Probing the Interaction Between Inactivation Gating and d-Sotalol Block of HERG

Hirotaka Numaguchi,* Franklin M. Mullins,* J.P. Johnson, Jr, David C. Johns, Sunny S. Po, Iris C.-H. Yang, Gordon F. Tomaselli, Jeffrey R. Balser

Abstract—Potassium channels encoded by HERG underlie I_K, a sensitive target for most class III antiarrhythmic drugs, including methanesulfonanilides such as d-sotalol. Recently it was shown that these drugs are trapped in the channel as it closes during hyperpolarization. At the same time, HERG channels rapidly open and inactivate when depolarized, and methanesulfonanilide block is known to develop in a use-dependent manner, suggesting a potential role for inactivation in drug binding. However, the role of HERG inactivation in class III drug action is uncertain: pore mutations that remove inactivation reduce block, yet many of these mutations also modify the channel permeation properties and could alter drug affinity through gating-independent mechanisms. In the present study, we identify a definitive role for inactivation gating in d-sotalol block of HERG, using interventions complementary to mutagenesis. These interventions (addition of extracellular Cd^{2+}, removal of extracellular Na^{+}) modify the voltage dependence of inactivation but not activation. In normal extracellular solutions, block of HERG current by 300 μmol/L d-sotalol reached 80% after a 10-minute period of repetitive depolarization to +20 mV. Maneuvers that impeded steady-state inactivation also reduced d-sotalol block of HERG: 100 μmol/L Cd^{2+} reduced steady-state block to 55% at +20 mV (P<0.05); removing extracellular Na^{+} reduced block to 44% (P<0.05). An inactivation-disabling mutation (G628C-S631C) reduced d-sotalol block to only 11% (P<0.05 versus wild type). However, increasing the rate of channel inactivation by depolarizing to +60 mV reduced d-sotalol block to 49% (P<0.05 versus +20 mV), suggesting that the drug does not primarily bind to the inactivated state. Coexpression of MiRP1 with HERG had no effect on inactivation gating and did not modify d-sotalol block. We postulate that d-sotalol accesses its receptor in the open pore, and the drug-receptor interaction is then stabilized by inactivation. Whereas deactivation traps the bound methanesulfonanilide during hyperpolarization, we propose that HERG inactivation stabilizes the drug-receptor interaction during membrane depolarization. (Circ Res. 2000;87:1012-1018.)

Key Words: HERG ■ potassium channel ■ inactivation ■ antiarrhythmic drugs

The acquired long-QT syndrome, which provokes sudden death from ventricular arrhythmias, has been linked to pharmacological suppression of the rapid component of delayed rectifier potassium current (I_Kr). K⁺ channels encoded by the HERG gene recapitulate the essential characteristics of I_Kr, including sensitivity to class III antiarrhythmic agents, including methanesulfonanilides such as d-sotalol. Recently it was shown that these drugs are trapped in the channel as it closes during hyperpolarization. At the same time, HERG channels rapidly open and inactivate when depolarized, and methanesulfonanilide block is known to develop in a use-dependent manner, suggesting a potential role for inactivation in drug binding. However, the role of HERG inactivation in class III drug action is uncertain: pore mutations that remove inactivation reduce block, yet many of these mutations also modify the channel permeation properties and could alter drug affinity through gating-independent mechanisms. In the present study, we identify a definitive role for inactivation gating in d-sotalol block of HERG, using interventions complementary to mutagenesis. These interventions (addition of extracellular Cd^{2+}, removal of extracellular Na^{+}) modify the voltage dependence of inactivation but not activation. In normal extracellular solutions, block of HERG current by 300 μmol/L d-sotalol reached 80% after a 10-minute period of repetitive depolarization to +20 mV. Maneuvers that impeded steady-state inactivation also reduced d-sotalol block of HERG: 100 μmol/L Cd^{2+} reduced steady-state block to 55% at +20 mV (P<0.05); removing extracellular Na^{+} reduced block to 44% (P<0.05). An inactivation-disabling mutation (G628C-S631C) reduced d-sotalol block to only 11% (P<0.05 versus wild type). However, increasing the rate of channel inactivation by depolarizing to +60 mV reduced d-sotalol block to 49% (P<0.05 versus +20 mV), suggesting that the drug does not primarily bind to the inactivated state. Coexpression of MiRP1 with HERG had no effect on inactivation gating and did not modify d-sotalol block. We postulate that d-sotalol accesses its receptor in the open pore, and the drug-receptor interaction is then stabilized by inactivation. Whereas deactivation traps the bound methanesulfonanilide during hyperpolarization, we propose that HERG inactivation stabilizes the drug-receptor interaction during membrane depolarization. (Circ Res. 2000;87:1012-1018.)

