Myocardial K_{ATP} Channels in Preconditioning

Brian O’Rourke

Abstract—We are on the brink of harnessing the cell’s natural defenses against ischemia and reperfusion injury after years of research into the destructive and protective mechanisms involved. Since the discovery of ischemic preconditioning, the surface receptors and signal transduction pathways underlying this phenomenon have been clarified, but many questions remain about the downstream targets that ultimately protect the cell. ATP-sensitive K^+ (K_{ATP}) channels are thought to play a role in protection, but their mechanism of action has been unclear. Accumulating evidence now suggests that the location of the K_{ATP} channels relevant to cytoprotection may be on the mitochondrial inner membrane instead of on the sarcolemma of the cardiac cell. This review discusses recent findings and unanswered questions about the role of K_{ATP} channels in preconditioning and protection. (Circ Res. 2000;87:845-855.)

Key Words: K_{ATP} ■ protection ■ mitochondria ■ ischemia ■ apoptosis

Efforts to mitigate or prevent ischemic injury have traditionally focused on finding ways to block events associated with irreversible ischemic injury. More recently, the discovery of the endogenous cellular protective mechanism known as ischemic preconditioning (IPC) has raised hopes that natural pathways or target proteins could be activated to help cells stave off commitment to necrosis or apoptosis. IPC in the heart refers to the finding that brief periods of ischemia confer protection against infarction produced by a subsequent long ischemia. Both acute protection, in which the brief ischemia must be applied within a 1- to 2-hour window before the long ischemia, and second window protection, occurring 24 to 48 hours after the preconditioning ischemia, have been described.

As summarized in Figure 1, a variety of intracellular signaling pathways have been implicated in the protective mechanism of IPC. These include the activation of G protein-linked phospholipase C–coupled receptors, tyrosine kinase pathways, protein kinase C (PKC), and the generation of reactive oxygen species. Protection can be blocked at several steps in each cascade; however, redundancy is built in, so protection can be preserved through the activation of alternative pathways. The identification of a common end-effector for protection has been elusive.

Among the candidates as a mediator of protection is the ATP-sensitive potassium channel (K_{ATP}). This channel is normally inhibited by intracellular ATP and opens during periods of energy depletion. K_{ATP} channels are found on a wide variety of tissues, and one of their most prominent functions is to modulate insulin release from pancreatic β cells by setting the resting membrane potential (E_r) of the cell. An effect on E_r also underlies the mechanism of K_{ATP} action in vascular smooth muscle. In the heart, K_{ATP} channels are present on the sarcolemma of cardiac myocytes, where they were first described, but their purpose remains unclear. The opening of surface K_{ATP} (surfaceK_{ATP}) channels in cardiomyocytes has little effect on E_r because it is already close to the equilibrium potential for K^+, but the outward current carried by K_{ATP} shortens the action potential and, if large enough, can render the cell inexcitable. Thus, it has been suggested that suppression of excitability spares energy by reducing that required for active ion cycling because of membrane depolarization and Ca^{2+} handling.
Reports that the sulfonlurea receptor antagonists could diminish IPC-induced protection suggested that K_{ATP} channels may be effectors of protection, and this idea was reinforced by the finding that K_{ATP} channel openers like cromakalim, bimakalim, or pinacidil could mimic protection. It was also found that 5-hydroxydecanoate (5-HD), a putative ischemia-selective K_{ATP} channel inhibitor, could block protection.

On the basis of these studies, a mechanistic hypothesis was developed proposing that the opening of surfaceK_{ATP} channels during ischemia was somehow facilitated by the activation of IPC signaling pathways, such that the action potential shortening that occurs in the early phase of the long ischemia was enhanced. The result would be better preservation of cellular energy stores and suppression of deleterious downstream events, such as cellular Ca²⁺ overload.

This hypothesis was critically tested in several studies. Yao and Gross showed a lack of correlation between the extent of action potential shortening and the reduction of infarct size. Doses of bimakalim, cromakalim, or BMS-180448 that had little or no effect on the action potential could still significantly reduce infarct size. Furthermore, preventing ischemic action potential shortening by concomitant treatment with dofetilide did not eliminate protection. Finally, in simulated ischemia models of isolated cardiomyocytes, protection was conferred by K_{ATP} channel openers, even though the cells were quiescent and no action potentials were being generated. Thus, it was necessary to consider alternative explanations for the effects of the K_{ATP} channel openers and inhibitors in IPC.

MitoK_{ATP}

Although the mitochondrial inner membrane was traditionally thought to be relatively impermeable to ions, K-selective cation transport has been widely observed in mitochondria, as supported by studies using light scattering to measure mitochondrial swelling or fluorescent dyes to measure K⁺ influx.

