Influence of a Perfusing Bath on the Foot of the Cardiac Action Potential

Bradley J. Roth

Abstract—Recently, Spach et al (Circ Res. 1998;83:1144–1164) measured the transmembrane action potential 150 to 200 μm below the tissue surface during longitudinal and transverse propagation. They found that “during longitudinal propagation there was initial slowing of \(V_m \) [action potential] foot that resulted in deviations from a simple exponential...” (p 1144). They attributed this behavior to the effects of capillaries on propagation. The purpose of this commentary is to show that the perfusing bath plays an important role in determining the time course of the action potential foot, even when the transmembrane potential is measured 150 μm below the tissue surface. Using numerical simulations based on the bidomain model, we find that the action potential foot for transverse propagation is nearly exponential (\(\tau_{foot}=314 \mu s \)). For longitudinal propagation, the action potential foot is not exponential because of an initial slowing (best-fit \(\tau_{foot}=483 \mu s \)). We conclude that the perfusing bath must be taken into account when interpreting data showing differences in the shape of the action potential foot with propagation direction, even if the transmembrane potential is measured 150 μm below the tissue surface. The full text of this article is available at http://www.circresaha.org. (Circ Res. 2000;86:e19-e22.)

Key Words: bidomain ■ action potential foot ■ perfusing bath ■ anisotropy

In 1981, Spach et al\(^1\) observed a smaller maximum rate of rise of the action potential, \(V_{max} \), and a larger time constant of the action potential foot, \(\tau_{foot} \), during propagation parallel to the myocardial fibers (longitudinal) than during propagation perpendicular to the fibers (transverse). They attributed these differences to the discrete cellular structure of the myocardium. Their research has been cited widely and is often taken as evidence for discontinuous propagation in cardiac tissue.\(^2\)

Several researchers\(^3-11\) have suggested that the observations of Spach et al\(^1\) may be caused by the bath perfusing the tissue rather than the discrete nature of the tissue itself. Recently, Spach et al\(^12\),\(^13\) have presented additional evidence supporting their earlier data, but instead of measuring the transmembrane potential (\(V_m \)) at the tissue surface, as they did in 1981, they measured \(V_m \) 150 to 200 μm below the surface to eliminate bath perfusate effects. In their study, they emphasized the time course of the action potential foot. The purpose of this commentary is to model the experiment of Spach et al\(^12\), using a numerical simulation and to show that the perfusing bath plays an important role in determining the time course of the action potential foot, even when \(V_m \) is measured 150 μm below the tissue surface.

Materials and Methods

The simulation is similar to that described by Pollard et al\(^7\); a slab of cardiac tissue is superimposed on a conductive bath (Figure 1). The bidomain model\(^11\) represents the anisotropic electrical properties of the cardiac tissue. This model is a continuum description that does not take into account the discrete nature of individual myocardial cells. The electrical potential in the isotropic perfusing bath obeys Laplace’s equation. At the interface between the tissue and the bath, the boundary conditions are continuity of the extracellular (bath and interstitial) potential, continuity of the normal component of the extracellular current density, and the vanishing of the normal component of the intracellular current density.\(^14\) All other boundaries are sealed.

A planar wavefront propagates in the \(x \) direction, and the \(z \) direction is perpendicular to the tissue-bath surface (Figure 1). Fibers are aligned in either the \(x \) direction (longitudinal propagation) or the \(y \) direction (transverse propagation). The tissue parameters are given in the Table. The common scale factor of the 4 bidomain conductivities\(^15\) is selected so that the resulting propagation speed of the action potential is typical of that observed in experiments.\(^12\)

The ionic current through the membrane is described as a passive leak term plus an active sodium channel.\(^12\),\(^16\) The sodium channel gates obey Ebihara-Johnson kinetics.\(^17\) We restrict our attention to the depolarization phase of the action potential.

We solve the bidomain equations for the tissue and Laplace’s equation for the bath by approximating the differential equations by finite differences.\(^8\) The space step in the \(x \) direction is 2 μs. The space step in the \(z \) direction is 20 μm, and in the \(y \) direction is 50 μm for longitudinal propagation and 20 μm for transverse propagation. The boundary-value problem is solved iteratively using overrelaxation\(^8\); the iteration is terminated when the residual is \(<1 \mu V\).

