcolemmal NCX, (3) sarcolemmal Ca2+-ATPase, and (4) mitochondrial Ca2+ uniporter. The SR Ca2+-ATPase and NCX are most important quantitatively.

Data on Ca2+ binding, functional effects, and transport from multiple laboratories and with different experimental approaches allow consideration of Ca2+ cycling in relatively quantitative terms. Although these numbers will continue to be refined, they are useful to consider. For consistency, cellular Ca2+ will be discussed below in units of \(\mu\text{mol/L}\) cytosol (where cytosol is \(\approx65\%\) of cell volume and excludes mitochondrial volume that is \(\approx30\%\) of cell volume).3

Ca2+ Requirements for Activation of Myofilaments

How much Ca2+ is required to activate the myofilaments to produce contraction? Usually myofilament response to Ca2+ is shown as a function of free [Ca2+], (Figure 1B, inset), and the myofilaments respond cooperatively to [Ca2+]. Indeed, in intact ventricular muscle, the half-activating [Ca2+] is \(\approx600\ \text{nmol/L}\) with a Hill coefficient \(\approx4.6\)6,7. This is very important information, and we know that myofilament Ca2+ sensitivity can be decreased by protein kinase A (PKA) phosphorylation of TnI, low pH, and reduced sarcomere length. Indeed, increased myofilament Ca2+ sensitivity at longer sarcomere lengths is crucial in Starling’s law of the heart, whereby
increased diastolic filling results in stronger ventricular contraction.

The \([\text{Ca}^{2+}]\) dependence of force, however, does not indicate how much total \([\text{Ca}^{2+}]\) is required to activate the myofilaments. This issue is complicated by the fact that there are many other \([\text{Ca}^{2+}]\)-binding moieties in the cell that are in dynamic competition with TnC. Indeed, \([\text{Ca}^{2+}]\) is heavily buffered such that it takes about \(100 \text{ nmol/L} \) cytosol to raise \([\text{Ca}^{2+}]\) from a diastolic level of \(100 \text{ nmol/L} \) to a peak systolic level of \(1 \text{ mmol/L} \). For more details, see Bers.\(^3\)

Figure 1. \([\text{Ca}^{2+}]\) transport and requirements for activation of myofilament force. A, Schematic diagram of cellular \([\text{Ca}^{2+}]\) fluxes. B, \([\text{Ca}^{2+}]\) requirements for contractile activation, based on diastolic \([\text{Ca}^{2+}]\)\(_\text{i}\)=150 nmol/L and total cytosolic \([\text{Ca}^{2+}]\) buffering=244/(1+673/[\text{Ca}^{2+}]\(_\text{i}\))\(^2\). This includes TnC (\([\text{Ca}^{2+}]\) and \([\text{Ca}^{2+}]\)-\(\text{Mg}^{2+}\) sites), myosin, SR \([\text{Ca}^{2+}]\)-ATPase, calmodulin, ATP, creatine phosphate, and sarcolemmal sites. Force is also shown as a function of \([\text{Ca}^{2+}]\)\(_\text{i}\) in inset Force=100/[1+(600/[\text{Ca}^{2+}]\(_\text{i}\))]\(^4\). For more details, see Bers.\(^3\)

Figure 2. Integrated \([\text{Ca}^{2+}]\) fluxes during twitch relaxation in rabbit and rat ventricular myocytes. Free \([\text{Ca}^{2+}]\) during twitch relaxation was used as a driving function to calculate \([\text{Ca}^{2+}]\) flux via each system, using the \([\text{Ca}^{2+}]\) dependence of transport rates measured for each system studied in isolation. SR is SR \([\text{Ca}^{2+}]\)-ATPase, and the slow systems are a combination of sarcolemmal (SL) \([\text{Ca}^{2+}]\)-ATPase and mitochondrial \([\text{Ca}^{2+}]\) uniporter (Mito). Percentages indicate the fraction of the total cytosolic \([\text{Ca}^{2+}]\) removal attributable to each system when they dynamically interact in the cell. Data in panels A and B are from Bassani et al.\(^12\) For panel C, rabbit heart failure (HF), the \(V_{\text{max}}\) for NCX was increased 116% and SR \([\text{Ca}^{2+}]\)-ATPase was reduced by 24% as indicated by Pogwizd et al.\(^2\)