Key Words: HERG ■ potassium channel ■ inactivation ■ antiarrhythmic drugs

Received February 1, 2000; revision received September 20, 2000; accepted September 26, 2000.

From the Departments of Anesthesiology (H.N., J.R.B.) and Pharmacology (F.M.M., J.P.J., I.C.-H.Y., J.R.B.), Vanderbilt University School of Medicine, Nashville, Tenn, and Institute for Molecular Cardiobiology (S.S.P., G.F.T.), The Johns Hopkins University School of Medicine, Baltimore, Md.

*Both authors contributed equally to this study.

This manuscript was sent to Michael R. Rosen, Consulting Editor, for review by expert referees, editorial decision, and final disposition.

Correspondence to Jeffrey R. Balser, MD, PhD, Room 560, MRB II, Vanderbilt University School of Medicine, Nashville, TN 37232. E-mail jeff.balser@mcmail.vanderbilt.edu

© 2000 American Heart Association, Inc.

Circulation Research is available at http://www.circresaha.org

1012
block by these compounds. In addition, a recent study showed that closure of the activation gate during hyperpolarization traps drug in the channel, thus stabilizing block.

Certain extracellular cations selectively modify the inactivation gating of HERG and therefore offer an independent means to evaluate the role of inactivation in methanesulfonanilide block. Extracellular Cd2+ at concentrations below 200 \mu mol/L inhibit HERG inactivation but do not change activation gating. In addition, we show that replacing extracellular Na+ with NMG+ destabilizes HERG inactivation. We tested whether these cation substitutions modify HERG block by \textalphaS-sotalol, a class III methanesulfonanilide known to inhibit \textit{I}\textsubscript{K1}.

Our results show that these ionic substitutions, as well as P-loop mutations that remove inactivation, antagonize \textalphaS-sotalol inhibition of HERG current. At the same time, stronger depolarizations that rapidly inactivate the channel reduce \textalphaS-sotalol inhibition of HERG current. We propose that methanesulfonanilide block of HERG is stabilized secondarily as inactivation gating ensues.

Materials and Methods

HERG cDNA was kindly provided by Dr Mark Keating (University of Utah), and the mutant G628C:S631C HERG cDNA was provided by Dr Gary Yellen (Harvard University). Wild-type and mutant constructs were then subcloned into the Bgl/II-BsrEI site of vector pGFP-IRS for bicistronic expression of the channel protein and GFP reporter as previously described. MiRP1 cDNA was kindly provided by Dr Steve Goldstein, (Yale University) in vector pCI-neo (Promega). CHO-K1 cells were transfected with ion channel cDNAs and maintained as described previously. Cells exhibiting green fluorescence were chosen for electrophysiological analysis.