Suppression of K⁺ flux by ATP and a sensitivity to K⁺ channel openers and blockers led to the suggestion that a K_{ATP} channel similar to surfaceK_{ATP} existed on the inner mitochondrial membrane. This was strongly supported by patch-clamp studies of isolated mitoplasts, which revealed a channel with gating properties similar to K_{ATP} but with a conductance (~10 pS in 100 mMm/L K⁺) smaller than the surface variety. The mitoK_{ATP} channel was inhibited by 100 μmol/L ATP and blocked by glibenclamide or 4-aminopyridine. In reconstitution studies, mitoK_{ATP} was shown to be competitively inhibited by ATP, ADP, and palmitoyl- or oleyl-CoA, and relief from inhibition was mediated by GTP and GDP. Modulator effects require the presence of Mg²⁺. Although the excised patch studies indicated that the ATP inhibitory site was on the matrix face of the channel, other evidence suggests that it may be on the cytoplasmic (technically the intermembrane) face. This conclusion was based on the findings that the channel’s regulatory sites were all located on one side of the channel and that GTP and palmitoyl-CoA are maximally active only when applied to the external medium of intact mitochondria and are presumably not transported into the matrix.
Mitochondrial KATP (MitoKATP) or Sarcolemmal KATP (SarcKATP) or mitochondrial proteins.

Selectivity of K\textsubscript{ATP} Channel Openers and Inhibitors Toward Cardiac Mitochondrial K\textsubscript{ATP} (MitoK\textsubscript{ATP}) or Sarcolemmal K\textsubscript{ATP} (SarcK\textsubscript{ATP})

<table>
<thead>
<tr>
<th>Selectivity</th>
<th>MitoK\textsubscript{ATP} and SarcK\textsubscript{ATP}</th>
<th>SarcK\textsubscript{ATP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Openers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diazoxide</td>
<td>Pinacidil*†</td>
<td>P-1075‡</td>
</tr>
<tr>
<td>Nicorandil*</td>
<td>Cromakalim†</td>
<td></td>
</tr>
<tr>
<td>BMS-180448†</td>
<td>P-1075‡</td>
<td></td>
</tr>
<tr>
<td>BMS-191095†</td>
<td>P-1075‡</td>
<td></td>
</tr>
<tr>
<td>Blockers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Hydroxydecanoate*†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-HD</td>
<td>HMR1098(1883)*‡</td>
<td></td>
</tr>
</tbody>
</table>

Compounds are listed that have been tested for activity in both mitochondrial and sarcolemmal K\textsubscript{ATP} functional assays. For all of these compounds, the effects on protection (or lack thereof) have been verified in isolated perfused hearts or intact animals (see text for details).

*Selectivity and effects on protection determined in adult rabbit myocytes. †Selectivity determined in intact mitochondria or reconstituted sarcolemmal or mitochondrial proteins. ‡P-1075 was reported to be selective for sarcK\textsubscript{ATP} in isolated adult rabbit myocytes but activated mitoK\textsubscript{ATP} in isolated rat mitochondria.

Studies of proteins reconstituted into proteoliposomes permitted a direct comparison of the pharmacology of mitoK\textsubscript{ATP} and surfaceK\textsubscript{ATP} channels. Garlid et al24 showed that diazoxide was 1000 to 2000 times more potent in opening the mitoK\textsubscript{ATP} channel compared with the sarcolemmal K\textsubscript{ATP} channel (K\textsubscript{i} = 0.5 to 0.8 \mu\text{mol/L} for mitoK\textsubscript{ATP} versus 840 \mu\text{mol/L} for cardiac sarcolemmal K\textsubscript{ATP}). Furthermore, the effect of diazoxide could be blocked by 5-HD with a K\textsubscript{i} of 45 to 85 \mu\text{mol/L}. Glibenclamide (K\textsubscript{i} of 1 to 6 \mu\text{mol/L}) and 5-HD block mitoK\textsubscript{ATP} in a state-dependent manner, having no effect on channels activated by complete removal of ATP, but inhibiting channels activated by GTP or K+ channel openers in the presence of ATP.31

Exploiting the selectivity of diazoxide for the mitochondrial isoform, Garlid et al24 compared the efficacy of diazoxide and cromakalim in protecting Langendorff-perfused rat hearts from ischemic contracture. Diazoxide significantly prolonged the time to ischemic contracture with a half-maximal effect at 8.8 \mu\text{mol/L}, whereas the K\textsubscript{i} for cromakalim was 11 \mu\text{mol/L}. Importantly, at equally protective doses of the 2 drugs, diazoxide produced markedly less action potential shortening. Both 5-HD (at 100 \mu\text{mol/L}) and glibenclamide abolished the protective effect of diazoxide. Garlid et al24 concluded that the protective effect of K\textsubscript{ATP} openers may be mediated by mitochondrial rather than sarcolemmal K\textsubscript{ATP} channels.