Ca\(^{2+}\) Removal From the Cytosol During Cardiac Relaxation

For relaxation and ventricular filling to occur, the \([\text{Ca}^{2+}]\) that activated the myofilaments must be removed from the cytosol by the 4 \([\text{Ca}^{2+}]\) transport systems mentioned above. We analyzed the contributions of each system in quantitative detail by selective inhibition of each transporter during myocyte relaxation and \([\text{Ca}^{2+}]\) decline.\(^12\)-\(^15\) SR \([\text{Ca}^{2+}]\) uptake was prevented by either thapsigargin or 10 mmol/L caffeine, NCX was prevented by complete removal of extracellular \(\text{Na}^{+}\) and \([\text{Ca}^{2+}]\), sarcolemmal \([\text{Ca}^{2+}]\)-ATPase was inhibited by either carboxy eosin or elevated \([\text{Ca}^{2+}]\)_\text{L}, and mitochondrial \([\text{Ca}^{2+}]\) uptake was blocked by rapid dissipation of the electrochemical driving force for \([\text{Ca}^{2+}]\) uptake using the protonophore FCCP. Accounting for \([\text{Ca}^{2+}]\) buffering,\(^9\),\(^10\) \([\text{Ca}^{2+}]\) decline is converted to a rate of \([\text{Ca}^{2+}]\)\(_\text{total}\) decline and this \([\text{Ca}^{2+}]\)
transport rate (in μmol/L cytosol/sec) is plotted to define Ca\(^{2+}\) influx as a function of [Ca\(^{2+}\)], for each system. Then the normal [Ca\(^{2+}\)], transient can be used as a driving function, and Ca\(^{2+}\) transport by each system can be calculated. Figure 2A shows that in rabbit ventricular myocytes, the SR Ca\(^{2+}\)-ATPase removes 70% of the activator Ca\(^{2+}\) from the cytosol, whereas the NCX removes 28%, with only ≈1% each for the sarcolemmal Ca\(^{2+}\)-ATPase and mitochondrial Ca\(^{2+}\) uniporter (referred to collectively as the slow systems). In rat ventricle, the SR Ca\(^{2+}\)-ATPase activity is higher (presumably due to more pump molecules per unit cell volume\(^{16}\)) and Ca\(^{2+}\) removal via NCX is less, resulting in a balance of 92:7:1% for SR Ca\(^{2+}\)-ATPase, NCX, and slow systems (Figure 2B). In mouse ventricle, the situation is quantitatively similar to rat,\(^{17}\) whereas the balance of Ca\(^{2+}\) fluxes in guinea pig, ferret, and human ventricle are more similar to rabbit.\(^{13-15,18,19}\) The total amount of Ca\(^{2+}\) transported during [Ca\(^{2+}\)] decline in both rabbit and rat ventricular myocytes is similar to the 60 μmol/L cytosol discussed above for Ca\(^{2+}\) requirements of contractile activation.

In failing versus nonfailing human heart, there is also a reduction in SR Ca\(^{2+}\)-ATPase expression\(^{20,21}\) and an increase in NCX expression.\(^{22-24}\) This would shift the balance of Ca\(^{2+}\) fluxes during relaxation in favor of Ca\(^{2+}\) extrusion via NCX and reduce SR Ca\(^{2+}\) uptake. Thus, in the failing human (and rabbit) heart, the SR Ca\(^{2+}\)-ATPase and NCX may contribute nearly equally to [Ca\(^{2+}\)], decline (Figure 2C) as opposed to a 2- to 3-fold dominance of the SR in the normal heart. This shift in competition from the SR Ca\(^{2+}\)-ATPase toward NCX will also tend to limit SR Ca\(^{2+}\) loading in heart failure. Such a limitation of SR Ca\(^{2+}\) loading could also contribute to the mechanical dysfunction in heart failure.\(^{24}\) In addition, the SR Ca\(^{2+}\)-ATPase transports two Ca\(^{2+}\) ions per ATP consumed, whereas extrusion by NCX only pumps one Ca\(^{2+}\) per ATP used (indirectly, to pump out the 3 Na\(^{+}\) ions via Na\(^{+}\)-K\(^{+}\)-ATPase which had entered in exchange for one Ca\(^{2+}\) via NCX). Thus, transsarcolemmal Ca\(^{2+}\) cycling is energetically more expensive than SR transport.