Whole-cell potassium currents were recorded at 22°C to 23°C (Axopatch 200B, Axon Instruments) using electrodes of 2 to 4 M\textOmega when filled with a pipette solution containing (in mmol/L) KCl 110, NaCl 40, K\textsubscript{2}ATP 5, MgCl\textsubscript{2} 1, adjusted to pH 7.2 with KOH to yield a final intracellular [K+] of 145 mmol/L. Eighty percent of the series resistance was compensated. Unless otherwise indicated in the figure legends, the standard bath solution contained (in mmol/L) NaCl 140, KCl 5.4, MgCl\textsubscript{2} 1, CaCl\textsubscript{2} 2, HEPES 10, and glucose 10, adjusted to pH 7.4 with NaOH. CdCl\textsubscript{2} was diluted in the standard bath solution from a 1 mol/L aqueous stock. In experiments where extracellular Na+ was removed, NaCl was replaced by equimolar \textit{N}-methyl-\textit{d}-glucamine chloride (NMG+). \textalphaS-Sotalol was a gift from Bristol Meyers Squibb (Princeton, NJ) and was added to the bath from a 1 mol/L stock solution. A 2-minute period of equilibration was allowed between solution changes to establish equilibrium. We used a small bath volume (~1 mL) and fully exchanged the external solution at least 4 times within 2 minutes.

Data were acquired using pCLAMP (Axon Instruments). In all figures, the bottom of the scale bar indicates the zero current level. The time dependence of \textalphaS-sotalol block was fitted using the exponential function \(y = A \times \text{exp}[-(t-t_0)/r]\). Pooled data are expressed as means and standard errors, and statistical comparisons were made (Origin, Microcal Software, Northampton, Mass) with \(P<0.05\) considered significant.

Results

Figure 1A shows HERG currents recorded in standard solutions (left) and after addition of 100 \mu mol/L Cd2+ (right). Addition of Cd2+ increased the magnitude of current during the depolarizing steps and also hastened the tail current kinetics. As shown previously, these effects both result from a destabilizing effect of Cd2+ on HERG inactivation. Figure 1B shows an analogous experiment where HERG currents were recorded prior to (left) and after (right) removal of the extracellular Na+. Similar to Cd2+ addition, removing Na+ increased the magnitude of the outward current recorded during depolarization. However, removal of Na+ greatly reduced tail current amplitude after strong (+20 mV) depolarizations, an effect not seen with Cd2+.

Figure 2A shows the effects of Cd2+ addition or Na+ removal on the current-voltage (I-V) relationship at the end of the 2-second depolarizing pulse (paired observations). In both cases, the interventions substantially increased the current at membrane potentials \(\geq +20\text{ mV} \) where the I-V curve rectifies. The effects of the two interventions were qualitatively and quantitatively similar. In addition, there was little effect of either intervention on the I-V curve at less depolarized potentials, consistent with selective effects on inactivation. Figure 2B plots the tail current amplitudes after each depolarization, normalized to the maximal tail current amplitude in the same bath solution, to illustrate the effects of Cd2+ addition or Na+ replacement on the voltage dependence of activation. As previously shown (see Figures 2 and 3 in Johnson et al20), 100 \mu mol/L Cd2+ did not significantly change the voltage dependence of activation (Figure 2B, top). Although removal of Na+ had a somewhat different effect on the tail current magnitude than did Cd2+ addition (Figure 1), removal of Na+ still did not alter the voltage dependence of activation (Figure 2B, bottom). In Figure 2B, the solid lines are fits to a Boltzmann function to these activation data. The fitted parameters (legend, Figure 2B) revealed no statistically significant effect of either intervention on the \(V_{1/2}\) or the slope.
factor. Although we cannot entirely exclude the possibility that removing Na\(^+\) has a small effect on activation gating, the effect of Na\(^+\) removal on the voltage dependence of inactivation is substantial, as shown below.