Contemporaneously, Liu et al22 made a similar connection between mitoK\textsubscript{ATP} activation and cardioprotection in isolated cardiomyocytes. By developing a method for monitoring the opening of mitoK\textsubscript{ATP} using the native autofluorescence of mitochondrial flavoproteins, the opening of mitoK\textsubscript{ATP} by diazoxide was detected for the first time in intact cells as a reversible increase in flavoprotein oxidation. At concentrations up to 100 \mu\text{mol/L}, diazoxide dose-dependently increased mitochondrial matrix oxidation (K\textsubscript{i} = 27 \mu\text{mol/L}) without activating sarcolemmal K\textsubscript{ATP} currents, and 5-HD inhibited the redox effect. The latter finding provides important support for the argument that mitoK\textsubscript{ATP} channels are involved, because there is substantial evidence that 5-HD is selective for mitoK\textsubscript{ATP} over sarcolemmal K\textsubscript{ATP}.15,24,33,34 The link between mitoK\textsubscript{ATP} and protection in cardiomyocytes was demonstrated by examining the extent of cell killing in response to simulated ischemia using a cell pelleting method.32 Diazoxide decreased cell killing to about one half of that in controls, and this protection was blocked by 5-HD. The latter result was similar to that of Armstrong et al,22 who showed that 5-HD inhibited preconditioning induced by 1 to 3 short pelleting episodes before the long ischemia in the same quiescent cell model.

Using the flavoprotein fluorescence method, the pharmacological profile of several K\textsubscript{ATP} openers and inhibitors have been characterized, and compounds have been found that specifically act on either the mitochondrial or sarcolemmal K\textsubscript{ATP} channels (Table). In isolated cell models of ischemia, protection is afforded by compounds capable of activating mitoK\textsubscript{ATP}, and this protection can be inhibited by compounds effective at blocking mitoK\textsubscript{ATP}.35,36 Compounds selective for sarcolemmal channels have no such actions and serve as convincing evidence that sarcolemmal channels play much less of a role in protection. It should be noted that the specificities shown in the Table primarily apply to the case of intact cardiomyocytes or isolated mitochondria, usually determined with ATP present in the cytoplasmic solution, and may vary depending on the conditions of the experiment. For example, the pinacidil derivative P-1075 is quite selective for surfaceK\textsubscript{ATP} in the isolated cells35 but potently activates mitoK\textsubscript{ATP} in mitochondrial preparations (P. Paucek, personal communication, June 2000) and confers protection in intact hearts with an EC\textsubscript{25} of 57 nmol/L.37 The reason for this discrepancy is unknown.

Similarly, 5-HD was originally reported to block surfaceK\textsubscript{ATP} currents activated by high ADP (1 mmol/L), low pH of 6.6,38 metabolic inhibition,39 so conclusions about selectivity need to be reexamined under many different conditions. Also, under conditions of high ADP or severe metabolic inhibition, surfaceK\textsubscript{ATP} channels are more readily opened by diazoxide;40 however, activation of heterologously expressed SUR2A/Kir6.2 channels by diazoxide is not inhibited by up to 500 \mu\text{mol/L}.5 Thus, extrapolation of these pharmacological specificities to other situations should be made with caution, particularly in intact hearts where many cell types are present, and diazoxide is a potent vasodilator through its action on surfaceK\textsubscript{ATP} channels of vascular smooth muscle. Still, by using combinations of old and new selective agonists and antagonists, the hypothesis that mitoK\textsubscript{ATP} is the effector of protection has received widespread support.

Acknowledging the caveat about pharmacological specificity mentioned above, there is remarkably good agreement between isolated cell data and results obtained in whole heart. Protection against infarction by diazoxide or low doses of cromakalim does not seem to be correlated with effects on coronary flow, action potential shortening, or ST segment elevation41 during ischemia. Almost universally, the protection is inhibited by 5-HD. Furthermore, HMR1883 (or its salt form HMR1098), an antagonist selective for surfaceK\textsubscript{ATP}, has no effect on IPC41-46 but is effective in blocking repertusion arrhythmias,43-47 presumably by reducing the dispersion of repolarization caused by the activation of surfaceK\textsubscript{ATP}. 5-HD,
on the other hand, does not influence ischemia-related electrical dispersion or arrhythmias. HMR1883 may also be more selective toward cardiomyocyte, rather than vascular, surface KATP channels, because reperfusion hyperemia was blocked by glibenclamide but not HMR1883 in rat hearts.

