

during the last few years, there has been an exponential rise in understanding functions and signal transduction mechanisms for angiotensin II (Ang II) type 2 receptors (AT2s). These studies are particularly relevant in view of the pivotal role of upregulation of AT2 in mediating tissue remodeling in many cardiovascular diseases, including vascular injury, atherosclerosis, cardiac hypertrophy, myocardial infarction, and congestive heart failure. Furthermore, Ang II type 1 receptor (AT1) antagonists, commonly used for treatment of hypertension and congestive heart failure, increase plasma levels of Ang II and upregulate AT2 expression. Under these conditions, the increase in AT2 is opposed by AT1, Thus, understanding the role of AT2 in cardiovascular remodeling as well as the consequences of AT1 stimulation or inhibition during medical therapy is clinically important. AT2s only partially share the signaling mechanisms with AT1s and, in fact, counteract the signaling mechanisms activated by AT1s. This negative nature of AT1 signaling has made the elucidation of its function more difficult than that of AT1. However, recent studies on the cardiovascular functions of AT1 seem to have reached a consensus: AT1s exert growth inhibitory effects either by suppressing cell proliferation and hypertrophy or by stimulating apoptosis. These actions alone may not explain the diverse cardiovascular phenomena attributed to AT2, resulting in unanswered questions. Why are AT1s abundant in growing fetal tissues? Why are AT1s abundant in tissues undergoing remodeling? Recently, an elegant genetic study has provided an answer to some of these questions, showing that an important function of AT1 in the fetal kidney is to stimulate apoptosis. Targeted deletion of AT1 causes malformation of the kidney and urinary tract similar to that observed in human CAKUT (congenital anomalies of the kidney and urinary tract) and subsequent production of cGMP are stimulated by AT2 in fibrotic scars in the myocardium of failing human hearts. Remarkably, AT2s have been shown to activate NF-kB in many organs. Induction of cyclooxygenase-2 and activation of NF-kB have been observed in fibrotic scars in the myocardium of failing human hearts. Remarkably, AT2s in human hearts are predominantly localized in fibroblasts present in the interstitial region, suggesting that AT1 may be responsible for progression of inflammation and interstitial fibrosis during cardiac remodeling. Stimulation of AT2 generally inhibits growth of vascular smooth muscle cells and cardiac myocytes, but, paradoxically, it may also be involved in cell growth. For example, AT2 blockade inhibits medial smooth muscle hypertrophy and fibrosis in the thoracic aorta of Ang II-infused rats and spontaneously hypertensive rats. Because these growth stimulatory effects are seen only in vivo (and have not been reported in pure smooth muscle cell cultures), upregulation of cytokines and cell adhesion molecules by the AT2/NF-kB pathway, attraction of inflammatory cells, and additional amplification of trophic (paracrine) factors in vivo may be responsible for these AT2-mediated cell growth responses. Recently, a preliminary study suggested that pressure overload–induced cardiac hypertrophy is completely suppressed in mice with targeted

In this issue of Circulation Research, Ruiz-Ortega et al show that Ang II activates nuclear factor-kB (NF-kB) through both AT1 and AT2 in vascular smooth muscle cells. NF-kB is a ubiquitous transcription factor of particular importance in inflammatory responses. Many stimuli relevant to cardiovascular diseases, including proinflammatory cytokines (interleukin [IL]-1β and tumor necrosis factor-α [TNF-α]), signals elicited by ischemic stress (nitric oxide [NO] and reactive oxygen species), and mechanical forces, have been shown to activate NF-kB. Activation of NF-kB leads to coordinated increases in the expression of many genes whose products mediate inflammatory responses, including cytokines, chemokines, and adhesion molecules. Although activation of NF-kB by AT1 has been demonstrated previously, the study by Ruiz-Ortega et al is the first to show the linkage between AT1 and NF-kB and thus potentially clarifies the mechanism of many presently unexplained cardiovascular phenomena known to be mediated by AT2.

Functional Roles of the AT2/NF-kB Pathway

As Ruiz-Ortega et al point out, many inflammatory cytokines (TNF-α, IL-6, and IL-8), chemokines (monocyte chemotactic protein-1 [MCP-1]), cell adhesion molecules (vascular cell adhesion molecule-1 and intercellular adhesion molecule-1), and other molecules (tissue factor) relevant for cardiovascular remodeling are regulated by NF-kB. Other important candidates regulated by the AT2/NF-kB pathway include inducible NO synthase and cyclooxygenase-2, which mediate NO and prostaglandin and thromboxane production, respectively, in inflammatory diseases. NO synthesis and subsequent production of cGMP are stimulated by AT2 in many organs. Induction of cyclooxygenase-2 and activation of NF-kB have been observed in fibrotic scars in the myocardium of failing human hearts. Remarkably, AT2s in human hearts are predominantly localized in fibroblasts present in the interstitial region, suggesting that AT1 may be responsible for progression of inflammation and interstitial fibrosis during cardiac remodeling. Stimulation of AT2 generally inhibits growth of vascular smooth muscle cells and cardiac myocytes, but, paradoxically, it may also be involved in cell growth. For example, AT2 blockade inhibits medial smooth muscle hypertrophy and fibrosis in the thoracic aorta of Ang II–infused rats and spontaneously hypertensive rats. Because these growth stimulatory effects are seen only in vivo (and have not been reported in pure smooth muscle cell cultures), upregulation of cytokines and cell adhesion molecules by the AT2/NF-kB pathway, attraction of inflammatory cells, and additional amplification of trophic (paracrine) factors in vivo may be responsible for these AT2-mediated cell growth responses. Recently, a preliminary study suggested that pressure overload–induced cardiac hypertrophy is completely suppressed in mice with targeted

The opinions expressed in this editorial are not necessarily those of the editors or of the American Heart Association.