We recently showed that [Cd\(^{2+}\)] \(\geq 200 \mu M\) induces a depolarizing shift in the voltage dependence of HERG inactivation,\(^{20}\) and it was postulated that this destabilized inactivation was responsible for the Cd\(^{2+}\)-induced increase in HERG current. We tested whether a similar mechanism could underlie the enhancement of HERG current on removal of extracellular Na\(^+\) (Figure 3). To assess this, a 3-pulse voltage-clamp protocol was used (Figure 3A).\(^{11,24}\) Figure 3B plots the voltage-dependent partitioning of HERG channels between noninactivated states (closed or open) and the inactivated state. Replacing Na\(^+\) with NMG\(^+\) caused a rightward depolarizing shift in the voltage dependence of inactivation. The effect of 100 \(\mu M\) Cd\(^{2+}\) was also tested (Figure 3B) and also exhibited a rightward shift, as shown previously with 200 \(\mu M\) Cd\(^{2+}\) (Johnson et al\(^{20}\)). A Boltzmann function provided an inadequate fit to these data (not shown) because of the competing influence of two gating processes (deactivation and inactivation), primarily at the hyperpolarized membrane potentials. Hence, the effects of the two interventions (Cd\(^{2+}\) addition or Na\(^+\) removal) were assessed in a model-independent manner at each membrane potential (Figure 3B). Cd\(^{2+}\) significantly reduced the extent of inactivation at nearly all the membrane potentials tested (\(-110\) to \(+50\) mV, \(P<0.05\)). Conversely, the effects of Na\(^+\) to destabilize inactivation predominated at membrane potentials \(\leq -70\) mV, consistent with the distinctive kinetic effects of this intervention (see below, Figure 4).

Both removal of Na\(^+\) and addition of Cd\(^{2+}\) destabilized steady-state inactivation over a range of membrane potentials (Figure 3). Examination of Figure 1 indicates that although the two interventions have similar effects during depolarization (increasing the current magnitude), on hyperpolarization to \(-50\) mV, Na\(^+\) removal markedly reduced the tail current amplitude. We therefore examined the kinetic features of Na\(^+\) removal in greater detail during hyperpolarization (Figures 4A through 4C) and depolarization (Figure 4D). The large amplitude of HERG current tails on sudden hyperpolarization, relative to the small current size during the preceding depolarization, results from rapid recovery from inactivation.
Figure 4. Voltage-dependent effects of Na\(^+\) removal on inactivation gating. A through C, Membrane potential was stepped to +50 mV (2 seconds) from −80 mV, followed by test potentials between −100 and −30 mV. A and B, Representative currents at hyperpolarized test potentials for a paired experiment in which the bath Na\(^+\) concentration was changed from 0 (A) to normal Na\(^+\) (B), with K\(^+\) held at 5.4 mmol/L. The control tail currents were larger than those in 0 Na\(^+\) (note scale difference), consistent with the effects on tail currents seen in Figure 1B. C, Early, increasing phase reflecting recovery from inactivation (arrows, A) was fitted with a single exponential and is plotted (n=4, paired observations). D, Currents recorded during the third pulse of the protocol (+30 mV) shown in Figure 3A. Records from the same cell in 0 Na\(^+\) and control Na\(^+\) are scaled for comparison and show the slower onset of inactivation on Na\(^+\) removal.

Figure 5A plots the development of \(\alpha\)-sotalol block in the standard bath solution during a train of depolarizing pulses (Figure 5, top). In each case, the outward current was measured at the end of the 0.5-second step to +20 mV. Similar to the block kinetics of dofetilide in Xenopus oocytes\(^{13}\) and cultured mammalian cells,\(^{5}\) \(\alpha\)-sotalol block (300 μmol/L) develops very slowly. Identical experiments were performed with the addition of 100 μmol/L Cd\(^{2+}\) (Figure 5B) or Na\(^+\) replaced with NMG\(^+\) (Figure 5C). In both cases, steady-state \(\alpha\)-sotalol block was significantly reduced. These findings are summarized for a number of cells in Figure 5. Figure 5A shows that neither Cd\(^{2+}\) addition nor Na\(^+\) removal significantly influenced the rate of block development.