A dichotomous recent result suggested that HMR1883 could block diazoxide, but not conventional IPC, in rabbit hearts. Interestingly, diminution of ischemic ST segment elevation with successive occlusions was unaffected by doses of 5-HD known to block IPC, but abolished by HMR1883. Thus, this study confirmed the dissociation between surface KATP activation and protection while at the same time supporting a surface KATP role in diazoxide-induced protection (either that or the HMR1883 was not completely surface selective). These results will need to be reconciled with a report showing no effect of HMR1098 on diazoxide-induced protection in isolated myocytes.

Assuming that the primary action of 5-HD is on mitoKATP, it is quite remarkable that this compound blocks protection induced by an endlessly variable preconditioning protocols, including protection induced by IPC, adenosine, endothelin, nicorandil, opioid, acetylcholine, diazoxide, heat shock, Ca2+ preconditioning, HpETE, renal ischemia, monophosphoryl lipid A, phorbol myristic acid, BMS-180448, RP52891, and volatile anesthetics.

Although perfect isofrom selectivity of KATP openers and blockers has yet to be achieved, all of the pharmacological and electrophysiological results taken together favor mitoKATP rather than surface KATP as the relevant effector of preconditioning. This conclusion will be bolstered by the future development of highly isofrom-specific and potent drugs. In this regard, a new K+ channel opener, BMS-191095, has recently been described that is extremely potent (Kp 83 nmol/L) and selective for mitoKATP, has no effect on ischemic action potential shortening, will not open vascular or sarcolemmal KATP channels, and is cardioprotective.

Another important question is the time frame for mitoKATP channel opening necessary for protection. In a recent study in a rabbit model of IPC by Fryer et al, 5-HD was applied either before or after the preconditioning ischemia or diazoxide application to examine whether mitoKATP channel opening exerted its protective effect during the trigger or long ischemia phases or both. In controls, IPC reduced infarct size (normalized to area at risk) from 56% to 7%. When 5-HD was applied 5 minutes before IPC, protection was largely eliminated (infarct size was 40%), whereas in the absence of preconditioning, 5-HD had no significant effect on infarct size. Diazoxide given 15 minutes before the long ischemia reduced infarct size (to 36%), whereas 5-HD applied either before or after diazoxide exposure completely eliminated this protection. This suggests that mitoKATP opening is important as both a preconditioning trigger and effector of protection during the long ischemia (discussed in the context of delayed preconditioning in the next section). Also noted in this study was a diminished effect of 5-HD with longer pretreatment periods, suggesting that 5-HD was being actively metabolized. This result highlights the difficulty of verifying the local concentration of a pharmacological agent at an effector site in vivo, particularly when the site is an intracellular one like the mitochondria and coronary flow is changing during the experiment.

A recent study by Pain et al supported the role of mitoKATP as a trigger of IPC but challenged its role as an effector during the long ischemia in perfused rabbit hearts. They found that 5-HD (or glibenclamide) administered during a 5-minute preconditioning ischemia or a short diazoxide pretreatment could block the infarct limiting effect of IPC but was ineffective when given after the preconditioning period. Tyrosine kinase inhibition abrogated diazoxide-induced protection, whereas PKC inhibition did not. In addition, free radical scavengers applied during diazoxide pretreatment were capable of blocking protection, suggesting that mitoKATP opening is an upstream trigger of radical production and tyrosine kinase activation. As discussed by Gross and Fryer, these findings will need to be reconciled with several earlier studies demonstrating an effect of 5-HD applied after the preconditioning period.

Although preconditioning in humans is more difficult to verify, several studies have noted a significant effect of KATP channel blockers or openers either in vivo or in explanted human tissues. It is reassuring to find that the pharmacological profile described in animal models has been replicated in human myocardium. As reported recently by Ghosh et al, hypoxic preconditioning (assessed by prevention of creatine kinase loss) of human atrial tissue could be blocked by previous treatment with glibenclamide or 5-HD, but not HMR1883, and protection was mimicked by diazoxide.

MitoKATP in Delayed IPC

In addition to acute IPC, which lasts for 1 to 2 hours, a second window of protection or delayed preconditioning phase reappearing 24 to 72 hours after the brief ischemic period has been described. Protection by delayed preconditioning is usually less effective than acute IPC and requires more cycles of brief ischemia for maximal activation. The activation of tyrosine kinases and PKC, the expression of heat shock protein 72 and inducible NOS, and the release of nitric oxide have been shown to be involved in delayed preconditioning.