Ca\(^{2+}\) Influx During the Cardiac AP

If 28% of the activator Ca\(^{2+}\) in rabbit is extruded from the rabbit myocyte by NCX at a steady-state twitch, there must be a similar amount of Ca\(^{2+}\) entry (eg, via I\textsubscript{Ca}) at each beat. Otherwise, there would be progressive loss or gain of cellular Ca\(^{2+}\) (ie, this would not be a steady state). Indeed, during an AP in rabbit, there is more Ca\(^{2+}\) entry via I\textsubscript{Ca} and less SR Ca\(^{2+}\) release than in rat.\(^{3,25}\) Ca\(^{2+}\) influx via I\textsubscript{Ca} during a rabbit AP is ≈10 μmol/L cytosol in cells where SR Ca\(^{2+}\) load (based on integration of NCX current; see Figure 4A) was 87 μmol/L cytosol.\(^{26}\) For a fractional SR Ca\(^{2+}\) release during the twitch of 43%,\(^{27}\) this indicates an SR Ca\(^{2+}\) release of 37 μmol/L cytosol or 77% of activator Ca\(^{2+}\) from SR versus 23% for I\textsubscript{Ca}.

Similar estimations in rat yielded 92% SR Ca\(^{2+}\) release and 8% Ca\(^{2+}\) entry via I\textsubscript{Ca} (with total activator Ca\(^{2+}\) ≈80 μmol/L cytosol).\(^{25,28}\) These values agree remarkably well with those for Ca\(^{2+}\) removal above (based on [Ca\(^{2+}\)] decline), especially considering differences in methodology and inherent assumptions. Thus, although these quantitative estimates continue to be refined, we are getting an increasingly clear picture of exactly how many Ca\(^{2+}\) ions are going where, and when in ventricular myocytes.

I\textsubscript{Ca} is subject to Ca\(^{2+}\)-dependent inactivation, and this is readily appreciated by the faster current inactivation when Ca\(^{2+}\) is the charge carrier versus Ba\(^{2+}\) or Na\(^{+}\).\(^{5}\) Ca\(^{2+}\) entering the cell through the channel produces this effect very locally, because it cannot be abolished even by high intracellular Ca\(^{2+}\) buffering with EGTA or BAPTA. Recent studies have also shown that calmodulin, which may be bound to the carboxy terminal, mediates Ca\(^{2+}\)-dependent inactivation.\(^{29-31}\)

