A Tale of Two (Calcium) Channels

Joël Nargeot

Calcium influx through voltage-dependent calcium channels triggers excitation-contraction coupling and regulates pacemaking activity in the heart. Two distinct families of calcium channels have been identified in cardiac tissue: L-type calcium channels, which are essential in triggering Ca\(^{2+}\) release from internal stores, and low-voltage-activated (LVA) T-type calcium channels (ICa\(_T\)), whose role remains obscure in physiological and pathophysiological conditions. Functional features of ICa\(_T\) include low threshold of activation, small unitary conductance, slow activation, and fast inactivation inducing a typical criss-crossing pattern of current traces for increasing depolarizations, negative steady-state inactivation, and slow deactivation kinetics. In addition, T-type currents compared with L-type currents are more sensitive to block by mibefradil and Ni\(^{2+}\) ions. Whereas L-type calcium channels have been extensively characterized at the functional and molecular levels, classical cloning strategies failed to identify an α1 subunit encoding for a T-type channel.

An alternative approach to identifying new members of the calcium channel family used in silico cloning strategies with a search of genetic databases for sequences homologous but not identical to known Ca\(^{2+}\) channel α1 subunits.\(^1\) The identification of several expressed sequence tags and genomic sequences corresponding to a subset of distantly related α1 subunits resulted in the identification of full-length cDNAs encoding three distinct α1 subunits: α1G in rat,\(^1\) mouse,\(^2\) and human,\(^3,4\) α1H in human,\(^5,6\) and α1I in rat.\(^7\) Because α1H was obtained by screening a human heart library,\(^5\) it was originally considered the cardiac T-type channel isoform because of the presence in Northern blot analysis of a strong signal for α1H in the heart. However, an α1G transcript is also detected in adult heart, and it has become an interesting challenge to identify which isoforms underlie ICa\(_T\) in cardiac cells.

The article by Satin and Cribbs\(^8\) in this issue of Circulation Research aims to identify the α1 isoform encoding the ICa\(_T\) in AT-1 cells, an immortalized cell line derived from mouse atrial tissue. The advantages of using this cell line after a short period of culture are the absence of sodium current and the relatively small amplitude of L-type current, allowing for a better isolation of ICa\(_T\). Satin and Cribbs have compared the properties of ICa\(_T\) to those of the recombinant calcium currents generated by α1G and α1H expressed in human embryonic kidney cells. Most of the investigations are devoted to a comparison of the biophysical properties between ICa\(_T\) from AT-1 cells and α1G/α1H currents. The results indicate that most basic electrophysiological properties, such as current-voltage relationship and activation, inactivation, and deactivation properties, are rather similar and not discriminative. However, the recovery from inactivation of T-type currents, characterized by the sum of a fast and a slow time constant, is described as a functional signature of T-type channel isoform expression. The major difference between the two T-type channel isoforms relates to the relative amplitude of the slow recovery rate (τ\(_s\)) as a strong functional criterion to establish a linkage between ICa\(_T\) from AT-1 cells and α1G current. Such linkage is confirmed by reverse transcription–polymerase chain reaction (RT-PCR) experiments from cultured AT-1 cells using primers designed to amplify the III-IV loop of the three isoforms. The results show that only α1G, and predominantly a specific variant thereof, is revealed from sequencing of the subcloned PCR product corresponding to a single major band.