The membrane is at rest initially (\(V_m=-80 \) mV). At \(t=0 \), \(V_m \) along the left edge (\(x=0 \)) is raised to 0 mV, initiating the action potential. Measurements of \(V_m \), and its derivative are made at the midpoint of the slab, where the action potential waveform has reached a steady shape. The length of the slab is 15 mm for longitudinal propagation and 6 mm for transverse propagation (301 nodes in both cases). The slab is 0.5 mm thick, and its bottom surface is sealed. The transmembrane potential is measured at 3 depths: the...
tissue-bath surface, 150 \mu m below the tissue-bath surface, and at the bottom of the tissue. The bath is 1 mm thick.

The reciprocal of the slope of this line is t_{foot}.

Results

Figure 2 shows the transmembrane potential as a function of x and z for longitudinal and transverse propagation. In both cases, the wavefront is curved, with the action potential at the surface leading the action potential at the center. The spreading of the contours indicates that the rate of rise of the action potential is lower at the surface than in the bulk. The speed of longitudinal propagation is 0.552 m/s, and of transverse propagation is 0.203 m/s. The peak-to-peak interstitial potential, measured 150 \mu m below the surface is 23.0 mV for longitudinal propagation and 11.6 mV for transverse propagation.

Figure 3A contains a phase-plane plot of the action potential during longitudinal and transverse propagation, for V_m measured at the tissue surface. The rate of rise is 15% lower during longitudinal propagation ($V_{\text{max}}=149 \text{ V/s}$) compared with transverse propagation ($V_{\text{max}}=175 \text{ V/s}$). The inset shows a magnified view of the action potential foot. For propagation in either direction, the action potential foot is not exponential (an exponentially rising action potential foot would appear as a straight line in a phase-plane plot). The best-fit value of t_{foot} is 706 \mu s for propagation in the longitudinal direction and 486 \mu s for propagation in the transverse direction.

The dotted curve in Figure 3A represents the action potential calculated when the bath is not present. In this case, the wavefront is not curved. The speed of longitudinal propagation is 0.505 m/s, and the speed of transverse propagation is 0.202 m/s. The time course of the action potential is independent of the direction of propagation. The action potential foot is exponential ($t_{foot}=294 \mu s$), and V_{max} (201 V/s) is greater than when the bath is present.

Figure 3B contains similar data, but V_m is measured 150 \mu m below the tissue surface. As in Figure 3A, V_{max} is less for longitudinal propagation (196 V/s) than for transverse propagation (201 V/s), although the difference between the two (2.5%) is smaller than when V_m is measured at the surface. The action potential foot for transverse propagation is nearly exponential ($t_{foot}=314 \mu s$), although it contains a slight “initial slur.” For longitudinal propagation, the action potential foot is clearly not exponential because of an initial slowing (best-fit $t_{foot}=483 \mu s$).

At the bottom of the tissue (Figure 3C), V_{max} is larger, and t_{foot} is smaller, for longitudinal propagation ($V_{\text{max}}=214 \text{ V/s, } t_{foot}=272 \mu s$) than for transverse propagation ($V_{\text{max}}=203 \text{ V/s, } t_{foot}=292 \mu s$). The action potential foot is nearly exponential, although there is a slight initial slurr for propagation in the longitudinal direction. Note that V_{max} is greater than, and t_{foot} is smaller than, if the bath were not present.

Discussion

The data of Spach et al.\(^1\) are cited widely as evidence for discontinuous propagation in cardiac tissue.\(^2\) Their hypothesis
of discontinuous propagation is supported by the following logic: (1) During 1-dimensional propagation in a tissue with continuous electrical properties, the time course of the action potential (including V'_m and τ_{foot}) does not depend on the intracellular and interstitial conductivities; (2) experiments indicate that in cardiac tissue V'_m and τ_{foot} differ with the direction of propagation and therefore with conductivity; and (3) therefore, the conductivity of cardiac tissue is not continuous. A flaw exists in this line of reasoning: when a conductive bath perfuses the tissue, the propagation is not 1-dimensional. The extracellular conductivity is higher for the tissue near the surface (adjacent to the bath) than it is for the tissue far from the surface (deep within the bulk). Therefore, gradients in V_m exist not only in the direction of propagation, but also in the direction perpendicular to the tissue surface. Reasoning based on the 1-dimensional cable model (such as used in the first premise of the syllogism above) is not applicable.