From the Weis Center for Research, Pennsylvania State University College of Medicine, Danville, Pa.

Correspondence to Junichi Sadoshima, Weis Center for Research, Pennsylvania State University College of Medicine, Department of Molecular Cellular Physiology, 100 N Academy Ave, Danville, PA 17822. E-mail Jsadoshima@psghs.edu

(Circ Res. 2000;86:1187-1189.)
© 2000 American Heart Association, Inc.

Circulation Research is available at http://www.circresaha.org

1187
AT$_1$ and AT$_2$ have distinct downstream targets, which counteract each other and mediate opposite cellular functions. AT$_1$ and AT$_2$ also have shared downstream targets, such as arachidonic acid and NF-κB. Whether the shared downstream targets mediate the same cellular functions is unknown.

Unresolved Questions

Several important questions remain unanswered. First, in cultured smooth muscle cells, Ang II–induced increases in MCP-1 and angiotensinogen, well-known targets of NF-κB, were mediated predominantly by AT$_1$, despite both AT$_1$ and AT$_2$ stimulation activating NF-κB in this cell type.12 Because AT$_1$ is the predominant Ang II receptor subtype in cultured aortic smooth muscle cells, the possibility remains that these NF-κB targets may be regulated more potently by AT$_2$ when expression of AT$_2$ is upregulated in pathological conditions. It is also possible that AT$_1$ and AT$_2$ regulate different molecules through NF-κB. For example, the AT$_1$/NF-κB pathway may regulate predominantly proinflammatory cytokines, whereas the AT$_2$/NF-κB pathway may have different targets. The mechanisms by which AT$_1$ and AT$_2$ regulate distinct NF-κB targets remain to be clarified. Because NF-κB is known to function in concert with other transcription factors such as AP-1 and C/EBP, these cofactors may be regulated differentially by AT$_1$ and AT$_2$.

Another important question is whether the AT$_1$/NF-κB pathway always exerts a beneficial action in cardiovascular diseases.1 The answer is not simple, considering that NF-κB activation can be both beneficial and detrimental. For example, NF-κB activation is essential for the development of the cardioprotective effects of preconditioning.27 On the other hand, many studies have shown that inhibition of NF-κB can also have a salutary effect on cardiovascular diseases. For example, in vivo transfer of NF-κB decoy oligonucleotides reduces the extent of myocardial infarction and reperfusion injury.28,29 Inhibition of NF-κB reduces Ang II–induced organ damage in the heart and kidney by preventing inflammatory mediators.30 In the vasculature, inhibition of NF-κB suppresses development of atherosclerotic lesions by preventing inflammation,31 smooth muscle cell proliferation,32 and dysregulation of apoptosis.33 In a recent review, Matsubara1 discussed the potential advantages of shunting Ang II toward thereby inactivating tyrosine kinases and mitogen-activated protein kinases stimulated by AT$_2$.2 It is interesting that NF-κB activation is one of the few examples reported thus far in which AT$_1$ and AT$_2$ share the signaling mechanism at least in part (Figure). Although both AT$_1$ and AT$_2$ stimulation cause degradation of inhibitor IkB (IkB),13 an essential step for nuclear translocation of NF-κB, the mechanism leading to IkB degradation by AT$_1$ and AT$_2$ stimulation remains to be clarified. Degradation of IkB depends on phosphorylation of the two N-terminus serines by IkB kinase, and the phosphorylated IkB undergoes polyubiquitination and proteasome degradation.25 Degradation of IkB can be also mediated by phosphorylation of IkB at tyrosine 42 or by unknown mechanisms involving protein tyrosine phosphatases.25,26 Therefore, it will be interesting to determine whether NF-κB activation by AT$_1$ and AT$_2$ is mediated by either IkB kinase–dependent mechanisms or other mechanisms in which tyrosine kinases or phosphatases (directly or indirectly) modulate IkB degradation. Ruiz-Ortega et al12 suggest that oxygen radicals and ceramide are common mediators of NF-κB activation by AT$_1$ and AT$_2$. However, how AT$_2$ stimulates production of oxygen radicals and ceramide in cardiovascular cell types remains to be elucidated.
AT₂ (during AT₁ blockade) in the treatment of cardiovascular diseases. This hypothesis is well supported by the results of a recent study showing that losartan was associated with a lower mortality rate than captopril in the treatment of older heart failure patients. It has been shown that cardioprotective effects of AT₁ antagonists in a rat model of heart failure are prevented by AT₁ blockade. It will be extremely important to identify the targets of the AT₁/NF-κB pathway in each disease condition and evaluate in which disease states stimulation of AT₁ could be beneficial.

Acknowledgments

The author thanks Dr Stephen F. Vatner for critical reading of this manuscript.

References

Cytokine Actions of Angiotensin II
Junichi Sadoshima

Circ Res. 2000;86:1187-1189
doi: 10.1161/01.RES.86.12.1187

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/86/12/1187

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/