Recent findings indicate that mitoKATP channel opening may be a component of delayed protection. In a rabbit model of delayed preconditioning, protection at 24 hours (conferred by either four 5- or 10-minute ischemia/reperfusion cycles or by adenosine treatment) could be eliminated by treatment with glibenclamide or 5-HD given just before the long ischemia. As is consistently found in acute IPC, these blockers did not worsen the extent of injury in the absence of preconditioning, indicating that KATP channels are probably involved in the IPC recruitable protection but do not limit infarct size under normal circumstances.

It is noteworthy that the selectivity of 5-HD for mitoKATP was disputed in the report described above and in others on the basis of the observation that action potential shortening was significantly diminished by 5-HD. Similarly, early studies of 5-HD showed inhibition of whole-cell and single-channel KATP currents by 5-HD. Although a direct effect of 5-HD on sarcolemmal KATP may be possible under some
conditions, a result demonstrating an effect of 5-HD on action potential shortening or surface K\(_{ATP}\) currents does not necessarily imply that the drug is acting on the surface channel. It is possible, and perhaps to be expected, that a drug acting on mitoK\(_{ATP}\), by influencing cellular energy metabolism, could have secondary effects on surface K\(_{ATP}\). Conversely, agents that are intended to alter subsarcolemmal energy balance, through tight coupling between sarcolemmal and mitochondrial membranes, could potentially influence mitoK\(_{ATP}\) activity as well. This could provide an alternative explanation to the conclusions of Haruna et al,\(^9\) who recently showed that inhibition of Na\(^+\)/K\(^+\) ATPase with digoxin could inhibit the activation of surface K\(_{ATP}\) and abrogate preconditioning but could not inhibit K\(_{ATP}\) channel opener-mediated protection.

These results were interpreted as evidence that selective surface K\(_{ATP}\) channel inhibition could block protection. Even taking into account possible cross-reactivity of 5-HD with surface K\(_{ATP}\), its mitochondrial site of action is likely to be the relevant one for protection, because 5-HD can block protection without an effect on ischemic action potential shortening,\(^43\,90\) and when 5-HD does have an electrophysiological effect, there is still no correlation between the action potential shortening and protection.\(^44\) These findings have also been confirmed in a cellular model of IPC. Delayed protection (elicited by brief ischemia or adenosine) at 24 hours can be blocked by 5-HD given just before the long ischemia in a human cardiac cell line.\(^96\)

Also in support of mitoK\(_{ATP}\) as an effector of delayed preconditioning is that a single dose of diazoxide, applied 24 hours before a long ischemia, is enough to afford significant protection in rats.\(^39\) This protection can be blocked by 5-HD, applied either before diazoxide exposure or 10 minutes before the long ischemia, again supporting the hypothesis that mitoK\(_{ATP}\) channels are involved in both the trigger phase and in protection during the lethal ischemia. In another study in rabbits, diazoxide mimicked both early and delayed IPC, and 5-HD applied before the long ischemia blocked protection, as did L-NAME, leading to the conclusion that both mitoK\(_{ATP}\) and nitric oxide (NO) were mediators of protection induced by diazoxide.\(^63\)

The NO pathway and mitoK\(_{ATP}\) activation have been linked in a recent study by Sasaki et al,\(^32\) who showed that NO donors facilitate the activation of mitoK\(_{ATP}\) opening by diazoxide and partially activate the channel directly. A similar facilitation of mitoK\(_{ATP}\) opening by PKC activation was earlier noted by Sato et al.\(^33\) Thus, modulation of mitoK\(_{ATP}\) could play a role in both the short- and long-term memory of IPC. Little is known about how signal transduction pathways modify mitochondrial targets, but a recent study by Wang et al\(^65\) reported that one isoform of PKC (PKC-\(\delta\)) is specifically translocated to the mitochondria after diazoxide treatment. How this finding fits in with the known participation of other PKC isoforms\(^2\) in protection has not been determined.

MitoK\(_{ATP}\) and Apoptosis

Several studies have shown that apoptosis contributes to cardiac cell death after ischemia, and emerging evidence indicates that preconditioning may suppress apoptosis in addition to necrosis in intact hearts.\(^91\,98\) Regarding the role of mitoK\(_{ATP}\) in protecting against apoptosis, several recent studies show that diazoxide pretreatment decreases the appearance of apoptotic markers resulting from ischemia/reperfusion injury.\(^91\) The protection against apoptosis was also blocked by PKC inhibitors or 5-HD, reminiscent of the general mechanism of protection already discussed, and by the same reasoning implicating mitoK\(_{ATP}\) in the inhibition of apoptosis.