Figure 7A examines the rate of recovery from inactivation in the absence and presence of \(\alpha\)-sotalol in a manner similar to Figure 4; a single exponential was fitted to the early rising phase of current elicited during a hyperpolarizing step after a 0.5-ms depolarization. There was no significant difference in before a slower deactivation process.\(^{11,24}\) We postulated that an effect of Na\(^+\) removal to slow recovery from inactivation at negative membrane potentials would reduce the amplitude of the tail currents. To assess this, we fitted a single exponential to the early recovery phase of HERG current during a hyperpolarization step that followed a depolarization to +50 mV;\(^{25}\) the rapid recovery phase was resolved using a fast sampling rate (20 kHz) in Na\(^+\)-free and control solutions (Figures 4A and 4B). Removal of Na\(^+\) slowed recovery from inactivation at all negative membrane potentials tested (−30 to −100 mV; \(P<0.05\), Figure 4C). At the same time, Figure 4D plots representative currents recorded at +30 mV after activation and recovery from inactivation (3-pulse protocol from Figure 3, top). These currents reflect the developing rate of HERG inactivation during depolarization;\(^{11,24}\) removal of Na\(^+\) slowed the +30-mV time constant of inactivation (derived from single-exponential fits to the decaying currents) from 11.3±1.2 ms to 14.6±1.5 ms (\(n=3, P<0.05\)). Consistent with these observations, Na\(^+\) removal destabilized steady-state inactivation (Figure 3B) at depolarized voltages but had no significant effect at potentials more negative than −70 mV where the rate constant for recovery from inactivation likely predominates. In summary, the findings suggest that extracellular Na\(^+\) hastens the development of HERG inactivation during depolarization and the rate of recovery from inactivation during hyperpolarization.

We next examined block of HERG current by \(\alpha\)-sotalol in the presence of these inactivation destabilizing interventions.
the rate of recovery from inactivation. This would imply that either the drug has no effect on recovery from inactivation, or alternatively, that drug unbinding is so slow that blocked channels remain nonconducting on hyperpolarization and therefore do not participate in the measurement. Figure 5 shows that block accumulates with successive 0.5-second depolarizations, despite a 1-second hyperpolarizing interpulse interval, supporting the notion that the drug unbinding rate is slow. We examined d-sotalol block in additional cells using an 8-second period of hyperpolarization between pulses (n=3, not shown) and still found no relief of d-sotalol block 5 minutes after drug washout, consistent with the irreversible block seen with other methanesulfonanilide compounds and HERG.

As an alternative means to examine the influence of HERG inactivation on d-sotalol block, a recent study found that coexpression of the MiRP1 protein augmented E-4031 rapid (first pulse) block of HERG. Figure 7B shows that MiRP1 had no effect on the voltage-dependent partitioning between inactivated and noninactivated states. We also find that MiRP1 coexpression did not increase first-pulse block by 300 μmol/L d-sotalol. In additional cells transfected and studied concurrently, first-pulse HERG current after a 4-minute d-sotalol perfusion period at −80 mV was 98.6±2% (n=4) of control for HERG+MiRP1 compared with 92.8±2% (n=3) for HERG alone. We have confirmed MiRP1 coexpression by assaying for an accelerated rate of HERG deactivation (data not shown). We propose that the blocking kinetics of d-sotalol may be slower than E-4031, making it insensitive to the effects of MiRP1.

Figure 6. Interventions that modify inactivation and steady-state d-sotalol block. Bar graphs summarize the data recorded under the conditions in Figures 5A through 5D. For each intervention, the number of observations is indicated in parentheses. *Significant difference from the standard bath solution at +20 mV. A, Percentage of outward current remaining after a 10-minute period of d-sotalol perfusion. B, Time constant obtained by fitting a single exponential to the time-dependent development of block (from Figure 5). All four interventions reduced steady-state block by d-sotalol but did not alter the time constant for block development.