The results presented on AT-1 cells are convincing, but it is reasonable to wonder whether they can be extended to any cardiac cell. Comparing the properties of native ICa\(_T\) in cardiovascular cells with those of recombinant currents may be difficult because many studies have been conducted either under different experimental conditions or in different species. Cardiac T-type currents have often been studied in cultured embryonic or neonatal myocytes because of their low expression (or absence) in adult atrial (or ventricular) myocytes, except in several species such as chicken and guinea pig. Other studies report the characterization of cardiac ICa\(_T\) induced by hormone treatment\(^9\) or pathology.\(^10,11\) On the other hand, T-type channel isoforms have also been cloned from different species, and the use of various external concentrations of calcium or barium ions to study their related currents sometimes confounds the comparisons between native and recombinant currents. Satin and Cribbs\(^8\) provide a comparison between the properties of the recombinant rat (α1G) and human (α1H) currents and ICa\(_T\) from AT-1 (mouse) cells in a physiological calcium concentration. However, a large number of splice variants have been described for α1G in the different species\(^3\) and as discussed by the authors, it cannot be ruled out that splice variations in regions other than the III-IV loop may influence biophysical properties including recovery from inactivation. All of these splice variations involve connecting loops or the C-terminus.

Curiously, nickel sensitivity was not investigated by Satin and Cribbs,\(^8\) even though it is considered an important assay to distinguish between the two isoforms because of the much higher Ni\(^{2+}\) sensitivity of α1H currents (IC\(_{50}\) 5 μmol/L)
versus α1G currents (IC\textsubscript{α1G}>150 μmol/L).12,13 Preliminary data revealed a low Ni2+ sensitivity (160 μmol/L) of cardiac T-currents in freshly dissociated atrial myocytes from neonatal rat cells, also suggesting a linkage with the α1G isoform.13 However, previous data in rabbit sinoatrial,14 adult guinea pig cells,15 and rat hypertrophic cells11 indicate that T-currents are totally blocked by a lower concentration of Ni2+ ions (about 40 μmol/L). This would suggest either a differential expression of α1G and α1H isoforms among cardiac tissues, interspecies differences, or a possible developmental switch between isoforms. The latter hypothesis appears consistent with the results of Monteil et al,3 who observed in a dot-blot analysis a developmental regulation of human α1G transcripts with a prominent signal in embryonic compared with the adult heart. It must be emphasized, in agreement with such a hypothesis, that no IC\textsubscript{α1} has yet been recorded in adult human heart.16 Another study worth mentioning used an antisense strategy, which suggested that the cardiac T-type current in 3-week-old rats is related to the α1E subunit.17 This result remains puzzling because some properties such as threshold of activation and deactivation properties differ markedly between IC\textsubscript{α1} and α1E currents. In addition, IC\textsubscript{α1} from freshly dissociated neonatal rat atrial tissue was found13 to be insensitive to the α1E-specific toxin SNX 482. It is, however, worthwhile to note that T-type channel expression was induced by growth hormone treatment in the experiments of Piedras-Renteria et al.17

By contrast, with the absence of T-type current in adult human heart, an LVA calcium current was first reported in human atria,18 sharing some typical properties with sodium channels such as TTX sensitivity (designated IC\textsubscript{α1TTX}). Its description in rat19 and guinea pig20 myocytes indicated that it is not exclusively observed in diseased human cells. The study of Heubach et al21 in this issue of Circulation Research demonstrates for the first time the coexistence of IC\textsubscript{α1TTX} with IC\textsubscript{α1} in guinea pig ventricular myocytes. The results show that adult rat myocytes lack IC\textsubscript{α1TTX} whereas adult guinea pig myocytes express both LVA currents that can be isolated by pharmacological dissection using TTX and Ni2+ in the absence of external sodium ions. As mentioned above, T-type currents are reported here to be blocked by 40 μmol/L Ni2+ ions (IC\textsubscript{50} 16 μmol/L), a concentration much lower than that required to block recombinant α1G currents but rather close to that reported to block α1H currents. There are major differences between the biophysical properties of IC\textsubscript{α1} and IC\textsubscript{α1TTX}. IC\textsubscript{α1TTX} exhibits a run-up after the rupture of the patch membrane, a lower voltage for peak current (10 mV), a more negative steady-state inactivation relationship, faster time constants for recovery from inactivation, and a faster rate of deactivation. Interestingly, IC\textsubscript{α1TTX} was blocked by mibefradil, as is IC\textsubscript{α1}.