A recent study by Nakamura et al\(^99\) showed that IPC blunted the upregulation of Bax protein expression associated with ischemia/reperfusion without altering the levels of Bcl-2. The role of Bax in inducing or Bcl-2 in preventing cytochrome c release from the mitochondrial intermembrane space begs the question of whether mitoK\(_{ATP}\) activation influences this early trigger of apoptosis. The only published evidence thus far paradoxically suggests that cytochrome c release may be induced by mitoK\(_{ATP}\) opening. Holmumadev and colleagues\(^100,101\) reported that in Ca-loaded mitochondria, diazoxide treatment caused mitochondrial swelling, Ca\(^2+\) release, and loss of cytochrome c. However, recent findings in cultured neonatal rat myocytes suggest the opposite. Apoptosis induced by H\(_2\)O\(_2\) treatment [assessed by cytochrome c translocation, caspase activation, mitochondrial membrane potential loss, and poly(ADP-ribose)polymerase cleavage] can be inhibited by diazoxide, and 5-HD blocks this protection.\(^102\)

Mechanisms of Protection

Now that substantial evidence has accumulated in support of mitoK\(_{ATP}\) as a trigger and late effector of cardioprotection, attention is focusing on how the opening of a K\(^+\) influx pathway on the mitochondrial inner membrane may be protective. At face value, it may seem paradoxical that the opening of an energy dissipating cation conductance on the mitochondrial inner membrane would be beneficial. Because tight coupling between proton pumping and ATP production requires a relatively impermeable inner membrane, mitoK\(_{ATP}\) opening must lead to changes in mitochondrial function that supersed the loss of energy attributable to uncoupling. A least 3 main mechanistic hypotheses have been proposed to explain the protective effect of mitoK\(_{ATP}\) channel opening (Figure 2). These hypotheses are not mutually exclusive and may all contribute to protection, but it is still undetermined whether they play a role in either acute or delayed preconditioning in vivo.

Mitochondrial Swelling and Optimization of Respiration

A well-described consequence of mitoK\(_{ATP}\) opening in studies of isolated mitochondria is matrix swelling. According to the model of Garlid et al,\(^23\) the electrophoteric uptake of K\(^+\), in concert with the operation of a K\(^+\)/H\(^+\) antiporter, are the components of a volume regulatory K\(^+\) cycle. K\(^+\) influx is accompanied by the movement of diffusible weak acids to maintain electroneutrality and water movement attributable to osmotic forces. The net result is matrix swelling. Because the changes in matrix K\(^+\) and H\(^+\) concentrations are initially insufficient to directly activate K\(^+\)/H\(^+\) exchange, some initial
Mitochondrial Ca2+ Handling

A decrease in the extent of mitochondrial Ca2+ overload may be a consequence of opening mitoK\textsubscript{ATP}. Holmuhamedov et al110 demonstrated that the rate of Ca2+ uptake by isolated mitochondria in suspension (with 150 μmol/L Ca2+ in the bath) is dose-dependently suppressed by diazoxide or pinacil.

Both compounds also activated Ca2+ release from pre-loaded mitochondria through a mechanism that was apparently separate from the mitoK\textsubscript{ATP} channel. The effect on Ca2+ release (but not uptake) was cyclosporin A–sensitive and accompanied by cytochrome c release,109 suggesting that the permeability transition pore may be involved. Although these investigators were unable to obtain consistent block of either response by 5-HD or glybenclamide in the isolated organelles, mitochondrial Ca2+ concentration was reduced by diazoxide in intact neonatal myocytes, and 5-HD inhibited this effect.

It was suggested that the mechanism of decreased Ca2+ uptake by mitoK\textsubscript{ATP} opening was attributable to a decreased driving force for Ca2+ entry. From a baseline resting potential of −195 mV in the isolated mitochondria, the K\textsubscript{ATP} openers depolarized ΔΨ by 15 to 20 mV, and this effect was not inhibited by cyclosporin A.110

These interesting results raise several questions that will require additional investigation. Why was the K\textsubscript{1/2} for inhibition of Ca2+ uptake 65 μmol/L for diazoxide, ~100 times higher than the K\textsubscript{1/2} for K+ uptake via mitoK\textsubscript{ATP} as reported by Garlid et al23,24? What is the nature of the Ca2+ release mechanism? Why is there a permeability transition and cytochrome c release if diazoxide protects against apoptosis?