In addition to Ca\(^{2+}\) entering the cell, SR Ca\(^{2+}\) release can also contribute importantly to this Ca\(^{2+}\)-dependent inactivation.\(^{32,33}\) This is because SR Ca\(^{2+}\) is released into the same restricted junctional space where most of the L-type Ca\(^{2+}\) channels probably reside (see SR-sarcolemmal junction in Figure 1A). Figure 3A shows how the I\textsubscript{Ca} time course during an AP changes when there is no SR Ca\(^{2+}\) release (small pulse 1 contraction after SR Ca\(^{2+}\) depletion) and as the SR Ca\(^{2+}\) release gradually recovers to steady state (pulse 10).\(^{34}\) Kinetic...
analysis of this difference current (Figure 3B) suggested that the rate of local SR Ca\(^{2+}\) release (as sensed by the Ca\(^{2+}\) channel) was maximal in \(\approx 5\) ms at 25°C and 2 to 3 ms at 35°C. This is fast compared with fluorescence changes from indicators that are distributed throughout the cytosol. These times are similar to the time to peak \(I_{\text{Ca}}\), which emphasizes that there is very little delay between \(I_{\text{Ca}}\) and SR Ca\(^{2+}\) release. As the SR refills with Ca\(^{2+}\) and contractions approach steady state (from pulse 1 to 10), this SR Ca\(^{2+}\) release–dependent inactivation of \(I_{\text{Ca}}\) causes the integrated Ca\(^{2+}\) influx via \(I_{\text{Ca}}\) to decrease by \(\approx 50\%\) (Figure 3C). Thus, SR Ca\(^{2+}\) release creates a negative feedback on Ca\(^{2+}\) influx, such that when there is ample SR Ca\(^{2+}\) release, further Ca\(^{2+}\) influx is turned off. Of course, Ca\(^{2+}\) entry via \(I_{\text{Ca}}\) also participates in this feedback, and much of the inactivation of \(I_{\text{Ca}}\) at pulse 1 is probably due to inactivation that is Ca\(^{2+}\) influx–dependent (versus voltage-dependent). Figure 3C also shows that the integrated \(I_{\text{Ca}}\) behaves similarly at both 25°C and 35°C. Although at 35°C peak \(I_{\text{Ca}}\) is much larger, \(I_{\text{Ca}}\) inactivation is also faster, resulting in nearly the same \(I_{\text{Ca}}\) integral as at 25°C.

The foregoing discussion has not considered Ca\(^{2+}\) influx via NCX (ie, outward \(I_{\text{NCX}}\)). The direction of \(I_{\text{NCX}}\) depends on the concentrations of Na\(^{+}\) and Ca\(^{2+}\) on both sides of the membrane and also on membrane potential (\(E_m\)). Indeed, like ion channels, \(I_{\text{NCX}}\) has a reversal potential \((E_{\text{rev,NCX}}=3E_{\text{Na}}-2E_{\text{Ca}})\), where \(E_{\text{Na}}\) and \(E_{\text{Ca}}\) are equilibrium or Nernst potentials for Na\(^{+}\) and Ca\(^{2+}\)(). At \(E_{\text{rev,NCX}}\), the energy in the [Na\(^{+}\)] and [Ca\(^{2+}\)] gradients is exactly balanced such that no net Ca\(^{2+}\) transport occurs. In a resting cardiac myocyte, \(E_{\text{rev,NCX}}\) is typically \(-40\) mV. When \(E_{\text{Na}}>E_{\text{rev,NCX}}\), Ca\(^{2+}\) influx via \(I_{\text{NCX}}\) is favored thermodynamically. Thus, at the upstroke of the AP, Ca\(^{2+}\) entry is thermodynamically favored and outward \(I_{\text{NCX}}\) is expected. If one does not consider spatial [Ca\(^{2+}\)] gradients and calculates outward \(I_{\text{NCX}}\) with the useful equation described by Luo and Rudy, one could infer Ca\(^{2+}\) influx of 0.3 to 1 \(\mu\)mol/L cytosol. However, as \(I_{\text{Ca}}\) and SR Ca\(^{2+}\) release activate rapidly and raise local [Ca\(^{2+}\)], very rapidly (especially near the membrane), this changes \(E_{\text{Na}}\) and \(E_{\text{Ca}}\) and greatly limits Ca\(^{2+}\) entry via NCX. Inclusion of these local [Ca\(^{2+}\)] considerations might reduce the amount of Ca\(^{2+}\) entry expected during a normal AP to \(\leq 0.2\) \(\mu\)mol/L cytosol, concentrated in the first 1 to 3 ms of the AP. This is negligible in comparison to the \(\approx 10 \mu\)mol/L cytosol Ca\(^{2+}\) entry via \(I_{\text{Ca}}\).