Figure 7. Inactivation gating characteristics in d-sotalol and with MiRP1 coexpression. A, Recovery from inactivation was measured as in Figures 4A through 4C, by fitting a single exponential to the early rising phase of current on hyperpolarization (see inset; arrow indicates rising phase on step to −60 from +20 mV). The time constants obtained from control (n=9) and d-sotalol–treated cells (n=4) did not differ. B, Voltage-dependent availability was assessed in a number of cells for HERG alone (n=19) and HERG with MiRP1 coexpressed (n=13). Tail currents were measured using the voltage-clamp protocol and procedure as described for Figure 3. In all cases, the standard bath solution (normal Na+, 0 Ca2+) was used. MiRP1 had no measurable effect on voltage-dependent partitioning between inactivated and noninactivated states.
Discussion

In the human heart, suppression of current through channels encoded by HERG has both therapeutic and proarrhythmic consequences. Methanesulfonanilides, including dofetilide, E-4031, and d-sotalol, are among the most potent and selective inhibitors of HERG current. Hence, a mechanistic understanding of HERG block by this class of compounds may prove useful in understanding, and potentially avoiding, the untoward suppression of \(I_K \) by newer therapeutic agents. We explore the controversy over the role of the unique inactivation gating process of HERG in class III drug block. In addition to pore mutations (G628C-S631C) that disable inactivation (Figures 5D and 6A), cation substitutions that selectively inhibit HERG inactivation (Figures 1 through 3) also decrease block of HERG current by d-sotalol (Figures 5A through 5C and 6A). These findings suggest that the effects of inactivation-disabling pore mutants to disrupt block by members of the methanesulfonanilide class do not result solely from nonspecific effects of these mutations on the pore permeation properties but rather are attributable, at least in part, to the inactivation gating effects of the mutations. Although both Cd\(^{2+}\) addition and Na\(^+\) removal slow the development of inactivation gating at depolarized potentials (and share the effect of reducing d-sotalol block), the molecular mechanisms whereby these interventions destabilize inactivation may differ. In addition to its effects on inactivation gating, extracellular Na\(^+\) was recently shown to be a potent blocker of HERG in the absence of K\(^+\), and this blocking effect is potently inhibited through a complex interaction with extracellular K\(^+\). Conversely, addition of Cd\(^{2+}\) destabilizes HERG inactivation gating over a lower (micromolar) concentration range and does not appear to block the channel. The unique functional effects of the monovalent (Na\(^+\)) and divalent (Cd\(^{2+}\)) cations suggest that their gating effects may be linked to distinctive binding mechanisms or interaction sites.

Taken together, the findings with pore mutations and cation substitution (Figures 5 and 6) suggest that the HERG inactivated state stabilizes methanesulfonanilide block. Although a direct competitive interaction between extracellular Cd\(^{2+}\) and d-sotalol binding could confound this interpretation, the fact that Na\(^+\) removal has effects on both inactivation gating (during depolarization) and d-sotalol block that are similar to Cd\(^{2+}\) addition suggests this is unlikely. Hence, the effects of the inactivation-disabling interventions could be explained by the following scheme:

Closed→Open→Inactivated→Inact-D,

where Inact-D is an inactivated, drug-bound state.

However, the results (Figures 5A and 6A) showing stronger depolarizations (+60 versus +20 mV) actually reduce d-sotalol block (as in prior studies of dofetilide) poses an apparent conflict with this scheme given that stronger depolarization increases HERG inactivation. A binding mechanism more complex than this scheme is also suggested by recent studies of a HERG mutant that allows opening from hyperpolarized potentials (D540K), showing that deactivation (closure) of channels traps the methanesulfonanilide in the pore. This explains the slow HERG unblocking observed at hyperpolarized potentials. We therefore propose that d-sotalol accesses the drug receptor during channel opening, and that binding is secondarily stabilized by either inactivation (depolarization) or deactivation (hyperpolarization) of the drug-bound channel. Although strong depolarization (to +60 mV) paradoxically inhibits methanesulfonanilide block (inactivation is increased), it is notable that such marked depolarization shifts the open-inactivated state equilibrium almost entirely toward occupancy of the inactivated state (Figure 3B). Because the on-rate for d-sotalol block is slow (Figure 5), the marked reduction in open-state dwell time induced by this strong depolarization may significantly reduce the open-state access of d-sotalol to its receptor. Alternatively, the strongly depolarized membrane field may have an inhibitory (gating-independent) effect on d-sotalol binding to its receptor.