Free Radicals and Redox State

Reactive oxygen species (ROS) have long been implicated in the cellular damage associated with ischemia and reperfusion.109,111 On the other hand, ROS generation is thought to be a trigger of signaling pathways mediating preconditioning.77,112 Mitochondria not only set the redox balance of the cell, but also are a source of ROS production because of electron leakage from the electron transport chain. Recent work has suggested that the opening of mitoK\textsubscript{ATP} channels may alter the rate of mitochondrial ROS production and contribute to cardioprotection. In models of hypoxic preconditioning in embryonic chick myocytes, IPC–, adenosine–, or acetylcholine-mediated protection was associated with an early increase in ROS production during the preconditioning period, as determined by the accumulation of 2’,7’-dichlorofluorescein produced by oxidation of its precursor.60,106,113 Protection and ROS production were inhibited by 5-HD, the thiol reductant 2-mercapto-propanoyl glycine, or the mitochondrial site III inhibitor myxothiazol, indicating that mitochondria were the source of ROS production and that the

Similarly, Fryer et al112 showed that mitochondria isolated from the area at risk of preconditioned hearts had higher rates of ATP synthesis than those of hearts subjected to long ischemia alone and that this preservation of mitochondrial function could be partially inhibited by 5-HD, supporting improved ATP production as a common feature of IPC and K\textsubscript{ATP} channel openers.
opening of mitoK\textsubscript{ATP} channels could stimulate ROS accumulation. Vanden Hoek et al106 showed that the chloride channel blocker diisothiocyano-stilbene-2,2'-disulfonate abrogated protection, and they proposed a model in which superoxide generated in the mitochondria is exported through anion channels to the cytoplasm, where it is dismutated to hydrogen peroxide.

Interestingly, the generation of ROS during reperfusion, presumed to contribute to irreversible cellular injury, was attenuated by adenosine preconditioning or pinacidil applied just at the time of reperfusion. This protection was eliminated in the presence of 5-HD or an inhibitor of PKC.113 Thus, mitoK\textsubscript{ATP} opening could either enhance or attenuate mitochondrial ROS production, depending on the phase of preconditioning, ischemia, or reperfusion. Using a ROS-sensing microprobe, Obata et al114 also demonstrated that cromakalim or nicorandil increased hydroxyl radical production in rat myocardium. The effect was inhibited by 5-HD or glibenclamide. The link between mitoK\textsubscript{ATP} opening, ROS generation, and PKC remains incompletely defined at present. MitoK\textsubscript{ATP} opening seems to increase ROS production, which may in turn activate PKC, but the mitoK\textsubscript{ATP} channel is also modulated by these factors.33,92 In a recent study by Wang et al.,93 diazoxide induced PKC translocation and protection in Langendorff-perfused rat hearts and these responses could be blocked by PKC inhibitors. In contrast, Miura et al115 reported that the PKC inhibitor calphostin C could block adenosine-, but not diazoxide-mediated cardioprotection.

Other Mechanisms

Other effects of K\textsubscript{ATP} channel openers have been reported, which may also contribute to protection in the intact heart. Oe et al116 reported that diazoxide or cromakalim attenuated resting and stimulated norepinephrine release in perfused guinea pig hearts, but not in human right atrium, with the effect being antagonized by glibenclamide. Glibenclamide by itself increased NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations. Sakamoto et al116 reported that diazoxide or cromakalim attenuated NE release in both preparations.

A study by Susuki et al122 suggested that antibodies raised against a 12 amino acid stretch of Kir6.1 immunolocalize to mitochondria, implying that this isoform may be present on the inner membrane. In a recent test of whether Kir6.1 is an essential component of mitoK\textsubscript{ATP}, dominant-negative adenoviruses, in which the pore signature sequence GFG was mutated to AFA in Kir6.1 and Kir6.2, were constructed to knock out current carried by SUR/Kir6.x channels.123 The AFA mutation eliminates the ability of the channel to conduct K+ but does not prevent it from coassembling with native K\textsubscript{ATP} channels. These constructs selectively suppressed surface currents carried by their wild-type counterparts when coinfected into A549 cells.123 The 6.2AFA virus, but not the 6.1AFA virus, could also suppress native sarcosomal K\textsubscript{ATP} current in isolated rabbit cardiomyocytes. Notably, infection of adult myocytes with the dominant-negative Kir6.1AFA subunit had no effect on the mitochondrial redox response to diazoxide, indicating that it is unlikely that Kir6.1 is part of mitoK\textsubscript{ATP}.124 However, this does not preclude the possibility that a Kir6.1-like subunit, with antigenic similarity to 6.1 but without the ability to heteromultimerize with its surface counterpart, could still contribute to the mitoK\textsubscript{ATP} channel structure. In this regard, recent work by Liu et al125 indicates that among the combinations of known SUR and Kir subunits expressed heterologously as surface channels, only SUR1/Kir6.1 fits the pharmacological profile for mitoK\textsubscript{ATP} (as defined in intact rabbit myocytes; see the Table).