The amount of Ca\(^{2+}\) influx via \(I_{\text{NCX}}\) can be increased greatly when [Na\(^{+}\)] is elevated (eg, in response to digitalis glycosides) and also if SR Ca\(^{2+}\) release and/or \(I_{\text{Ca}}\) is inhibited. Moreover, if the AP is very long and [Ca\(^{2+}\)], declines at plateau potentials, then \(I_{\text{NCX}}\) can produce additional late Ca\(^{2+}\) influx.\(^8\) There is also work that suggests that Ca\(^{2+}\) entry via NCX can trigger SR Ca\(^{2+}\) release.\(^8\) Although this may not be important under normal physiological conditions because of the dominant role of \(I_{\text{Ca,SR}}\),\(^41\) it may become more important when [Na\(^{+}\)] is elevated, \(I_{\text{Ca}}\) is depressed, or NCX expression is elevated.

SR Ca\(^{2+}\) Load and Release

SR Ca\(^{2+}\) load can be raised by increasing Ca\(^{2+}\) influx or decreasing Ca\(^{2+}\) efflux (eg, elevated stimulation frequency, AP duration, \(I_{\text{Ca,SR}}\) [Ca\(^{2+}\)], [Na\(^{+}\)], or reduced [Na\(^{-}\)]) and also on membrane potential (\(E_m\)). Thus, at the upstroke of the AP, Ca\(^{2+}\) influx via \(I_{\text{Ca}}\) creates a negative feedback on Ca\(^{2+}\) influx, such that when there is ample SR Ca\(^{2+}\) release, further Ca\(^{2+}\) influx is turned off. Of course, Ca\(^{2+}\) entry via \(I_{\text{Ca}}\) also participates in this feedback, and much of the inactivation of \(I_{\text{Ca}}\) at pulse 1 is probably due to inactivation that is Ca\(^{2+}\) influx–dependent (versus voltage-dependent). Figure 3C also shows that the integrated \(I_{\text{Ca}}\) behaves similarly at both 25°C and 35°C. Although at 35°C peak \(I_{\text{Ca}}\) is much larger, \(I_{\text{Ca}}\) inactivation is also faster, resulting in nearly the same \(I_{\text{Ca}}\) integral as at 25°C.

High SR Ca\(^{2+}\) load increases the amount of Ca\(^{2+}\) available for release, but it can also dramatically increase the fraction of SR Ca\(^{2+}\) that is released for a given \(I_{\text{Ca}}\) trigger.\(^{27,45}\) This latter effect may be attributable to a stimulatory effect of high intra-SR [Ca\(^{2+}\)] on ryanodine receptor open probability.\(^{46,47}\) This effect of luminal SR [Ca\(^{2+}\)] may also contribute to the apparently spontaneous SR Ca\(^{2+}\) release observed with cellular Ca\(^{2+}\) overload. This is the basis of aftercontractions, transient inward current, and delayed afterdepolarizations that can trigger arrhythmias. At moderately low SR Ca\(^{2+}\) load, CICR appears to fail.\(^{27,45}\) This property may help the SR reload if it becomes relatively depleted, and it could even contribute dynamically to the turnover of SR Ca\(^{2+}\) release during excitation-contraction coupling (ECC) (see review published earlier in this series\(^8\)).

Measuring SR Ca\(^{2+}\) load online is less direct than [Ca\(^{2+}\)], \(I_{\text{Ca}}\), or force. One useful approach is to rapidly apply caffeine (10 to 20 mmol/L), which releases all SR Ca\(^{2+}\) and prevents net uptake because of open SR Ca\(^{2+}\) release channels. Then, quantitative measures of SR Ca\(^{2+}\) load can be obtained from the amplitude of contraction or \(\Delta[\text{Ca}^{2+}]\), or by integrating \(I_{\text{NCX}}\) (given that most of the SR Ca\(^{2+}\) is removed from the cell this way, see Figure 4A). Maximal SR Ca\(^{2+}\) content under relatively physiological conditions is \(\approx 100 \mu\)mol/L cytosol or about twice the amount of Ca\(^{2+}\) required to activate a twitch.\(^{26,49,50}\) Rapid cooling contractures (RCCs) are also useful for assessing SR Ca\(^{2+}\), especially in multicellular preparations where slow caffeine diffusion to all the cells limits the utility of the caffeine approach.\(^{18,19}\) Cooling to \(\approx 0°C\) inhibits Ca\(^{2+}\) pumping and also causes rapid SR Ca\(^{2+}\) release (presumably due to very long ryanodine receptor openings\(^{31}\)). Then, one can measure either \(\Delta[\text{Ca}^{2+}]\), or contractile force (which develops slowly at 0°C). This technique is less quantitative concerning absolute amounts of Ca\(^{2+}\) but is useful for measuring changes in SR Ca\(^{2+}\) content under different conditions (Figure 4B).