Several researchers have shown theoretically that the presence of the perfusing bath may account for the difference in the rate of rise with direction that was observed by Spach et al. The high-conductivity bath causes the wavefront to be curved (surface leading bulk) and the surface rate of rise to be slowed. This effect is more dramatic for longitudinal propagation than for transverse propagation because of the unequal anisotropy ratios of the tissue. For longitudinal propagation, the intracellular and interstitial conductivities are approximately the same, so large interstitial potentials exist in the bulk, although the potential in the high-conductivity bath is small. For transverse propagation, the interstitial conductivity is ≈ 4 times greater than the intracellular conductivity, so the extracellular potentials are small both at the tissue surface and deep in the bulk. The smaller gradients of the extracellular potential result in smaller gradients in the transmembrane potential during transverse propagation compared with longitudinal propagation. Our calculated changes in propagation speed, V'_m, and τ_{foot} measured at the tissue surface are qualitatively consistent with previous numerical models and with experimental data.

Recently, Spach et al. measured $V_m \approx 150 \mu m$ below the tissue surface, where they claim “there should be minimal effects of the superfusate solution.” Although Spach et al. recorded the action potential rate of rise, their main goal was to present “a detailed experimental analysis of the time course of the foot of the cardiac action potential (V_m foot) during propagation in different directions in anisotropic cardiac muscle.” They observed that “during longitudinal propagation there was initial slowing of V_m foot that resulted in deviations from a simple exponential; corollary changes occurred at numerous sites during transverse propagation.” They attributed these results to an effect of capillaries on conduction.

The results in Figure 3B show that the influence of the perfusing bath extends at least 150 μm below the tissue surface. Furthermore, the bath causes the action potential foot to rise more slowly than exponentially, and this slowing is greater for longitudinal propagation than for transverse propagation. These results agree qualitatively with the recent experimental data of Spach et al. The action potential foot is particularly sensitive to the perfusing bath, more so than other features of the action potential.

Quantitatively, the biggest discrepancy between our calculations and the data of Spach et al. lies not in the action potential foot, but instead in V'_m. Our calculations indicate that V'_m 150 μm below the tissue surface is only 2.5% less for longitudinal propagation than for transverse propagation, whereas the experimental data show an average difference of 22%. The source of this discrepancy is unclear. It may arise from the discrete nature of the tissue, from capillary effects, from incorrect parameter values in the simulation, or from of the presence of dead tissue 200 to 300 μm below the tissue surface. Our model does not incorporate a dead core of tissue. According to Spach et al., the dead core has an enlarged interstitial space, which might increase the intersti-
measured penetration depths of Spach et al.12 with and without a perfusing bath. The results in Figure 3A indicate that when the bath is eliminated, the action potential footprint should become exponential, with no differences between longitudinal and transverse propagation. Furthermore, the maximum rate of rise of the action potential should increase and become independent of propagation direction. Although this experiment is easy to conceive, it would be susceptible to several sources of error. If V_m were measured optically, the data would represent an average over a depth of a few hundred microns. Because the model predicts that V_m changes dramatically over such distances, the data would be difficult to interpret. Microelectrode measurements, on the other hand, are sensitive to capacitative coupling to the perfusing bath, and the degree of such coupling depends on the bath depth. The rapid depolarization phase of the action potential is particularly sensitive to electrode capacitance. Although it is possible to correct the data for the influence of electrode capacitance, these corrections would be crucial when comparing data measured at different bath depths.

We cannot conclude from our study that capillaries are not important during action potential propagation. Nor can we conclude that discontinuous propagation does not occur (particularly in diseased tissue). These factors may well play a role in propagation. We can conclude, however, that the influence of a perfusing bath must be taken into account when interpreting data showing differences in the shape of the action potential footprint with propagation direction, even if V_m is measured 150 μm below the tissue surface. Therefore, differences in action potential shape with direction1,12 cannot be taken as definitive evidence supporting discontinuous propagation or capillary effects if a perfusing bath is present. Finally, without additional experiments, we cannot exclude the possibility that in healthy tissue the difference in the shape of the action potential upstream with propagation direction is simply an artifact of the way the tissue was perfused.

Acknowledgments
This research was supported by NIH Grant RO1HL57207. We thank the School of Engineering and Computer Science at Oakland University for their computational support.

References
9. Roth BJ. Effect of a perfusing bath on the rate of rise of an action potential propagating through a slab of cardiac tissue. _Ann Biomed Eng._ 1996;24:639–646.
Influence of a Perfusing Bath on the Foot of the Cardiac Action Potential
Bradley J. Roth

Circ Res. 2000;86:e19-e22
doi: 10.1161/01.RES.86.2.e19

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/86/2/e19

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/