Isoform-specific localization of the binding sites for K\textsubscript{ATP} channel openers and inhibitors may provide some insight into the structure of mitoK\textsubscript{ATP}. To fit the pharmacological profile of mitoK\textsubscript{ATP}, one would look for a combination of SUR/Kir subunits that is readily opened by diazoxide, nicorandil, cromakalin, and pinacidil (and, perhaps, P1075) and is sensitive to inhibition by glibenclamide and 5-HD. In this context, recent evidence using chimeras of SUR1 (the pancreatic isoform potently activated by diazoxide) and SUR2A (insensitive to diazoxide), both coexpressed with Kir6.2, indicates that diazoxide sensitivity may be conferred by a region comprised of SUR1 transmembrane domains 6 to 11 interacting with its first nucleotide binding fold.126 Cromakalin and pinacidil, which readily open SUR2A/Kir6.2 channels, interact with a region spanning transmembrane domains 12 to 17 of SUR2A,126 and the inhibitory binding site of sulfonfonylurea is also in this area.127 The critical residues for pinacidil binding were additionally narrowed by Uhde et al.,128
who showed that P107S binding involved regions including amino acids 1059 to 1087 and 1218 to 1320 of SUR2.

The relatively small 42 amino acid carboxy-terminal divergence between the splice variants SUR2A and SUR2B contributes to major differences in K_{ATP} opener sensitivity. Not only is SUR2B sensitive to diazoxide, but nicorandil is more than 10 times more potent at opening this isoform as compared with SUR2A, whereas both are equally sensitive to pinacidil.35

Regarding the effects of different Kirs on the K_{ATP} pharmacology, Russ et al36 reported that glibenclamide binding to SUR2B is enhanced by coexpression of Kir6.1, although the K_0 for binding was about 7 times lower than the K_i for channel inhibition. Koster and colleagues37,38 showed that mutations of Kir6.2 altered the nucleotide sensitivity of the channel and activation by phosphatidyl inositol 4,5-bisphosphate. The N-terminus of Kir has been implicated in the coupling of sulfonnylurea-bound SUR to the stabilization of the channel-closed state.127 Conductance and gating of the channel is also conferred by the Kir subunit. In a study by Kondo et al39 using chimeras of Kir6.1 and Kir6.2, the extracellular linker domain between the membrane-spanning regions determined conductance (80 pS in Kir6.2 and 35 pS in Kir6.1 when coexpressed with SUR2A), whereas the N- and C-terminal regions were implicated in spontaneous opening in the absence of intracellular ATP (not present in Kir6.1).

Reconstruction of the known properties of mitoK_{ATP} from structure-function studies of surface channels may provide clues toward the molecular structure of mitoK_{ATP} but will require additional elucidation of the isoform-specific differences in 5-HD sensitivity, conductance, and regulation.

Summary

The hypothesis that the mitoK_{ATP} channel plays a major role in both acute and delayed preconditioning has been well supported by an accumulating body of evidence. Questions remain regarding the selectivity of some of the pharmacological tools used, and it is unwise to rely on only a single compound to justify a particular target, especially when intracellular conditions are changing markedly during ischemia. Still, when the results of many studies are taken together, protection is poorly correlated with drug action on surfaceK_{ATP} channels and well correlated with effects on mitoK_{ATP} channels. These questions will undoubtedly be resolved with a new generation of highly isoform-specific compounds.

If the mitoK_{ATP} hypothesis holds up to future scrutiny, the question remains as to what the role of surfaceK_{ATP} is in the cardioprotection. Because mitoK_{ATP} seems to mediate the extra protection associated with preconditioning but does not seem to affect injury in the absence of preconditioning, it is possible that surfaceK_{ATP} provides a baseline level of resistance to damage. Because surfaceK_{ATP} channel opening may also be arrhythmogenic on reperfusion, defining its true role in ischemia and reperfusion is critical.

The mechanism of mitoK_{ATP} protection may involve alterations in mitochondrial Ca$^{2+}$ handling, the optimization of energy production, and modulation of ROS production during ischemia or reperfusion. It is not known which of these factors is important in vivo. Also to be resolved is the relationship between mitoK_{ATP} opening and protein kinase action. Recent findings indicate that mitoK_{ATP} channels are modulated by PKC and NO but may also trigger the translocation and activation of PKC or activate tyrosine kinases.

The molecular cloning of mitoK_{ATP} has not yet been achieved and has been hampered by uncertainty about the molecular determinants of intracellular targeting of transmembrane proteins. Until it is cloned, it is only possible to draw structural inferences about mitoK_{ATP} from known properties of surfaceK_{ATP}.

Despite many unanswered questions, recent experimental findings and drug developments support the feasibility of specifically recruiting the natural defenses of the cell and will likely lead to new therapeutic strategies in the near future.

References

Myocardial K_{ATP} Channels in Preconditioning

Brian O'Rourke

Circ Res. 2000;87:845-855
doi: 10.1161/01.RES.87.10.845

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/87/10/845

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at:
http://circres.ahajournals.org/subscriptions/