Restitution and Force-Frequency Relationship

During CICR, SR Ca\(^{2+}\) release turns off because the channel either inactivates\(^{52,53}\) or adapts to the high local [Ca\(^{2+}\)].\(^{54}\) Thus, recovery from this state requires time and low [Ca\(^{2+}\)], to return to its normal resting Ca\(^{2+}\) sensitivity. There is a fast phase of restitution after an AP and twitch (\(\tau=50\) to 300 ms), which is probably due to recovery of \(I_{\text{Ca,SR}}\), availability of Ca\(^{2+}\) in the SR, and partial recovery of ryanodine receptors. Some early ECC models included slow diffusion of SR Ca\(^{2+}\) from uptake sites to release sites\(^{35}\) in explaining rest potentiation, but this diffusion should be very fast (\(\approx 1\) to 2 ms), and we now know that longer times are required for Ca\(^{2+}\) release channel recovery.\(^{3,52-54,56}\) There is also a much slower phase of ECC restitution (\(\tau=5\) to 15 seconds), which is largely respon-
increased fractional SR Ca\(^{2+}\) and longer-lasting rest potentiation (reflecting mainly the
rest is prolonged, SR Ca\(^{2+}\) can be prevented by blocking NCX by
leaks from the SR, some fraction is extruded by NCX
In conclusion, Ca\(^{2+}\) in cardiac myocytes is in a dynamic yet
delicate balance, and the interaction of numerous cellular
processes orchestrates many aspects of cardiac function at the
cellular level. Many of these systems are also subject to many
regulatory influences (not discussed here). The result is a rich
variation in functional behavior that allows the heart to
function effectively, but this also continues to pose many
challenges to understanding this complex system under di-
verse conditions. Important remaining questions include the
molecular mechanism of ECC, how the release channel is
handled in

Figure 4. Measurement of SR Ca\(^{2+}\) content and force-
frequency relationship. A, Rapid application of 10 mmol/L ca-
feine causes release of SR Ca\(^{2+}\) and prevents net reuptake. The
difference between total cytosolic Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_{tot}\) based on [Ca\(^{2+}\)])
as in Figure 1B) at rest and peak (Δ[Ca\(^{2+}\)]\(_{rest}\)) indicates SR Ca\(^{2+}\)
released. Almost all of the SR Ca\(^{2+}\) released (93%) is extruded
by h\(_{Na/Ca}\)\(_{12}\) so the integral of h\(_{Na/Ca}\) (1.5 pC/pF) multiplied by cell
surface to volume ratio (6.44 pF/pL cytosol)\(^{60}\) and divided by
0.93 indicates an SR Ca\(^{2+}\) load similar to that obtained from
Δ[Ca\(^{2+}\)]\(_{rest}\). B, Force-frequency relationship and SR Ca\(^{2+}\) content
(based on RCC amplitude) in human ventricle. Muscles were stim-
ulated (37°C) at various frequencies, and after twitches reached
steady-state, RCCs were induced to assess SR Ca\(^{2+}\) load
under those conditions (force normalized to that at 0.2 Hz). Data
from failing (F) and nonfailing (NF) hearts are from Pieske et al.\(^{19}\)

Acknowledgments
I thank many collaborators and colleagues who have helped me
to learn about Ca\(^{2+}\) in heart cells (supported in part by grants from
the National Institutes of Health [HL30077 and HL64098]).

52. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985;85:247–289.
Calcium Fluxes Involved in Control of Cardiac Myocyte Contraction
Donald M. Bers

Circ Res. 2000;87:275-281
doi: 10.1161/01.RES.87.4.275
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/87/4/275