Because depolarization is necessary to induce block by d-sotalol as well as other methanesulfonanilides, the recent finding that the D540K HERG channel can actually unblock when open (albeit at hyperpolarized potentials) supports our postulate that on depolarization, a state other than the open state (ie, the inactivated state) forms a relatively stable, drug-bound block complex. Studies of Shaker K\(^+\) channels with N-terminal deletions reveal a C-type inactivation gating process that is distinct from the more rapid N-type process and involves constriction of the pore. Mutagenesis studies have implicated homologous amino acid residues in the pore-forming region of HERG as structural components of inactivation, suggesting that a more rapid but related form of inactivation underlies the inward rectification of \(I_K \). Viewed in this context, the proposed mechanism of methanesulfonanilide block is reminiscent of the classic work on delayed rectifier K\(^+\) channels in squid axons, where tetraethylammonium accessed the channel when open and then gating (channel closure) stabilized drug binding.

The notion that methanesulfonanilides drugs bind to a site within the pore is supported by recent evidence that pore-lining residues at the C-terminal end of S6 may form part of the dofetilide receptor. At the same time, interventions that disrupt (adding Cd\(^{2+}\), removing Na\(^+\)) or eliminate (G628C-S631C) HERG inactivation limit d-sotalol block during depolarization. It is noteworthy that the rate of development of d-sotalol block is not influenced by the interventions that destabilize inactivation (Figure 6B). When HERG channels are depolarized, the rate at which channels enter the inactivated state is determined mainly by the slow (rate-limiting) kinetics of the activation gating process (C→O) and not by the more rapid inactivation process (O→I). Hence, in view of the very slow rate of development of d-sotalol block (minutes), it is anticipated that the block development rate would be relatively insensitive to interventions that alter the rapid inactivation gating process.

Outward current through HERG channels is sensitive to small changes in extracellular K\(^+\) and a competitive interaction between extracellular K\(^+\) and dofetilide block of \(I_K \) in AT1 cells has been described. Hence, it is possible that extracellular Na\(^+\) removal, and even Cd\(^{2+}\) addition, could facilitate binding of extracellular K\(^+\) in the outer pore and thereby destabilize d-sotalol block indirectly. However,
steady-state d-sotalol block of HERG expressed in cultured mammalian cells was insensitive to raising extracellular K\(^+\) (IC\(_{50}\) = 150 mmol/L at either 1.0 or 5.4 mmol/L K\(^+\)).\(^{12}\) a finding consistent with reports for K\(^+\) insensitivity of dofetilide and E-4031 block of HERG using oocyte expression.\(^{5,13}\) This insensitivity might indicate that outer-pore K\(^+\) depletion does not influence d-sotalol block. Nonetheless, the finding that removing extracellular Na\(^+\) both reduces HERG inactivation and limits d-sotalol block motivates future studies to identify sites in the pore linking cation permeation, inactivation gating, and drug action.

Acknowledgments

This work was supported by the National Institutes of Health (P01 HL46681) and the Established Investigator Award of the American Heart Association (J.R.B.). We thank Dan Roden for helpful discussion.

References

Probing the Interaction Between Inactivation Gating and dd-Sotalol Block of HERG

Circ Res. 2000;87:1012-1018
doi: 10.1161/01.RES.87.11.1012

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/87/11/1012

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/