The remaining question concerns the molecular basis of IC\textsubscript{α1TTX}. Is this current related to modified sodium channels in the absence of external sodium ions20 or is it due to a new population of channels? Answering this will require the molecular identification of the pore-forming subunit using various strategies, including antisense, expression cloning, and other conventional molecular and biochemical isolation techniques. There is a lack of evidence for a correlation between IC\textsubscript{α1TTX} and the controversial slip-mode conductance that has been described for sodium channels in the presence of protein kinase A (PKA) and cardiotonic steroids.22 The fact that IC\textsubscript{α1TTX} does not require activation of the PKA pathway argues for a distinct population of channels. Additional experiments to test the effect of PKA inhibitors on IC\textsubscript{α1TTX} would be of interest. Heubach et al21 underline some discrepancies between the TTX concentration required to block modified sodium channels and IC\textsubscript{α1TTX}. In addition, the work of Lemaire et al18 on human atrial cells showed that IC\textsubscript{α1TTX} similarly conducts calcium and barium ions. Permeation to barium ions was not tested on the modified sodium channels, but most of the conclusions were based on calcium transient measurements. This property seems atypical for sodium channels but might indicate either a strong alteration of the sodium channel permeability in the absence of extracellular sodium ions or molecular similarities between IC\textsubscript{α1} and IC\textsubscript{α1TTX}.

From the results presented in this issue of Circulation Research and other studies, it is now clear that two LVA channels (IC\textsubscript{α1} and IC\textsubscript{α1TTX}) can coexist in cardiac myocytes. What is the physiological role of these LVA channels in the heart? T-type channels are assumed to play a role in pacemaking activity because of their presence in sinoatrial node and the negative chronotropic effect of Ni2+ ions.14 Whether IC\textsubscript{α1TTX} is also expressed in sinoatrial cells is unknown, and it would also seem important to reinvestigate the role of LVA versus L-type calcium channels in the pacemaking activity. An interesting feature of T-type current is related to their slow deactivation kinetics and the existence of a window current in the range of the cell membrane resting potential. Slow deactivation can mediate larger calcium influx than high-voltage-activated channels during short depolarizations, as shown by the application of a neuronal-type action potential such as a voltage-clamp command on recombinant α1G channels.3 The calcium transients in response to different spike shapes or frequencies also being isoform dependent.23 In spite of their rapid kinetics of inactivation, the existence of a window current would confer a role of T-type channels in maintaining intracellular Ca2+ concentration. T-type currents do not seem to play an important role in cardiac excitation-contraction coupling,24 but they could contribute to fine-tuning of basal calcium levels and control physiological processes such as hormone secretion, as previously suggested in adrenal cells.25 Their expression is also cell cycle dependent26 and their involvement in cell growth and proliferation was suggested in cardiac27 and smooth muscle cells27,28 respectively. In contrast to IC\textsubscript{α1}, IC\textsubscript{α1TTX} is observed in human heart and is likely to be sensitive to mibefradil as found in guinea pig myocytes.

Future studies will probably look for an overexpression of IC\textsubscript{α1} and IC\textsubscript{α1TTX} in pathological conditions, which would be expected to generate cardiac arrhythmias. Interestingly, it was recently reported that mibefradil prevents tachycardia-induced electrophysiological remodeling in dogs.29 Thus, inhibition of both LVA currents by mibefradil might be considered in terms of pathophysiology. Combining specific functional assays and molecular tools should allow a better understanding of T-type channel contribution to cardiac rhythmicity, as well as potential therapeutic targets of these channels.
understanding of the physiological and pathological roles of LVA channel isoforms in cardiovascular cells.

References
A Tale of Two (Calcium) Channels
Joël Nargeot

Circ Res. 2000;86:613-615
doi: 10.1161/01.RES.86.6.613

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2000 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/86/6/613

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org//subscriptions/